Effects of Trace Elements on Seed Germination and Seedling Physiological Activities of Polygala tenuifolia
-
摘要:
目的 了解不同微量元素在远志种子萌发过程中的作用。 方法 选择铁(Fe)、锰(Mn)、硼(B)、钼(Mo)4种微量元素,每个设置5个质量浓度梯度处理远志种子,观察萌发过程,以发芽率、发芽指数、活力指数为基础,结合根的长度、鲜重、幼苗所含脯氨酸、可溶性总糖、超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)等7个指标的变化情况,对远志种子萌发过程进行综合评价。 结果 铁元素处理后,0~40 mg·L−1质量浓度范围内,除脯氨酸外的指标均逐渐升高,且差异显著;高于40 mg·L−1后,指标快速下降。锰元素处理后,0~150 mg·L−1质量浓度范围内,除脯氨酸外的指标逐渐升高,除CAT酶活力外,均高于对照;超过150 mg·L−1后,指标下降。铁和锰处理后的远志种子,在整个质量浓度的试验范围内,脯氨酸含量一直增加。硼处理后,0~1.5 mg·L−1质量浓度范围内,发芽率、发芽指数、活力指数、根长、鲜重指标分别随着质量浓度升高逐渐增大,1.0 mg·L−1时达到最大值,高于对照;1.5 mg·L−1时,脯氨酸、可溶性总糖含量、SOD、POD、CAT指标达到最大值,除脯氨酸外,均高于对照。Mo处理后,0~40 mg·L−1质量浓度范围内,各指标逐渐升高,除脯氨酸和SOD酶活力指标外,均高于对照;高于该质量浓度范围后,指标降低。 结论 四种微量元素低质量浓度时对远志萌发具有促进作用,高质量浓度时对其产生抑制。其中40 mg·L−1 Fe、150 mg·L−1 Mn、1.0~1.5 mg·L−1 B、40 mg·L−1 Mo处理后,种子萌发及幼苗生长效果最佳。 Abstract:Objective Roles of iron (Fe), manganese (Mg), boron (B), and molybdenum (Mo) played in the seed germination and seedling physiological activities of Polygala tenuifolia were studied. Methods P. tenuifolia seeds were soaked in solutions containing the trace elements in 5 concentration gradients. Seed germination was evaluated according to the germination rate, germination index, and seedling vigor index. Measurements on root length, fresh weight, and contents of proline, soluble total sugar, superoxide dismutase (SOD), peroxidase (POD), and superoxide dismutase (POD) of the seedlings were also obtained for the analysis. Result The Fe treatments of 0-40 mg·L−1 increased the indices except proline content with statistically significant differences. But beyond that level the indices declined rapidly. Under the Mg treatments in the range of 0-150 mg·L−1, all indices excluding proline content increased to levels higher than those of control except for catalase activity. As did with Fe, when the Mg concentration became higher, the indices declined. The proline content increased in the seeds being treated with either Fe or Mg within the concentration ranges tested. The seed germination rate and index as well as the seedling vigor index, root length, and fresh weight increased with increasing B concentration from 0 to 1.5 mg·L−1 with a peak observed at 1.0 mg·L−1, which was higher than that of control. At 1.5 mg B·L−1, the contents of proline and total soluble sugar and the activities of SOD, POD, and CAT reached their maximal levels, which, beside proline, were higher than those of control. In the concentrations of 0-40 mg·L−1, Mo induced increases on the indices higher than those of control, but not on proline content and SOD activity. At higher concentrations, Mo caused declines on the indices. Conclusion The selected trace elements could promote the germination of P. tenuifolia seeds at low concentrations but inhibit it at high concentration. The treatments of 40 mg Fe·L−1, 150 mg·L−1 Mg, 1.0-1.5 mg·L−1 B, or 40 mg·L−1 Mo appeared best for the seed germination as well as seedling growth. -
Key words:
- trace elements /
- Polygala tenuifolia Willd /
