Cloning and Bioinformatics of NPPFR2 of Minxinan Black Rabbit
-
摘要:
目的 神经肽FF受体2(Neuropeptide FF receptor 2,NPFFR2)是机体重要的神经内分泌因子神经肽FF(Neuropeptide FF,NPFF)的受体,参与糖皮质激素和焦虑行为的调节。测序分析闽西南黑兔NPFFR2基因,为其作为闽西南黑兔抗应激研究的重要靶基因提供数据。 方法 克隆NPFFR2基因,并对其进行测序及序列分析。 结果 成功克隆得到闽西南黑兔NPFFR2基因2个转录异构体,分别含1 815和1 824个核苷酸。它们拥有相同的5′-UTR(Untranslated region,非翻译区)和编码区序列(Coding region),但是在3′-UTR存在多个突变。根据mRNA二级结构预测结果,3′-UTR的突变致使NPFFR2基因转录异构体的二级结构存在部分差异。通过对兔NPFFR2基因进行遗传进化分析,发现其和人类的相关基因进化关系最近。依据编码序列对NPFFR2蛋白结构和亚细胞分布进行预测,NPFFR2蛋白含414个氨基酸,有7个跨膜α螺旋,是G蛋白偶联受体家族一员。 结论 分离克隆了闽西南黑兔NPFFR2基因的2种转录异构体,并利用生物信息学方法对其转录本和翻译蛋白的结构和功能进行了预测,为进一步高效利用闽西南黑兔NPFFR2基因提供相关理论支持。 Abstract:Objective The gene related to an important neuroendocrine receptor of NPFF (neuropeptide FF), NPFFR2 (Neuropeptide FF receptor 2), that participates in the regulation of corticotropin-releasing hormone (CRT) and anxiety-like behaviors was analyzed for study on the stress response of Minxinan black rabbit. Method NPFFR2 was cloned, sequenced, and analyzed. Result Two transcript variants of NPFFR2 from Minxinan black rabbits were cloned to show the contents of 1 815 bp and 1 824 bp nucleic acid sequences. They had same sequences in 5′-UTR and coding region but multiple mutations in 3′-UTR. The predicted mRNA secondary structure displayed multiple mutations in the 3′-UTR which could cause changes on the structure as well as the function of NPFFR2. The phylogenetic analysis indicated the NPFFR2 from the rabbit was most closely related to that from Homo sapiens. According to the predicted protein structure and subcellular location, NPFFR2 protein belonged to the G protein-coupled receptors family and had 414 amino acids and 7 transmembrane α-helixes. Conclusion Two transcript variants of NPFFR2 from Minxinan black rabbits were cloned. The structures and functions of the transcripts and translated proteins were predicted by bioinformatics obtained. The results would be helpful for further study on the functions of NPFFR2 of Minxinan black rabbit. -
Key words:
- Minxinan black rabbit /
- NPFFR2 /
- cloning
-
图 4 闽西南黑兔NPFFR2蛋白的结构和亚细胞定位预测
注:A,二级结构;B,三级结构;C,跨膜螺旋;D,亚细胞定位。箭头指向细胞膜。
Figure 4. Predicted structure and subcellular localization of NPFFR2 of Minxinan black rabbit
Note: A: Secondary structure; B: tertiary structure; C: transmembrane helices; D: subcellular localization. Arrow points at cell membrane.
