• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高光谱的油菜叶片SPAD值估测模型比较

王克晓 周蕊 李波 欧毅 黄祥 虞豹

王克晓,周蕊,李波,等. 基于高光谱的油菜叶片SPAD值估测模型比较 [J]. 福建农业学报,2021,36(11):1272−1279 doi: 10.19303/j.issn.1008-0384.2021.11.003
引用本文: 王克晓,周蕊,李波,等. 基于高光谱的油菜叶片SPAD值估测模型比较 [J]. 福建农业学报,2021,36(11):1272−1279 doi: 10.19303/j.issn.1008-0384.2021.11.003
WANG K X, ZHOU R, LI B, et al. Comparison of Estimation Models for Hyperspectral-based Rape Leaf SPAD [J]. Fujian Journal of Agricultural Sciences,2021,36(11):1272−1279 doi: 10.19303/j.issn.1008-0384.2021.11.003
Citation: WANG K X, ZHOU R, LI B, et al. Comparison of Estimation Models for Hyperspectral-based Rape Leaf SPAD [J]. Fujian Journal of Agricultural Sciences,2021,36(11):1272−1279 doi: 10.19303/j.issn.1008-0384.2021.11.003

基于高光谱的油菜叶片SPAD值估测模型比较

doi: 10.19303/j.issn.1008-0384.2021.11.003
基金项目: 重庆市技术创新与应用发展专项(cstc2019jscx-msxmX0355、cstc2020jscx-lyjsAX0012);重庆市农业科学院农业发展资金项目(NKY-2020AB009、NKY-2021AC012)
详细信息
    作者简介:

    王克晓(1986−),男,硕士,助理研究员,主要从事农业遥感相关研究(E-mail:447215670@qq.com)

    通讯作者:

    周蕊(1980−),女,硕士,副研究员,主要从事农业信息化研究(E-mail:12087836@qq.com

  • 中图分类号: S 565.4; S 127

Comparison of Estimation Models for Hyperspectral-based Rape Leaf SPAD

  • 摘要:   目的  比较基于高光谱参数的油菜叶片SPAD值估算模型效果。  方法  在分析光谱反射特征和光谱参数与SPAD值相关性的基础上,利用光谱特征参数优选并构建了偏最小二乘回归(PLSR)、传统反向传播神经网络(BPNN)、支持向量回归(SVR)和深度学习神经网络(DNN)等模型对叶片样本叶绿素SPAD值进行估测。  结果  ①叶片原始光谱与叶片SPAD值在425~495 nm的蓝波、665~680 nm的红波区域呈现微弱正相关,与红边波段均呈现负相关,并在510~650 nm的绿、黄波段和690~735 nm的红边波段显著负相关;②与叶片SPAD值显著线性相关的SDb与SDy、CARI与MCARI、CI与NDVI705等三组光谱特征的组内参数具有一定的可替代性,而且有助于提高SPAD模型预测精度;③基于高光谱参数的深度学习DNN模型决定系数R2为0.93,RPD为3.92,具有较高的预测能力,SVR模型次之,PLSR和BPNN模型效果一般。  结论  油菜叶片光谱参数之间存在不同程度的相关性,基于机器学习的非线性估计模型具有较高的稳定性和预测能力,深度学习算法在油菜叶片叶绿素SPAD值估测方面具有更好的估测能力。
  • 图  1  叶片光谱与SPAD值相关性

    Figure  1.  Correlation between spectra and SPAD of leaves

    图  2  光谱参数及与SPAD值的相关性

    注:×表示在0.01的检验水平上显著不相关。

    Figure  2.  Correlation between spectral parameters and SPAD

    Note: × means significantly irrelevant at p<0.01.

