Effects of Magnesium on Chlorophyll Fluorescence and Metabolism of Citrullus lanatus
-
摘要:
目的 探讨镁营养对西瓜(Citrullus lanatus)生长发育和生理代谢的影响,明确西瓜生长的适宜镁浓度范围。 方法 采用砂培法,对西瓜进行5个施镁质量浓度(0 、24 、48、96 和192 mg·L−1)处理,并测定西瓜在不同施镁浓度下的生长特性(叶片和根系形态、生物量积累)、果实品质(维生素C、可溶性固形物、可溶性蛋白和可溶性糖含量)、叶绿素荧光特性和生理响应(渗透调节、膜伤害和抗氧化酶系统)。 结果 用24 ~96 mg·L−1的镁素可以降低西瓜叶片膜伤害,提高光系统Ⅱ(PSII)活性,增加叶片抗氧化物质谷胱甘肽(glutathione, GSH)和还原型抗坏血酸(reduced ascorbic acid, AsA)含量,增强叶片抗氧化酶活性,包括过氧化物酶(peroxidase, POD)、超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)和单脱氢抗坏血酸还原酶(monodehydroascorbate reductase, DHAR),降低叶片丙二醛(malondialdehyde, MDA)和脯氨酸(proline, Pro)含量以及细胞膜透性,促进AsA-GSH循环,增强光合作用,提高生物量积累,增加果实中维生素C、可溶性固形物、可溶性蛋白和可溶性糖含量。其中,48 mg·L−1镁处理对西瓜的生长发育增效最明显,而缺镁(0 mg·L−1)和镁过量(192 mg·L−1)胁迫下,西瓜叶片产生膜脂过氧化伤害,根系变短,叶绿素荧光参数放氧复合体(OEC)、电子传递量子产额(φEo) 、受体库容量(Sm)和单位面积反应中心数量(RC/CSo)降低,单位反应中心光能的吸收(ABS/RC)、耗散(DI0/RC) 、捕获(TR0/RC)及QA还原速率(Mo)增加,叶片光合机构完整性被破坏,光合作用减弱,西瓜生长受到明显抑制,其中缺镁影响最严重。 结论 缺镁和镁过量处理降低西瓜PSII活性,抑制西瓜生长,而适量增施镁可有效提高西瓜的生理活性,PSII的结构和功能稳定,光合作用强,西瓜生长好,果实品质高,48 mg·L−1为西瓜栽培最适宜施镁质量浓度。 Abstract:Objective Effects of magnesium on the growth, development, and metabolism of Citrullus lanatus were studied to determine the appropriate nutrient supply for the melon cultivation. Method At the concentrations of 0, 24, 48, 96, and 192 mg·L−1 on magnesium in sand culture, the growth characteristics (i.e., leaf and root morphology, chlorophyll fluorescence, and biomass accumulation), fruit quality (i.e., vitamin C, soluble solids, soluble protein, and soluble sugar), and physiological responses (i.e., osmoregulation, membrane damage, and antioxidases) of various C. lanatus varieties were compared. Result In the range of 24-96 mg·L−1, the application of magnesium reduced the vulnerability of leaf membrane to damages, increased the contents of antioxidant glutathione (GSH) and ascorbic acid (AsA) as well as the activities of photosystemⅡ (PSII), peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and monodehydroascorbate reductase (DHAR), while decreased the contents of malondialdehyde (MDA) and proline (Pro), and reduced the cell membrane permeability of the leaves. The addition also promoted the AsA-GSH cycle, photosynthesis, and the biomass accumulations on vitamin C, soluble solids, soluble protein, and soluble sugar. Among the treatments, the 48 mg·L−1 magnesium addition in the culture substrate rendered the most significant improvements on the growth and development of C. lanatus. Whereas, either a deficiency (at 0 mg·L−1) or an excess (e.g., at 192 mg·L−1) on the nutrient ill-affected the membrane lipid peroxidation and shortened the plant roots. Furthermore, the chlorophyll fluorescence declined as indicated by the lower oxygen evolution complex (OEC), quantum