表 1 本研究使用的引物
Table 1. Primers applied
引物
Primers序列(5′-3′)
Sequence (5′-3′)扩增长度
Length/bp用途
PurposeNPFFR2F1 GGCGTCACATCTGGACTGTC 1 322 NPFFR2 基因cDNA序列中间序列第一轮PCR扩增 NPFFR2R1 GGCTCATTTGACTCATGCAC NPFFR2F2 CACCAGCCTCAAGTGGCAGC NPFFR2 基因cDNA序列中间序列第二轮PCR扩增 NPFFR2R2 GAGTCACTGCGTAATACTGG NPFFR2F3 CCAAGGAAGCTTCTGCCCTGAGAG 546 NPFFR2 基因cDNA序列3′-RACE扩增 NPFFR2F4 CAAGCAGGGACTGATGGGAGAAT NPFFR2R3 CAGTCTTCCCGGCACCAGTAGACA 564 NPFFR2 基因cDNA序列5′-RACE扩增 NPFFR2R4 ACAAATGCCGTCTTGATGGTGATC NPFFR2F5 TGCAGGTTCACACGTGGTCG 1 757 NPFFR2 基因cDNA序列验证 NPFFR2R5 AAGCAGACAACTCTATAGCC -
[1] 孙世坤, 桑雷, 陈冬金, 等. 闽西南黑兔的肉质分析研究 [J]. 中国农学通报, 2012, 28(20):33−36. doi: 10.11924/j.issn.1000-6850.2012-0630SUN S K, SANG L, CHEN D J, et al. Analysis of minxinan black rabbit's meat quality [J]. Chinese Agricultural Science Bulletin, 2012, 28(20): 33−36.(in Chinese) doi: 10.11924/j.issn.1000-6850.2012-0630 [2] COHEN S, JANICKI-DEVERTS D, MILLER G E. Psychological stress and disease [J]. JAMA, 2007, 298(14): 1685−1687. doi: 10.1001/jama.298.14.1685 [3] ULRICH-LAI Y M, HERMAN J P. Neural regulation of endocrine and autonomic stress responses [J]. Nature Reviews Neuroscience, 2009, 10(6): 397−409. doi: 10.1038/nrn2647 [4] BAO A M, SWAAB D F. The human hypothalamus in mood disorders: The HPA axis in the center [J]. IBRO Reports, 2019, 6: 45−53. doi: 10.1016/j.ibror.2018.11.008 [5] AYACHI S, SIMONIN F. Involvement of mammalian RF-amide peptides and their receptors in the modulation of nociception in rodents [J]. Frontiers in Endocrinology, 2014, 5: 158. [6] GONCHARUK V, ZENG Z Z, WANG R P, et al. Distribution of the neuropeptide FF1 receptor (hFF1) in the human hypothalamus and surrounding basal forebrain structures: Immunohistochemical study [J]. The Journal of Comparative Neurology, 2004, 474(4): 487−503. doi: 10.1002/cne.20132 [7] WU C H, TAO P L, HUANG E Y K. Distribution of neuropeptide FF (NPFF) receptors in correlation with morphine-induced reward in the rat brain [J]. Peptides, 2010, 31(7): 1374−1382. doi: 10.1016/j.peptides.2010.03.036 [8] MANKUS J V, MCCURDY C R. Nonpeptide ligands of neuropeptide FF: Current status and structural insights [J]. Future Medicinal Chemistry, 2012, 4(9): 1085−1092. doi: 10.4155/fmc.12.67 [9] 孙瑜隆, 马小莉, 李迪杰, 等. 神经肽FF的生物活性研究进展 [J]. 现代生物医学进展, 2015, 15(7):1365−1368.SUN Y L, MA X L, LI D J, et al. Advances in the biological activity of neuropeptide FF [J]. Progress in Modern Biomedicine, 2015, 15(7): 1365−1368.(in Chinese) [10] JHAMANDAS J H, GONCHARUK V. Role of neuropeptide FF in central cardiovascular and neuroendocrine regulation [J]. Frontiers in Endocrinology, 2013, 4: 8. [11] ZAJAC J M. Neuropeptide FF: New molecular insights [J]. Trends in Pharmacological Sciences, 2001, 22(2): 63. [12] CONSTANTIN S, PIZANO K, MATSON K, et al. An inhibitory circuit from brainstem to GnRH neurons in male mice: A new role for the RFRP receptor [J]. Endocrinology, 2021, 162(5): bqab030. doi: 10.1210/endocr/bqab030 [13] WACŁAWCZYK D, SILBERRING J, GRASSO G. The insulin-degrading enzyme as a link