    图  3  叶片SPAD值PLSR模型

    Figure  3.  PLSR model of leaf SPAD

    图  4  叶片SPAD值DNN回归模型

    Figure  4.  DNN model on rape leaf SPAD

    表  1  光谱参数及其定义或计算公式

    Table  1.   Spectral parameters and definitions or calculation formula

    类型
    Type
    特征变量
    Characteristic variable
    定义或算法
    Definition or algorithm
    位置特征
    Location feature
    Db(蓝边幅值)
    Blue edge amplitude
    490~530 nm一阶微分最大值
    Maximal 1st-order differential 490-530 nm
    Dy(黄边幅值)
    Yellow edge amplitude
    560~640 nm一阶微分最大值
    Maximal 1st-order differential 560-640 nm
    Dr(红边幅值)
    Red edge amplitude
    680~760 nm一阶微分最大值
    Maximal 1st-order differential 680-760 nm
    Rg(绿峰反射率)
    Green peak reflectance
    510~560 nm内光谱反射率最大值
    Maximal reflectance 510-560 nm
    Rr(红谷反射率)
    Red valley reflectance
    640~680 nm内光谱反射率最小值
    Minimal reflectance 640-680 nm
    面积特征
    Area feature
    SDb(蓝边面积)
    Blue edge area
    波长490~530 nm一阶导数光谱积分
    1st-derivative integral at 490-530nm
    SDy(黄边面积)
    Yellow edge area
    波长560~640 nm一阶导数光谱积分
    1st-derivative integral at 560-640nm
    SDr(红边面积)
    Red edge area
    波长680~760 nm一阶导数光谱积分
    1st-derivative integral at 680-760nm
    植被指数
    Vegetation index
    CARI(叶绿素吸收比)
    Chlorophyll absorption reflectance index
    (R700−R670)−0.2×(R700−R550
    MCARI(改进叶绿素吸收比)
    Modified chlorophyll absorption reflectance index
    [(R700−R670)−0.2×(R700−R550)]×(R700/R670
    CI(红边叶绿素指数)
    Red edge chlorophyll index
    R750/R705−1
    NDVI705(红边归一化植被指数)
    Red edge normalized difference vegetation index
    (R750−R705)/(R750+R705
    NPCI(归一化总色素叶绿素指数)
    normalized total pigment to chlorophyll index
    (R680−R430)/(R680+R430
    下载: 导出CSV

    表  2  深度神经网络算法参数

    Table  2.   Parameters applied for deep neural network algorithm

    参数
    Parameter
    取值
    Value
    参数
    Parameter
    取值
    Value
    隐层层数(Hidden)2节点(Nodes)c(5,5)
    激活函数(Activation)Rectifier停止测度(Stopping metric)方均误差(MSE)
    停止容差(Stopping tolerance)0.02周期(Epochs)500
    下载: 导出CSV

    表  3  不同模型精度比较

    Table  3.   Accuracy of models

    模型
    Models
    建模精度
    Modeling accuracy
    测试精度
    Test accuracy
    R2RMSERPDR2RMSE
    PLSR0.66(0.61)1.76(1.86)1.69(1.61)0.63(0.58)1.77(1.96)
    BPNN0.72(0.69)1.58(1.68)1.89(1.78)0.70(0.67)2.02(2.22)
    SVR0.80(0.91)1.39(1.02)2.14(2.95)0.69(0.74)1.57(1.53)
    DNN0.93(0.92)0.77(0.85)3.92(3.51)0.78(0.80)1.78(1.76)
    注:括号内数据为变量优选前相应模型的指标精度。
    Note: Numbers in brackets are factors of models before variable optimization.
    下载: 导出CSV
  • [1] 李哲, 张飞, 陈丽华, 等. 光谱指数的植物叶片叶绿素含量估算模型 [J]. 光谱学与光谱分析, 2018, 38(5):1533−1539.

    LI Z, ZHANG F, CHEN L H, et al. Research on spectrum variance of vegetation leaves and estimation model for leaf chlorophyll content based on the spectral index [J]. Spectroscopy and Spectral Analysis, 2018, 38(5): 1533−1539.(in Chinese)
    [2] 黄祥, 周蕊, 王茜, 等. 遥感定量反演农作物叶绿素的现状与发展 [J]. 安徽农业科学, 2018, 46(32):192−194, 202. doi: 10.3969/j.issn.0517-6611.2018.32.056

    HUANG X, ZHOU R, WANG Q, et al. The status and development of quantitative retrieval of crop chlorophyll by remote sensing [J]. Journal of Anhui Agricultural Sciences, 2018, 46(32): 192−194, 202.(in Chinese) doi: 10.3969/j.issn.0517-6611.2018.32.056
    [3] 丁希斌, 刘飞, 张初, 等. 基于高光谱成像技术的油菜叶片SPAD值检测 [J]. 光谱学与光谱分析, 2015, 35(2):486−491. doi: 10.3964/j.issn.1000-0593(2015)02-0486-06

    DING X B, LIU F, ZHANG C, et al. Prediction of SPAD value in oilseed rape leaves using hyperspectral imaging technique [J]. Spectroscopy and Spectral Analysis, 2015, 35(2): 486−491.(in Chinese) doi: 10.3964/j.issn.1000-0593(2015)02-0486-06
    [4] 殷紫, 常庆瑞, 刘淼, 等. 基于光谱指数的不同生育期油菜叶片SPAD估测 [J]. 西北农林科技大学学报(自然科学版), 2017, 45(5):66−72.