yield for electron transport (φEo), and receptor library capacity (Sm), the density of reaction centers (RC/CSo) decreased, the light energy absorption per unit reaction center (ABS/RC) lowered, and the dissipative (DI0/RC), capture (TR0/RC), and QA reduction rate (Mo) increased. Thus, either deprivation or over-supply of magnesium could significantly disrupt the normal photosynthetic function inhibiting the growth of C. lanatus. Conclusion Particularly in deficiency, but also in excess, magnesium in soil could diminish the PSII activity and retard the growth of C. lanatus. Appropriate application of the nutrient, such as at 48 mg·L−1 concentration in soil, could effectively improve the physiological activity, stabilize the structure and function of PSII, strengthen the leaf photosynthesis to result in healthy growth and high quality fruit production of C. lanatus. -
表 1 营养液配方
Table 1. Formulation of nutrient solution
化合物
Compound化合物含量
Compound content/
(mg·L−1)各元素总含量
Content of element/
(mg·L−1)Ca(NO3)2·4H2O 1000 Ca:169.70 KNO3 500 N:187.80 KH2PO4 250 K:337.00 K2SO4 160 P:56.90 C10H12FeN2NaO8·3H2O 21 Fe:2.80 MnSO4·4H2O 2.02 Mn:0.50 H3BO3 2.86 B:0.50 ZnSO4·7H2O 0.22 Zn:0.05 CuSO4·5H2O 0.08 Cu:0.02 (NH4)6Mo7O24·4H2O 0.02 Mo:0.01 表 2 不同施镁量对西瓜生长发育的影响
Table 2. Effect of different magnesium application on growth and development of C. lanatus
Mg的质量浓度
Mg mass concentration/(mg·L−1)株高
Plant height/cm根长
Root length/cm根系体积
Root volume/cm3地上部干重
Plant dry weight/g根干重
Root dry weight/g生物量
Biological yield/g0 172.07±2.80 Dd 70.47±1.72 Dd 9.67±0.58 Dd 19.33±0.58 De 1.22±0.16 Dd 20.55±0.60 Ee 24 188.87±1.39 CDd 72.97±0.81 Dd 14.33±0.58 BCbc 23.00±1.73 Dd 1.87±0.27 Cc 24.87±1.68 Dd 48 272.30±14.48 Aa 116.13±5.01 Aa 20.67±2.08 Aa 43.93±2.08 Aa 4.73±0.32 Aa 48.66±2.23 Aa 96 244.67±10.52 Bb 92.43±4.19 Bb 15.67±0.58 Bb 36.83±1.61 Bb 2.78±0.19 Bb 39.61±1.43 Bb 192 215.17±15.45 Cc 84.20±1.08 Cc 12.33±1.15 CDc 30.80±0.26 Cc 2.49±0.16 Bb 33.29±1.42 Cc 注:*邓肯氏新复极差测验,大写字母和小写字母不同者分别表示极显著差异(P<0.01)和显著差异(P<0.05)。下同。
Note: In Duncan’s new multiple range test, data with different capital and lowercase letters indicate a highly significant difference (P<0.01) and a significant difference (P<0.05), respectively. Same for the following.表 3 不同施镁量对西瓜果实品质的影响
Table 3. Effect of different magnesium application on fruit quality of C. lanatus
Mg的质量浓度
Mg mass
concentration/(mg·L−1)中心可溶性固形物
Central
soluble solid/%边缘可溶性固形物
Marginal
soluble solid/%可溶性糖
Soluble
sugar/(mg·g−1)可溶性蛋白
Soluble
protein/(mg·g−1)维生素C
Vitamin
C/(mg·g−1)0 9.04±0.37 Cd 6.25±0.24 Cc 42.24±0.19 Ee 13.82±0.17 Ee 21.37±0.21 Ee 24 9.37±0.27 Cd 6.49±0.22 Cc 43.19±0.21 Dd 17.57±0.34 Dd 25.89±0.23 Dd 48 12.65±0.27 Aa 8.92±0.16 Aa 56.68±0.22 Aa 24.36±0.20 Aa 32.56±0.24 Aa 96 11.94±0.21 ABb 8.25±0.20 Bb 50.55±0.35 Bb 21.31±0.21 Bb 31.97±0.07 Bb 192 11.08±0.62 Bc 8.15±0.11 Bb 48.96±0.26 Cc 19.28±0.14 Cc 30.45±0.31 Cc 表 4 不同施镁量对西瓜不同生长期叶片PSⅡ反应中心数量和闭合程度的影响