between insulin and neuropeptides metabolism [J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36(1): 183−187. doi: 10.1080/14756366.2020.1850712 [14] ELSHOURBAGY N A, AMES R S, FITZGERALD L R, et al. Receptor for the pain modulatory neuropeptides FF and AF is an orphan G protein-coupled receptor [J]. Journal of Biological Chemistry, 2000, 275(34): 25965−25971. doi: 10.1074/jbc.M004515200 [15] MOLLEREAU C, MAZARGUIL H, MARCUS D, et al. Pharmacological characterization of human NPFF1 and NPFF2 receptors expressed in CHO cells by using NPY Y1 receptor antagonists [J]. European Journal of Pharmacology, 2002, 451(3): 245−256. doi: 10.1016/S0014-2999(02)02224-0 [16] LIN Y T, HUANG Y L, TSAI S C, et al. Ablation of NPFFR2 in mice reduces response to single prolonged stress model [J]. Cells, 2020, 9(11): 2479. doi: 10.3390/cells9112479 [17] ANKÖ M L, PANULA P. Regulation of endogenous human NPFF2 receptor by neuropeptide FF in SK-N-MC neuroblastoma cell line [J]. Journal of Neurochemistry, 2006, 96(2): 573−584. doi: 10.1111/j.1471-4159.2005.03581.x [18] BURGESS D J. NF-κB shows its beneficial side [J]. Nature Reviews Cancer, 2011, 11(12): 832−833. doi: 10.1038/nrc3168 [19] WU X F, LIU Y, GAO C F, et al. Novel alternative splicing variants of ACOX1 and their differential expression patterns in goats [J]. Archives Animal Breeding, 2018, 61(1): 59−70. doi: 10.5194/aab-61-59-2018 [20] 王芬, 贾建平, 秦伟, 等. GSK3B基因3′-UTR多态性与阿尔茨海默病发病风险的相关性分析 [J]. 脑与神经疾病杂志, 2019, 27(3):138−142.WANG F, JIA J P, QIN W, et al. Association of the polymorphisms in the 3′-UTR of GSK3B with the risk for Alzheimer's disease [J]. Journal of Brain and Nervous Diseases, 2019, 27(3): 138−142.(in Chinese) [21] 李素雅, 张建宏, 陈文, 等. 鸡Lpin1基因3′-UTR遗传变异及其对miRNA结合位点的潜在效应 [J]. 中国农业科学, 2012, 45(8):1613−1620. doi: 10.3864/j.issn.0578-1752.2012.08.017LI S Y, ZHANG J H, CHEN W, et al. Genetic variation analysis of 3′-UTR region of chicken Lpin1 gene and the potential effect on miRNA binding sites [J]. Scientia Agricultura Sinica, 2012, 45(8): 1613−1620.(in Chinese) doi: 10.3864/j.issn.0578-1752.2012.08.017 [22] 陈安利, 夏定国, 裘智勇, 等. 家蚕卵黄膜蛋白基因BmVMP23的3′-UTR变异对其表达的影响 [J]. 蚕业科学, 2013, 39(1):28−34.CHEN A L, XIA D G, QIU Z Y, et al. Influence of 3′-UTR mutation on expression of silkworm vitelline membrane protein gene BmVMP23 [J]. Science of Sericulture, 2013, 39(1): 28−34.(in Chinese) [23] 杨韩, 张阳海, 王敏, 等. 陕北白绒山羊POU1F1基因3′-UTR多态性及其与生长性状的相关分析 [J]. 农业生物技术学报, 2019, 27(7):1224−1232.YANG H, ZHANG Y H, WANG M, et al. Polymorphisms of 3′-UTR of POU1F1 gene and its association with growth traits in Shaanbei white cashmere goats(Capra hircus) [J]. Journal of Agricultural Biotechnology, 2019, 27(7): 1224−1232.(in Chinese) [24] 孙渭博, 张利平, 郎侠, 等. 四个绵羊品种BMPR-IB基因3′-UTR区多态性及其与胎产羔数的相关分析 [J]. 农业生物技术学报, 2020, 28(4):702−710.SUN W B, ZHANG L P, LANG X, et al. Polymorphism of 3′-UTR region of BMPR-IB gene and its correlation with litter size in four sheep(Ovis aries) varieties [J]. Journal of Agricultural Biotechnology, 2020, 28(4): 702−710.(in Chinese)