    YIN Z, CHANG Q R, LIU M, et al. Estimation of rape leaf SPAD in different periods based on spectral indices [J]. Journal of Northwest A & F University (Natural Science Edition), 2017, 45(5): 66−72.(in Chinese)
    [5] 张锐, 廖桂平, 王访, 等. 基于冠层高光谱的油菜角果期红边参数及叶片SPAD值反演模型 [J]. 江苏农业科学, 2019, 47(20):255−259.

    ZHANG R, LIAO G P, WANG F, et al. Red edge parameters and SPAD inversion model of rapeseed based on canopy hyperspectral data [J]. Jiangsu Agricultural Sciences, 2019, 47(20): 255−259.(in Chinese)
    [6] 鲍义东, 陈秋实, 陈果. 高光谱技术在农业遥感中的应用 [J]. 电子技术与软件工程, 2020(8):170−171.

    BAO Y D, CHEN Q S, CHEN G. Application of hyperspectral technique in agricultural remote sensing [J]. Electronic Technology & Software Engineering, 2020(8): 170−171.(in Chinese)
    [7] 何勇, 彭继宇, 刘飞, 等. 基于光谱和成像技术的作物养分生理信息快速检测研究进展 [J]. 农业工程学报, 2015, 31(3):174−189. doi: 10.3969/j.issn.1002-6819.2015.03.024

    HE Y, PENG J Y, LIU F, et al. Critical review of fast detection of crop nutrient and physiological information with spectral and imaging technology [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3): 174−189.(in Chinese) doi: 10.3969/j.issn.1002-6819.2015.03.024
    [8] HORLER D N H, DOCKRAY M, BARBER J. The red edge of plant leaf reflectance [J]. International Journal of Remote Sensing, 1983, 4(2): 273−288. doi: 10.1080/01431168308948546
    [9] DAUGHTRY C S T, WALTHALL C L, KIM M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance [J]. Remote Sensing of Environment, 2000, 74(2): 229−239. doi: 10.1016/S0034-4257(00)00113-9
    [10] BROGE N H, MORTENSEN J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data [J]. Remote Sensing of Environment, 2002, 81(1): 45−57. doi: 10.1016/S0034-4257(01)00332-7
    [11] 姚付启, 张振华, 杨润亚, 等. 基于主成分分析和BP神经网络的法国梧桐叶绿素含量高光谱反演研究 [J]. 测绘科学, 2010, 35(1):109−112.

    YAO F Q, ZHANG Z H, YANG R Y, et al. Research on Platanus orientalis L. chlorophyll concentration estimation with hyperspectral data based on BP-artificial neural network and principal component analysis [J]. Science of Surveying and Mapping, 2010, 35(1): 109−112.(in Chinese)
    [12] 孙明馨, 刘琪, 王帅, 等. 基于高光谱的低温胁迫下冬小麦SPAD估算 [J]. 福建农林大学学报(自然科学版), 2020, 49(6):728−733.

    SUN M X, LIU Q, WANG S, et al. SPAD estimation of winter wheat under low temperature stress based on hyper-spectrum [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2020, 49(6): 728−733.(in Chinese)
    [13] 赵琨, 王珺珂, 王楚锋, 等. 基于高光谱成像技术的油菜SPAD值空间分布预测及最佳测量叶位 [J]. 华中农业大学学报, 2018, 37(4):78−84.

    ZHAO K, WANG J K, WANG C F, et al. Hyperspectral imaging technology based prediction of spatial distribution of SPAD value of rapeseed and optimal measurement of leaf position [J]. Journal of Huazhong Agricultural University, 2018, 37(4): 78−84.(in Chinese)
    [14] 由明明, 常庆瑞, 田明璐, 等. 基于随机森林回归的油菜叶片SPAD值遥感估算 [J]. 干旱地区农业研究, 2019, 37(1):74−81. doi: 10.7606/j.issn.1000-7601.2019.01.10

    YOU M M, CHANG Q R, TIAN M L, et al. Estimation of rapeseed leaf SPAD value based on random forest regression [J]. Agricultural Research in the Arid Areas, 2019, 37(1): 74−81.(in Chinese) doi: 10.7606/j.issn.1000-7601.2019.01.10
    [15] 崔小涛, 常庆瑞, 屈春燕, 等. 基于高光谱和MLSR-GA-BP神经网络模型油菜叶片SPAD值遥感估算 [J]. 东北农业大学学报, 2020, 51(8):74−84. doi: 10.3969/j.issn.1005-9369.2020.08.010