Table 4. Effects of different magnesium application on PSⅡ RC/CS0 and closed extent of varied genotypes of C. lanatus
Mg的质量浓度
Mg mass concentration/(mg·L−1)伸蔓期 Stretch tendril stage 盛花期 Full-bloom stage 膨瓜期 Growth stage RC/CS0 VJ RC/CS0 VJ RC/CS0 VJ 0 285.92±7.62 Dc 0.54±0.05 Aa 252.40±6.27 Cc 0.68±0.01 Aa 235.68±5.95 Dd 0.72±0.05 Aa 24 302.51±4.04 Cb 0.45±0.02 Ca 289.56±4.12 Bb 0.55±0.04 Bb 269.72±5.81 Cc 0.63±0.03 Aab 48 357.26±8.38 Aa 0.23±0.01 Da 348.41±5.11 Aa 0.25±0.01 Cc 334.29±3.91 Aa 0.32±0.03 Cc 96 314.71±4.54 Bb 0.46±0.05 BCb 289.80±2.43 Bb 0.48±0.05 Bb 285.71±4.10 Bb 0.53±0.05 Bb 192 304.23±3.95 BCb 0.52±0.03 ABa 287.04±5.05 Bb 0.54±0.07 Bb 273.25±6.18 Cbc 0.65±0.08 Aab 表 5 不同施镁量对西瓜不同生育期叶片M0、Sm、Area、Ψ0和φEo的影响
Table 5. Effects of different magnesium application on leaf M0, Sm, Area, Ψ0, and φEo of C. lanatus at different growth stages
时期
TimeMg的质量浓度
Mg mass concentration/(mg·L−1)M0 Sm Area(×100) Ψ0 φEo 伸蔓期
Stretch tendril stage0 0.94±0.06 Aa 17.32±1.11 Dc 226.67±17.93 Bb 0.29±0.05 Cb 0.23±0.02 Cc 24 0.71±0.04 Bb 24.10±2.05 Cb 232.00±11.14 Bb 0.36±0.02 Bb 0.33±0.03 Bb 48 0.52±0.01 Dc 33.12±1.41 Aa 276.00±11.14 Aa 0.66±0.01 Aa 0.53±0.03 Aa 96 0.53±0.05 CDc 31.34±1.40 ABa 261.33±12.22 Aab 0.63±0.03 Aa 0.51±0.03 Aa 192 0.60±0.03 Cc 29.96±1.45 Ba 255.33±21.39 ABab 0.62±0.03 Aa 0.49±0.05 Aa 盛花期
Full-bloom stage0 1.02±0.02 Aa 14.62±1.69 Dd 259.33±31.77 Dc 0.22±0.03 Bb 0.18±0.02 Dd 24 0.80±0.04 Bb 22.47±1.03 Cc 384.67±12.06 Cb 0.28±0.05 Bb 0.27±0.03 Cc 48 0.55±0.02 Dd 32.61±1.19 Aa 502.00±12.00 Aa 0.67±0.03 Aa 0.53±0.01 Aa 96 0.65±0.05Cc 32.77±0.78Aa 482.67±16.17ABa 0.63±0.07Aa 0.51±0.01Bab 192 0.67±0.03 Cc 29.01±1.06 Bb 448.00±33.05 Ba 0.62±0.01 Aa 0.47±0.02 Bb 膨瓜期
Growth stage0 1.40±0.03 Aa 10.62±1.01 Dc 251.33±21.94 Bb 0.19±0.03 Dd 0.14±0.03 Db 24 1.02±0.07 Bb 20.26±0.93 Cb 378.33±23.54 Bb 0.27±0.01 Cc 0.20±0.02 Cb 48 0.53±0.05 Cc 35.45±1.03 Aa 499.33±8.08 Aa 0.58±0.03 Aa 0.52±0.04 Aa 96 1.05±0.04 Bb 34.15±0.98 ABa 494.67±25.79 Aa 0.57±0.02 Bab 0.47±0.01 Ba 192 1.05±0.04 Bb 33.13±0.77 Ba 482.67±21.94 Aa 0.50±0.04 Bb 0.46±0.02 Ba -
[1] 赵跃, 李飒, 黄楠, 等. 减量施肥对京郊地区设施小果型西瓜产量和品质的影响 [J]. 中国瓜菜, 2020, 33(9):47−49. doi: 10.3969/j.issn.1673-2871.2020.09.009ZHAO Y, LI S, HUANG N, et al. Effect of reduced fertilization on the yield and quality of protected mini watermelon in Daxing district [J]. China Cucurbits and Vegetables, 2020, 33(9): 47−49.(in Chinese) doi: 10.3969/j.issn.1673-2871.2020.09.009 [2] 刘文革, 何楠, 赵胜杰, 等. 我国西瓜品种选育研究进展 [J]. 