- seed germination /
- seedling growth
-
表 1 4种微量元素对远志种子萌发及生长的影响
Table 1. Effects of trace elements on seed germination and seedling growth of P. tenuifolia
质量浓度
Mass concentration/(mg·L−1)发芽率
Germination rate/%发芽指数
Germination index活力指数
Vital index根长
Root length/mm鲜重
Fresh mass/mgFe CK 91.67±0.29 d 153.93±0.21 b 2.40±0.09 b 7.14±0.15 d 15.57±0.66 a 20 95.67±0.15 bc 154.14±0.33 b 2.43±0.09 b 11.77±0.48 b 15.79±0.21 a 40 97.83±0.15 a 175.02±0.33 a 2.84±0.29 a 15.23±0.29 a 16.22±0.74 a 60 96.33±0.29 b 169.93±0.38 a 2.38±0.10 b 8.58±0.16 c 14.018±0.17 ab 80 95.00±0.05 c 148.75±0.22 bc 2.03±0.59 c 5.23±0.10 e 13.65±0.07 ab 100 93.83±0.29 c 139.87±0.26 c 1.61±0.26 d 4.43±0.20 f 11.54±0.05 b Mn CK 91.67±0.29 c 153.93±2.21 d 2.40±0.09 c 7.14±0.15 d 15.57±0.66 b 50 97.17±0.04 b 162.78±4.03 bc 2.58±0.08 c 13.2±0.50 c 15.83±1.11 b 100 97.5±0.86 a 165.70±4.61 b 2.70±0.01 b 17.03±2.65 b 16.29±0.25 ab 150 99.17±0.29 a 171.69±5.42 a 2.86±0.03 a 19.56±2.51 a 16.66±1.07 ab 200 96.5±0.05 b 158.70±2.02 c 2.15±0.03 d 16.67±0.81 b 13.54±2.26 c 250 96.17±0.15 b 156.27±0.21 cd 1.8±0.03 e 17.26±0.83 b 11.53±0.28 d B CK 91.67±0.29 b 153.93±0.21 a 2.40±0.09 a 7.14±0.15 c 15.57±0.66 a 0.5 94.17±0.31 a 158.32±1.89 bc 2.47±0.23 a 8.65±1.13 b 15.59±0.51 a 1 94.67±0.04 a 162.90±0.94 b 2.88±0.28 a 12.13±0.28 a 17.71±0.91 a 1.5 91.67±0.58 b 155.41±2.25 ab 2.61±0.26 b 12.05±0.40 a 16.77±1.74 a 2 91.17±0.04 b 153.96±2.72 bc 2.08±0.04 b 9.28±1.20 b 13.57±0.50 b 2.5 87.33±0.58 c 119.10±0.50 c 1.55±0.3 c 7.8±0.57 c 12.99±0.12 b Mo CK 91.67±0.29 c 153.93±0.21 b 2.40±0.09 b 7.14±0.15 d 15.57±0.66 b 10 91.73±0.15 c 153.97±0.07 b 2.40±0.08 b 8.36±0.12 c 15.61±0.37 b 20 92.00±0.87 c 154.04±0.08 b 2.46±0.07 b 8.57±0.12 c 15.96±0.26 b 30 94.00±0.01 b 158.37±0.32 ab 2.58±0.09 ab 9.29±0.24 bc 16.29±0.03 ab 40 96.33±0.76 a 162.42±0.10 a 2.71±0.03 a 11.29±0.17 a 16.66±0.23 a 50 91.5±0.32 c 155.09±0.77 b 2.39±0.08 c 9.99±0.26 b 15.42±0.01 b 注:同列数据后不同字母代表与对照的差异显著性(Duncan氏新复极差检验,P<0.05)。下表同。
Note: Data with different letters on same column represent significant differences from control (Duncan's new multiple range test, P<0.05). Same for the following tables.表 2 4种微量元素对远志幼苗脯氨酸、可溶性总糖的影响
Table 2. Effects of trace elements on proline and total soluble sugar in P. tenuifolia seedlings
微量元素质量浓度
Mass concentration/(mg·L−1)脯氨酸含量
Proline content/(μg·g−1)可溶性总糖含量
Total soluble/%微量元素质量浓度
Mass concentration/(mg·L−1)脯氨酸含量
Proline content/(μg·g−1)可溶性总糖含量
Total soluble/%Fe B CK 85.27±14.77 c 92.30±1.70 a CK 85.27±14.77 a 92.30±1.70 c 20 88.50±0.95 c 93.44±0.10 a 0.5 83.91±1.18 a 145.16±4.45 a 40 88.56±0.65 c 94.36±9.04 a 1 84.53±0.45 a 122.72±1.29 b 60 88.56±1.58 c 93.81±2.20 a 1.5 84.84±0.62 a 158.05±2.33 a 80 93.89±3.45 bc 74.25±1.16 b 2 82.40±1.08 ab 95.72±4.56 c 100 102.54±0.91 a 48.74±15.11 c 2.5 85.06±1.43 a 92.77±4.11 c Mn Mo CK 85.27±14.77 c 92.30±1.70 b CK 85.27±14.77 a 92.30±1.70 d 50 85.37±0.13 c 96.34±0.10 a 10 82.18±3.22 ab 97.12±3.10 dc 100 86.73±0.23 c 97.26±0.12 a 20 83.10±11.42 a 102.60±3.46 c 150 94.63±0.15 b 98.45±2.11 a 30 84.09±7.71 a 114.90±2.21 b 200 118.31±3.53 a 74.40±0.87 c 40 85.06±7.58 a 139.31±3.26 a 250 119.97±2.84 a 49.11±4.77 d 50 81.45±4.40 c 95.52±3.06 d -
