Quality of Dioscorea persimilis Tubers Harvested at different Stages
-
摘要:
目的 比较不同采收期褐苞薯蓣块茎主要品质的变化,为褐苞薯蓣最适采收期的确定奠定基础。 方法 以宁化特色褐苞薯蓣地方品种为材料,于2020年10月20日至翌年5月5日对其块茎进行9个批次的采收,测定其折干率、蛋白质、淀粉、氨基酸、可溶性糖、蔗糖、粗多糖、尿囊素、总酚等9个品质指标,并采用多重比较、相关性分析等方法进行分析。 结果 2020年10月20日块茎生物量积累基本完成时采收,可溶性糖、蔗糖、粗多糖含量较高,分别可达5.69%、5.29%和2.73%,口感较佳,但总酚含量较高,较适合鲜食。2020年12月5日左右茎叶基本枯萎时及翌年3月15日块茎休眠解除至4月10日刚发芽期间采收,折干率为33.84%~35.50%,且淀粉、蛋白质、尿囊素、总氨基酸、必需氨基酸和呈味氨基酸含量均较高,分别可达73.14%~78.12%、6.33%~6.51%、3.95~4.29 mg·g−1、48.5~50.8 mg·g−1、15.0~15.5 mg·g−1和18.9~20.2 mg·g−1,并且2021年3月15日至4月10日采收的多糖含量高于2.92%,表明以上两个时期采收品质较高且不易折断。2020年11月10日左右以及12月底至翌年3月初采收的块茎的折干率高于36%,采收易折断,但折断块茎可烘干加工。2020年4月10日至5月5日采收,块茎长出新生嫩茎,营养及外观品质下降,总酚含量上升,且影响下茬种植安排,因此不适合采收。 结论 褐苞薯蓣块茎在生物量积累基本完成至翌年开始发芽期间均可根据市场需求和加工利用偏好进行采收。若综合考虑产量、采收折断率、采后褐变、外观及营养品质及茬口安排,最适采收期为茎叶大部分枯萎到完全枯萎期间,以及翌年块茎休眠解除至刚开始发芽期间。 Abstract:Objective Tuber quality of Dioscorea persimilis at different times of harvesting were compared. Method Tubers from a local Ninghua variety of D. persimilis were collected in 9 batches from October 20 to May 5 in the following year. Quality indicators including drying rate, protein, starch, amino acid, soluble sugar, sucrose, crude polysaccharide, allantoin, and total phenol of the tubers were determined. Multiple comparison and correlation analysis were performed on the data for analysis. Result On October 20 when biomass accumulation in tubers is normally near completion in a year, the contents of soluble sugar, sucrose, and crude polysaccharide reached their high levels, that were up to 5.69%, 5.29%, and 2.73%, respectively. The harvested tubers at the time generally taste better, but the total phenol content tends to be high, which make them more suitable for fresh consumption. Whereas, the tubers harvested around December 5 as the stems and leaves largely withered and those picked from March 15, at which time the tuber dormancy had terminated, till April 10, when germination already began, had a drying rate of 33.84%-35.50% along with the contents of starch, protein, allantoin, total amino acids, essential amino acids, and flavor amino acids up to 73.14%-78.12%, 6.33%-6.51%, 3.95-4.29 mg·g−1, 48.5-50.8 mg·g−1, 15.0-15.5 mg·g−1, and 18.9-20.2 mg·g−1, respectively. The polysaccharides in the tubers harvested between March 15 and April 10 were more than 2.92%. The compositional change led to a more desirable eating quality of the tubers harvested during those two periods. In addition, the change also reduced the rate of tuber breakage at and after harvest. In contrast, tube harvesting on around November 10 and from the end of December to the following March would result in an increase on the drying rate to above 36% making the tubers break more easily after picking that rendered them fit only for further processing. In between April 10 and May 5, when new