中国瓜菜, 2016, 29(1):1−7. doi: 10.3969/j.issn.1673-2871.2016.01.001LIU W G, HE N, ZHAO S J, et al. Advances in watermelon breeding in China [J]. China Cucurbits and Vegetables, 2016, 29(1): 1−7.(in Chinese) doi: 10.3969/j.issn.1673-2871.2016.01.001 [3] 张文, 潘顺秋, 符传良, 等. 钾镁肥在西瓜上的施用效果研究 [J]. 现代农业科技, 2010(17):108−109. doi: 10.3969/j.issn.1007-5739.2010.17.058ZHANG W, PAN S Q, FU C L, et al. Effect of potassium and magnesium fertilizer on Watermelon [J]. Modern Agricultural Sciences and Technology, 2010(17): 108−109.(in Chinese) doi: 10.3969/j.issn.1007-5739.2010.17.058 [4] 林丽琳, 陈晟, 施木田, 等. Mg对黑美人西瓜叶片C、N代谢的影响 [J]. 亚热带农业研究, 2015, 11(1):25−30.LIN L L, CHEN S, SHI M T, et al. Effect of magnesium on carbon and nitrogen metabolism of Heimeiren watermelon leaves [J]. Subtropical Agriculture Research, 2015, 11(1): 25−30.(in Chinese) [5] 林丽琳, 陈晟, 施木田, 等. 镁对新天玲西瓜叶片光合色素、可溶性蛋白含量和硝酸还原酶活性的影响 [J]. 热带农业科学, 2015, 35(1):26−30. doi: 10.3969/j.issn.1009-2196.2015.01.007LIN L L, CHEN S, SHI M T, et al. Effects of magnesium on leaf photosynthesis pigments, soluble protein content and reducing nitric acid activity of xintianling watermelon [J]. Chinese Journal of Tropical Agriculture, 2015, 35(1): 26−30.(in Chinese) doi: 10.3969/j.issn.1009-2196.2015.01.007 [6] BEALE S I. Enzymes of chlorophyll biosynthesis [J]. Photosynthesis Research, 1999, 60(1): 43−73. doi: 10.1023/A:1006297731456 [7] 熊英杰, 陈少风, 李恩香, 等. 植物缺镁研究进展及展望 [J]. 安徽农业科学, 2010, 38(15):7754−7757. doi: 10.3969/j.issn.0517-6611.2010.15.014XIONG Y J, CHEN S F, LI E X, et al. Research progress and outlook on magnesium deficiency in plants [J]. Journal of Anhui Agricultural Sciences, 2010, 38(15): 7754−7757.(in Chinese) doi: 10.3969/j.issn.0517-6611.2010.15.014 [8] MURPHY M P. How mitochondria produce reactive oxygen species [J]. The Biochemical Journal, 2009, 417(1): 1−13. doi: 10.1042/BJ20081386 [9] HERMANS C, BOURGIS F, FAUCHER M, et al. Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves [J]. Planta, 2005, 220(4): 541−549. doi: 10.1007/s00425-004-1376-5 [10] YIN S T, ZE Y G, LIU C, et al. Cerium relieves the inhibition of nitrogen metabolism of spinach caused by magnesium deficiency [J]. Biological Trace Element Research, 2009, 132(1/2/3): 247−258. [11] 李佳, 曹先梅, 刘立云, 等. 镁对槟榔幼苗光合特性和叶绿体超微结构的影响 [J]. 植物营养与肥料学报, 2019, 25(11):1949−1956. doi: 10.11674/zwyf.19158LI J, CAO X M, LIU L Y, et al. Effects of different magnesium nutrition levels on photosynthetic characteristics and chloroplast ultrastructure of Areca palm seedlings [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1949−1956.(in Chinese) doi: 10.11674/zwyf.19158 [12] 原佳乐, 马超, 冯雅岚, 等. 不同抗旱性小麦快速叶绿素荧光诱导动力学曲线对干旱及复水的响应 [J]. 