[1] 林敬开. 中药远志活性成分与安全性研究[D]. 北京: 中国中医科学院, 2011.LIN J K. Active constituent and safety study of Polygala tenuifolia Willd[D]. Beijing: China Academy of Chinese Medical Sciences, 2011. (in Chinese) [2] LEE J Y, KIM K Y, SHIN K Y, et al. Effects of BT-11 on memory in healthy humans [J]. Neuroscience Letters, 2009, 454(2): 111−114. doi: 10.1016/j.neulet.2009.03.024 [3] XUE W, HU J F, YUAN Y H, et al. Polygalasaponin XXXII from Polygala tenuifolia root improves hippocampal-dependent learning and memory [J]. Acta Pharmacologica Sinica, 2009, 30(9): 1211−1219. doi: 10.1038/aps.2009.112 [4] 闫明, 李萍. 远志抗衰老作用的研究 [J]. 实用药物与临床, 2006, 9(1):22−23. doi: 10.3969/j.issn.1673-0070.2006.01.010YAN M, LI P. Studies on antiaging action of Polygala tenuifolia Wild [J]. Practical Pharmacy and Clinical Remedies, 2006, 9(1): 22−23.(in Chinese) doi: 10.3969/j.issn.1673-0070.2006.01.010 [5] 李光植, 黄瑛, 王琳. 远志对D-半乳糖致衰小鼠红细胞中超氧化物歧化酶、肝组织谷胱甘肽过氧化物酶活性影响的实验研究 [J]. 黑龙江医药科学, 2000, 23(1):4−5. doi: 10.3969/j.issn.1008-0104.2000.01.003LI G Z, HUANG Y, WANG L. Effects of Polygala tenuifolia Willd on SOD activity of RBC and GSH-Px activity of liver tissue in aging mouse caused by D-galactose [J]. Heilongjiang Medicine and Pharmacy, 2000, 23(1): 4−5.(in Chinese) doi: 10.3969/j.issn.1008-0104.2000.01.003 [6] 孙桂波, 邓响潮, 李楚华. 远志皂苷对H2O2诱导的PC12细胞损伤的保护作用 [J]. 中药材, 2007, 30(8):991−993. doi: 10.3321/j.issn:1001-4454.2007.08.030SUN G B, DENG X C, LI C H. The protective effects of tenuigenin on the PC12 cells injury induced by H2O2 [J]. Journal of Chinese Medicinal Materials, 2007, 30(8): 991−993.(in Chinese) doi: 10.3321/j.issn:1001-4454.2007.08.030 [7] CHEN Y J, HUANG X B, LI Z X, et al. Tenuigenin protects cultured hippocampal neurons against methylglyoxal-induced neurotoxicity [J]. European Journal of Pharmacology, 2010, 645(1/2/3): 1−8. [8] 沈莉纳, 陈蕙芳. 几种降糖植物的研究近况 [J]. 国外医药(植物药分册), 1998, 13(1):17−19.SHEN L N, CHEN H F. Recent research on several hypoglycemic plants [J]. Foreign Medicine: Botanical Medicine Section, 1998, 13(1): 17−19.(in Chinese) [9] 马洪伟, 和亚强, 钟美蓉, 等. 远志对DPN大鼠血糖和尾部SNCV的影响 [J]. 承德医学院学报, 2010, 27(4):351−353. doi: 10.3969/j.issn.1004-6879.2010.04.003MA H W, HE Y Q, ZHONG M R, et al. Effects of Polygala on blood glucose and tail SNCV of DPN rats [J]. Journal of Chengde Medical College, 2010, 27(4): 351−353.(in Chinese) doi: 10.3969/j.issn.1004-6879.2010.04.003 [10] PENG W D. Hypotensive effect of tenuifolic saponin and its mechanism [J]. Acta Pharmacologica Sinica, 1999, 20(7): 639−642. [11] 郭健龙, 沈志斌. 远志皂苷对大鼠心肌缺血再灌注损伤的保护作用 [J]. 黑龙江医药, 2005, 18(4):263−264. doi: 10.3969/j.issn.1006-2882.2005.04.016GUO J L, SHEN Z B. Protective effects of tenuj folic saponin against ischemia reperfusion injury in rats [J]. Heilongjiang Medical Journal, 2005, 18(4): 263−264.