    CUI X T, CHANG Q R, QU C Y, et al. Remote sensing estimation of SPAD value for rape leaf based on hyperspectral and MLSR-GA-BP neural network model [J]. Journal of Northeast Agricultural University, 2020, 51(8): 74−84.(in Chinese) doi: 10.3969/j.issn.1005-9369.2020.08.010
    [16] 李媛媛, 常庆瑞, 刘秀英, 等. 基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算 [J]. 农业工程学报, 2016, 32(16):135−142. doi: 10.11975/j.issn.1002-6819.2016.16.019

    LI Y Y, CHANG Q R, LIU X Y, et al. Estimation of maize leaf SPAD value based on hyperspectrum and BP neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 135−142.(in Chinese) doi: 10.11975/j.issn.1002-6819.2016.16.019
    [17] 康丽, 高睿, 孔庆明, 等. 水稻叶片SPAD值高光谱成像估测 [J]. 东北农业大学学报, 2020, 51(10):89−96. doi: 10.3969/j.issn.1005-9369.2020.10.011

    KANG L, GAO R, KONG Q M, et al. Estimation of SPAD value of rice leaves based on hyperspectral image [J]. Journal of Northeast Agricultural University, 2020, 51(10): 89−96.(in Chinese) doi: 10.3969/j.issn.1005-9369.2020.10.011
    [18] 刘恬琳, 朱西存, 白雪源, 等. 土壤有机质含量高光谱估测模型构建及精度对比 [J]. 智慧农业(中英文), 2020, 2(3):129−138.

    LIU T L, ZHU X C, BAI X Y, et al. Hyperspectral estimation model construction and accuracy comparison of soil organic matter content [J]. Smart Agriculture, 2020, 2(3): 129−138.(in Chinese)
    [19] 于雷, 洪永胜, 耿雷, 等. 基于偏最小二乘回归的土壤有机质含量高光谱估算 [J]. 农业工程学报, 2015, 31(14):103−109. doi: 10.11975/j.issn.1002-6819.2015.14.015

    YU L, HONG Y S, GENG L, et al. Hyperspectral estimation of soil organic matter content based on partial least squares regression [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(14): 103−109.(in Chinese) doi: 10.11975/j.issn.1002-6819.2015.14.015
    [20] 张燕平, 张铃. 机器学习理论与算法[M]. 北京: 科学出版社, 2012: 27.
    [21] ERIN L D, NAVDEEP G, SPENCER A, et al (2021). H2O: R Interface for the 'H2O' scalable machine learning platform. R package version 3.32.1.3. https://CRAN.R-project.org/package=h2o.
    [22] 程显毅, 施佺. 深度学习与R语言[M]. 北京: 机械工业出版社, 2017: 164 − 165.
    [23] 刘宁, 邢子正, 乔浪, 等. 基于模型集群的马铃薯叶绿素检测光谱变量筛选讨论 [J]. 光谱学与光谱分析, 2020, 40(7):2259−2266.

    LIU N, XING Z Z, QIAO L, et al. Discussion on spectral variables selection of potato chlorophyll using model population analysis [J]. Spectroscopy and Spectral Analysis, 2020, 40(7): 2259−2266.(in Chinese)
    [24] 徐逸, 董轩妍, 王俊杰. 4种机器学习模型反演太湖叶绿素a浓度的比较 [J]. 水生态学杂志, 2019, 40(4):48−57.

    XU Y, DONG X Y, WANG J J. Use of remote multispectral imaging to monitor chlorophyll-a in Taihu lake: A comparison of four machine learning models [J]. Journal of Hydroecology, 2019, 40(4): 48−57.(in Chinese)
    [25] 董哲, 杨武德, 张美俊, 等. 基于高光谱遥感的玉米叶片SPAD值估算模型研究 [J]. 作物杂志, 2019(3):126−131.

    DONG Z, YANG W D, ZHANG M J, et al. Estimation models of maize leaf SPAD value based on hyperspectral remote sensing [J]. Crops, 2019(3): 126−131.(in Chinese)
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  617
  • HTML全文浏览量:  167
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-10-11
  • 网络出版日期:  2021-12-30
  • 刊出日期:  2021-11-28

目录

    /

    返回文章
    返回