植物生理学报, 2018, 54(6):1119−1129.YUAN J L, MA C, FENG Y L, et al. Response of chlorophyll fluorescence transient in leaves of wheats with different drought resistances to drought stresses and rehydration [J]. Plant Physiology Journal, 2018, 54(6): 1119−1129.(in Chinese) [13] 王芳, 刘鹏, 史锋, 等. 镁对大豆叶片细胞膜透性和保护酶活性的影响 [J]. 植物营养与肥料学报, 2005, 11(5):659−664. doi: 10.3321/j.issn:1008-505X.2005.05.015WANG F, LIU P, SHI F, et al. Influences of magnesium on cell membrane permeability and activities of protective enzymes of soybean leaves [J]. Plant Nutrition and Fertilizing Science, 2005, 11(5): 659−664.(in Chinese) doi: 10.3321/j.issn:1008-505X.2005.05.015 [14] 林仁辉. 小白菜镁素营养生理研究[D]. 福州: 福建农林大学, 2009.LIN R H. Studies on magnesium nutritive physiology of pakchoi[D]. Fuzhou: Fujian Agriculture and Forestry University, 2009. (in Chinese) [15] 孙青慧. 苦瓜镁素营养生理的研究[D]. 福州: 福建农林大学, 2010.SUN Q H. Studies on magnesium nutrition physiology of balsam pear[D]. Fuzhou: Fujian Agriculture and Forestry University, 2010. (in Chinese) [16] 凌丽俐, 黄翼, 彭良志, 等. 镁缺乏和过量胁迫对纽荷尔脐橙叶绿素荧光特性的影响 [J]. 生态学报, 2014, 34(7):1672−1680.LING L L, HUANG Y, PENG L Z, et al. Influence of magnesium deficiency and excess on chlorophyll fluorescence characteristics of Newhall navel orange leaves [J]. Acta Ecologica Sinica, 2014, 34(7): 1672−1680.(in Chinese) [17] 申燕, 肖家欣, 杨慧, 等. 镁胁迫对春见橘橙生长和矿质元素分布及叶片超微结构的影响 [J]. 园艺学报, 2011, 38(5):849−858.SHEN Y, XIAO J X, YANG H, et al. Effects of magnesium stress on growth, distribution of several mineral elements and leaf ultrastructure of Harumi Tangor [J]. Acta Horticulturae Sinica, 2011, 38(5): 849−858.(in Chinese) [18] 田斌, 胡玉洁, 路雪丽, 等. 镁缺乏和过量胁迫对大麦幼苗生长以及生理生化指标的影响 [J]. 杭州师范大学学报(自然科学版), 2018, 17(2):146−152.TIAN B, HU Y J, LU X L, et al. Effects of magnesium deficiency and excessive stress on the growth and physiological and biochemical indexes of barley seedlings [J]. Journal of Hangzhou Normal University (Natural Science Edition), 2018, 17(2): 146−152.(in Chinese) [19] 林丽琳. 镁对不同基因型西瓜若干生理生化代谢指标的影响[D]. 福州: 福建农林大学, 2015.LIN L L. Effect of magnesium on different genotypes of watermelon in some physiological and biochemical metabolism[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. (in Chinese) [20] 李鹏民, 高辉远, Reto J. Strasser. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用 [J]. 植物生理与分子生物学学报, 2005, 31(6):559−566.LI P M, GAO H Y, STRASSER R. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study [J]. Acta Photophysiologica Sinica, 2005, 31(6): 559−566.(in Chinese) [21] 李合生. 植物生理生化试验原理和技术[M]. 北京: 高等教育出版社, 2000. [22] SPYCHALLA J P, DESBOROUGH S L. Superoxide dismutase, catalase, and alpha-tocopherol content of stored potato tubers [J]. Plant Physiology, 1990, 94(3): 1214−1218. doi: 10.1104/pp.94.3.1214 [23] NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant and Cell Physiology, 1981, 22(5): 867−880. [24] HALLIWELL B, FOYER C H. Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography [J]. Planta, 1978, 139(1): 9−17. doi: 10.1007/BF00390803 [25] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. [26] 李长志, 李欢, 刘庆, 等. 不同生长时期干旱胁迫甘薯根系生长及荧光生理的特性比较 [J]. 植物营养与肥料学报, 2016, 22(2):511−517. doi: 10.11674/zwyf.14513LI C Z, LI H, LIU Q, et al. Comparison of root development and fluorescent physiological characteristics of sweet potato exposure to drought stress in different growth stages [J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 511−517.(in Chinese) doi: 10.11674/zwyf.14513 [27] ZHOU X T, ZHAO H L, CAO K, et al. Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress [J]. Frontiers in Plant Science, 2016, 7: 1823. [28] 罗丽娟, 唐莉娜, 陈星峰, 等. 硅对镉胁迫下烟草叶片PSⅡ叶绿素荧光特性的影响 [J]. 烟草科技, 2019, 52(8):1−8.LUO L J, TANG L N, CHEN X F, et al. Effects of silicon on chlorophyll fluorescence characteristics of PSⅡ in tobacco leaves under cadmium stress [J]. Tobacco Science & Technology, 2019, 52(8): 1−8.(in Chinese) [29] 耿庆伟, 邢浩, 翟衡, 等. 臭氧胁迫下不同光强与温度处理对赤霞珠葡萄叶片PSⅡ光化学活性的影响 [J]. 中国农业科学, 2019, 52(7):1183−1191. doi: 10.3864/j.issn.0578-1752.2019.07.006GENG Q W, XING H, ZHAI H, et al. Effects of different light intensity and temperature on PSⅡ photochemical activity in cabernet sauvignon grape leaves under ozone stress [J]. Scientia Agricultura Sinica, 2019, 52(7): 1183−1191.(in Chinese) doi: 10.3864/j.issn.0578-1752.2019.07.006 [30] STRASSER B J. Donor side capacity of Photosystem II probed by chlorophyll a fluorescence transients [J]. Photosynthesis Research, 1997, 52(2): 147−155. doi: 10.1023/A:1005896029778 [31] VIERLING E, KIMPEL J A. Plant responses to environmental stress [J]. Current Opinion in Biotechnology, 1992, 3(2): 164−170. doi: 10.1016/0958-1669(92)90147-B [32] 沙汉景, 胡文成, 贾琰, 等. 外源水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下水稻产量的影响 [J]. 作物学报, 2017, 43(11):1677−1688. doi: 10.3724/SP.J.1006.2017.01677SHA H J, HU W C, JIA Y, et al. Effect of exogenous salicylic acid, proline, and γ-aminobutyric acid on yield of rice under salt stress [J]. Acta Agronomica Sinica, 2017, 43(11): 1677−1688.(in Chinese) doi: 10.3724/SP.J.1006.2017.01677 [33] CAKMAK I. Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium- and potassium-deficient leaves, but not in phosphorus-deficient leaves [J]. Journal of Experimental Botany, 1994, 45(9): 1259−1266. doi: 10.1093/jxb/45.9.1259 [34] 袁琳, 克热木·伊力, 张利权. NaCl胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响 [J]. 植物生态学报, 2005, 29(6):985−991. doi: 10.3321/j.issn:1005-264X.2005.06.015YUAN L, KEREMU Y L, ZHANG L Q. Effects of nacl stress on active oxygen metabolism and membrane stability in Pistacia vera seedlings [J]. Acta Phytoecologica Sinica, 2005, 29(6): 985−991.