(in Chinese) doi: 10.3969/j.issn.1006-2882.2005.04.016 [12] PARK J H, KIM J S, JANG D S, et al. Effect of Polygala tenuifolia root extract on cerebral ischemia and reperfusion [J]. The American Journal of Chinese Medicine, 2006, 34(1): 115−123. doi: 10.1142/S0192415X06003680 [13] Kang C W, Kim J H. Anti-ischemic effect of Polygala tenuifolia in isolated rat heart [J]. Korean J Physiol Pharm, 2007, 11(3): 89−95. [14] XIN T, ZHANG F B, JIANG Q Y, et al. Extraction, purification and antitumor activity of a water-soluble polysaccharide from the roots of Polygala tenuifolia [J]. Carbohydrate Polymers, 2012, 90(2): 1127−1131. doi: 10.1016/j.carbpol.2012.06.058 [15] XIN T, ZHANG F B, JIANG Q Y, et al. Purification and antitumor activity of two acidic polysaccharides from the roots of Polygala tenuifolia [J]. Carbohydrate Polymers, 2012, 90(4): 1671−1676. doi: 10.1016/j.carbpol.2012.07.048 [16] 魏建和, 屠鹏飞, 李刚, 等. 我国中药农业现状分析与发展趋势思考 [J]. 中国现代中药, 2015, 17(2):94−98,104.WEI J H, TU P F, LI G, et al. Situation and trends in development of Chinese medicinal agriculture in China [J]. Modern Chinese Medicine, 2015, 17(2): 94−98,104.(in Chinese) [17] 赵停, 李静, 安衍茹, 等. 光质、光强对远志种子萌发和幼苗生理特性的影响 [J]. 中国实验方剂学杂志, 2018, 24(17):68−73.ZHAO T, LI J, AN Y R, et al. Effect of light quality and intensity on seed germination and seedling physiological characteristics of Polygala tenuifolia [J]. Chinese Journal of Experimental Traditional Medical Formulae, 2018, 24(17): 68−73.(in Chinese) [18] 崔芬芬, 陈亮, 任艳文, 等. 温度及光照对远志种子发芽的影响 [J]. 种子科技, 2016, 34(12):108−109,114. doi: 10.3969/j.issn.1005-2690.2016.12.077CUI F F, CHEN L, REN Y W, et al. Effect of temperature and light on seed germination of Polygala tenuifolia [J]. Seed Science & Technology, 2016, 34(12): 108−109,114.(in Chinese) doi: 10.3969/j.issn.1005-2690.2016.12.077 [19] 王晶, 祁晨煜, 王贝, 等. 不同药液处理对远志种子萌发影响的研究 [J]. 中南药学, 2016, 14(6):599−602. doi: 10.7539/j.issn.1672-2981.2016.06.008WANG J, QI C Y, WANG B, et al. Effect of different treatments on germination characteristics of seeds of medicinal plant Polygala tenuifolia [J]. Central South Pharmacy, 2016, 14(6): 599−602.(in Chinese) doi: 10.7539/j.issn.1672-2981.2016.06.008 [20] 黄涛, 安衍茹, 彭亮, 等. 外源激素处理对远志种子萌发及幼苗生长的影响 [J]. 中国实验方剂学杂志, 2018, 24(20):50−55.HUANG T, AN Y R, PENG L, et al. Effect of exogenous hormone treatment on germination and seedling growth of Polygala tenuifolia [J]. Chinese Journal of Experimental Traditional Medical Formulae, 2018, 24(20): 50−55.(in Chinese) [21] 彭亮, 杨冰月, 张岗, 等. 干旱胁迫对远志种子萌发及幼苗生长和生理特性的影响 [J]. 西北植物学报, 2018, 38(4):741−749.PENG L, YANG B Y, ZHANG G, et al. Seed germination and seedling growth physiological characteristics of Polygala tenuifolia Willd. under drought stress [J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(4): 741−749.(in Chinese) [22] RAJJOU L, DUVAL M, GALLARDO K, et al. Seed germination and vigor [J]. Annual Review of Plant Biology, 2012, 63: 507−533. doi: 10.1146/annurev-arplant-042811-105550 [23] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. [24] 黄银珊. 乡土树种米老排、任豆种子萌发特性与贮藏生理研究[D]. 