(in Chinese) doi: 10.3321/j.issn:1005-264X.2005.06.015 [35] 何云, 李贤伟, 龚伟. 3种岩石边坡护坡植物叶片质膜透性和可溶性糖含量对低温胁迫的响应 [J]. 四川农业大学学报, 2012, 30(1):42−45. doi: 10.3969/j.issn.1000-2650.2012.01.008HE Y, LI X W, GONG W. Response of membrane permeability and soluble carbohydrate of three native Petrophile plants to low temperature stress [J]. Journal of Sichuan Agricultural University, 2012, 30(1): 42−45.(in Chinese) doi: 10.3969/j.issn.1000-2650.2012.01.008 [36] 王天, 宋佳承, 闫士朋, 等. 低温胁迫下磷肥施用量对油橄榄生长发育的影响 [J]. 植物营养与肥料学报, 2020, 26(5):879−890. doi: 10.11674/zwyf.19349WANG T, SONG J C, YAN S P, et al. Growth and development of olive under low temperature stress influenced by phosphate fertilizer application [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 879−890.(in Chinese) doi: 10.11674/zwyf.19349 [37] 王利界, 周智彬, 常青, 等. 盐旱交叉胁迫对灰胡杨(Populus pruinosa)幼苗生长和生理生化特性的影响 [J]. 生态学报, 2018, 38(19):7026−7033.WANG L J, ZHOU Z B, CHANG Q, et al. Growth, physiological and biochemical characteristics of Populus pruinosa seedlings under salt-drought stress [J]. Acta Ecologica Sinica, 2018, 38(19): 7026−7033.(in Chinese) [38] XUE Y F, LIU Z P. Antioxidant enzymes and physiological characteristics in two Jerusalem artichoke cultivars under salt stress [J]. Russian Journal of Plant Physiology, 2008, 55(6): 776−781. doi: 10.1134/S102144370806006X [39] PU F, REN X L. Ascorbate levels and activities of enzymes related to the glutathione-ascorbate cycle in fruits of Chinese persimmon cultivars [J]. Horticulture, Environment, and Biotechnology, 2014, 55(4): 315−321. doi: 10.1007/s13580-014-0177-4 [40] NISHIKAWA F. Ascorbate metabolism in harvested broccoli [J]. Journal of Experimental Botany, 2003, 54(392): 2439−2448. doi: 10.1093/jxb/erg283 [41] STRASSER B J, STRASSER R J. Measuring fast fluorescence transients to address environmental questions: The JIP-test[M]//Photosynthesis: from Light to Biosphere. Dordrecht: Springer Netherlands, 1995: 4869-4872. [42] IMAHORI Y, BAI J H, BALDWIN E. Antioxidative responses of ripe tomato fruit to postharvest chilling and heating treatments [J]. Scientia Horticulturae, 2016, 198: 398−406. doi: 10.1016/j.scienta.2015.12.006 [43] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiology and Biochemistry, 2010, 48(12): 909−930. doi: 10.1016/j.plaphy.2010.08.016 [44] JOZEFCZAK M, REMANS T, VANGRONSVELD J, et al. Glutathione is a key player in metal-induced oxidative stress defenses [J]. International Journal of Molecular Sciences, 2012, 13(3): 3145−3175. doi: 10.3390/ijms13033145 [45] MAY M J, VERNOUX T, LEAVER C, et al. Glutathione homeostasis in plants: Implications for environmental sensing and plant development [J]. Journal of Experimental Botany, 1998, 49(321): 649−667.