南宁: 广西大学, 2012HUANG Y S. Storage physiology of native species Mytilaria laosensis and Zenia insignis seeds[D]. Nanning: Guangxi University, 2012. (in Chinese) [25] 徐本美, 顾增辉. 种子活力的研究 [J]. 种子, 1989, 8(5):53−55.XU B M, GU Z H. Research on seed vigor [J]. Seed, 1989, 8(5): 53−55.(in Chinese) [26] 陈泽贤, 袁辉. 种子活力测定方法研究进展 [J]. 种子科技, 2019, 37(16):25−27. doi: 10.3969/j.issn.1005-2690.2019.16.014CHEN Z X, YUAN H. Research progress of seed vigor test method [J]. Seed Science & Technology, 2019, 37(16): 25−27.(in Chinese) doi: 10.3969/j.issn.1005-2690.2019.16.014 [27] 柯德森, 孙谷畴, 王爱国, 等. 抗坏血酸与种子萌发的关系 [J]. 应用与环境生物学报, 2003, 9(5):497−500. doi: 10.3321/j.issn:1006-687X.2003.05.012KE D S, SUN G C, WANG A G, et al. Relationship between ascorbic acid and germination of seeds [J]. Chinese Journal of Applied and Environmental Biology, 2003, 9(5): 497−500.(in Chinese) doi: 10.3321/j.issn:1006-687X.2003.05.012 [28] CAIRNS A L P, KRITZINGER J H. The effect of molybdenum on seed dormancy in wheat [J]. Plant and Soil, 1992, 145(2): 295−297. doi: 10.1007/BF00010358 [29] 毛仁俊, 马楠, 梁宗锁, 等. 5种微量元素浸种对决明种子萌发及幼苗生长的影响 [J]. 西北农业学报, 2014, 23(6):161−166. doi: 10.7606/j.issn.1004-1389.2014.06.024MAO R J, MA N, LIANG Z S, et al. Effects of seed soaking with five different trace elements on the germination and seedling growth of Cassia obtusifolia [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 23(6): 161−166.(in Chinese) doi: 10.7606/j.issn.1004-1389.2014.06.024 [30] MENDEL R R. Molybdenum: biological activity and metabolism [J]. Dalton Transactions, 2005(21): 3404−3409. doi: 10.1039/b505527j [31] MOULIN M, SMITH A G. Regulation of tetrapyrrole biosynthesis in higher plants [J]. Biochemical Society Transactions, 2005, 33(4): 737−742. doi: 10.1042/BST0330737 [32] 王冲冲. 草炭和有机肥对滨海盐碱土改良效果研究[D]. 保定: 河北农业大学, 2021WANG C C. Peat and organic fertilizer research on improving coastal saline-alkali soil[D]. Baoding, China: Hebei Agricultural University, 2021. (in Chinese) [33] 陆景陵. 植物营养学(上册)[M]. 第2版. 北京: 中国农业大学出版社, 2003. [34] LOOMIS W D, DURST R W. Chemistry and biology of boron [J]. BioFactors (Oxford, England), 1992, 3(4): 229−239. [35] BAILLY C. Active oxygen species and antioxidants in seed biology [J]. Seed Science Research, 2004, 14(2): 93−107. doi: 10.1079/SSR2004159 [36] 沈徐悦. 白玉兰、望春玉兰和乐昌含笑幼苗的耐盐性评价研究[D]. 杭州: 浙江农林大学, 2020SHEN X Y. Comprehensive evaluation on salt tolerance of Magnolia denudata, Magnolia biondii, and Michelia chapensis seedlings[D]. Hangzhou: Zhejiang A & F University, 2020. (in Chinese) [37] ANGELOVICI R, GALILI G, FERNIE A R, et al. Seed desiccation: A bridge between maturation and germination [J]. Trends in Plant Science, 2010, 15(4): 211−218. doi: 10.1016/j.tplants.2010.01.003 [38] GRAEBER K, NAKABAYASHI K, MIATTON E, et al. Molecular mechanisms of seed dormancy [J]. Plant, Cell & Environment, 2012, 35(10): 1769−1786. [39] VENTURA L, DONÀ M, MACOVEI A, et al. Understanding the molecular pathways associated with seed vigor [J]. Plant Physiology and Biochemistry, 2012, 60: 196−206. doi: 10.1016/j.plaphy.2012.07.031