shoots started to appear, nutritional quality and appearance became less desirable, and the total phenol content rose to a high level on the tubers, the planting of following crop was disrupted and tuber-harvesting was deemed improper. Conclusion Depending upon market demand for fresh consumption or need for further processing, D. persimilis tubers could be harvested from the time the biomass accumulation was completed till the beginning of new shoot germination. However, when tuber yield, breakage, post-harvest browning, appearance, nutritional quality, and new crop planting of D. persimilis are taken into consideration, the optimum harvest time would fall in the periods between when the stems and leaves wither on the plants and as the tuber dormancy ends before new shoots start to emerge in the following year. -
Key words:
- Dioscorea persimilis /
- harvesting time /
- quality /
- change pattern
-
表 1 不同采收日期块茎氨基酸变化趋势
Table 1. Amino acids in tubers harvested in different time periods
氨基酸
Amino acids不同采收日期(月-日)氨基酸含量
Amino acids content at ifferent collecting date/(mg·g−1)10-20 11-10 12-05 12-30 01-25 02-20 03-15 04-10 05-05 天冬氨酸# Aspartate 5.0 d 5.2 cd 6.3 a 5.5 bc 5.6 b 5.2 cd 6.4 a 6.4 a 4.3 f 苏氨酸* Threonine 1.6 b 1.6 b 1.8 a 1.6 b 1.9 a 1.6 b 1.9 a 1.9 a 1.8 a 丝氨酸 Serine 2.4 e 2.3 e 2.9 d 2.5 e 3.3 b 2.5 e 3.1 c 3.2 bc 4.1 a 谷氨酸# Glutamate 7.4 ef 6.9 f 8.4 c 8.0 cd 9.2 b 7.7 de 9.6 ab 9.3 ab 9.8 a 甘氨酸# Glycine 1.6 b 1.6 b 1.8 a 1.6 b 1.8 a 1.5 b 1.8 a 1.8 a 1.8 a 丙氨酸# Alanine 2.2 d 2.2 d 2.4 c 2.0 e 2.6 b 2.0 e 2.4 c 2.4 c 3.2 a 胱氨酸 Cystine 0.2 c 0.3 b 0.3 b 0.3 b 0.4 a 0.4 a 0.4 a 0.4 a 0.4 a 缬氨酸* Valine 2.0 de 1.9 e 2.3 ab 2.0 de 2.2 bc 2.0 de 2.4 a 2.4 a 2.1 cd 蛋氨酸 Methionine 0.2 b 0.3 a 0.3 a 0.1 c 0.2 b 0.2 b 0.2 b 0.3 a 0.2 c 异亮氨酸* Isoleucine 1.6 b 1.6 b 1.8 a 1.6 b 1.8 a 1.6 b 1.9 a 1.9 a 1.5 b 亮氨酸* Leucine 3.2 bc 3.1 c 3.6 a 3.2 bc 3.4 ab 3.1 c 3.6 a 3.6 a 3.0 c 酪氨酸 Tyrosine 1.2 d 1.2 d 1.3 c 1.3 c 1.6 a 1.1 e 1.4 b 1.2 d 1.4 b 苯丙氨酸* Phenylalanine 2.6 c 2.6 c 3.0 ab 2.7 c 2.9 b 2.7 c 3.1 a 3.0 ab 2.3 d 赖氨酸* Lysine 2.2 c 2.1 c 2.5 ab 2.2 c 2.4 b 2.2 c 2.6 a 2.6 a 2.5 ab 组氨酸 Histidine 1.1 c 1.0 d 1.2 b 1.1 c 1.1 c 1.0 d 1.2 b 1.3 a 1.2 b 精氨酸 Arginine 5.0 c 4.6 d 6.3 a 5.1 c 5.4 b 4.4 d 6.5 a 6.3 a 4.0 e 脯氨酸 Proline 2.2 ab 2.1 bc 2.3 a 2.1 bc 2.3 a 2.0 c 2.3 a 2.3 a 2.2 ab 总氨基酸 TAA 41.7 de 40.6 e 48.5 b 42.9 d 48.1 b 41.2 e 50.8 a 50.3 a 45.8 c 必需氨基酸 EAA 13.2 d 12.9 d 15 bc 13.3 d 14.6 c 13.2 d 15.5 ab 15.4 a 13.2 d 呈味氨基酸 FAA 16.2 f 15.9 f 18.9 c 17.1 d 19.2 bc 16.4 f 20.2 ab 19.9 a 19.1 c 注:*表示必需氨基酸;#表示呈味氨基酸,同行数据不同小写字母表示差异显著(P<0.05)。
Note:*: EAA; #: FAA; data with different lowercase letters on same row indicate significant differences (P<0.05).表 2 品质指标相关性分析
Table 2. Correlations among quality indices
指标
Index折干率
DR可溶性糖
SS蔗糖
Sucrose粗多糖
CP淀粉
Starch蛋白质
Protein总氨基酸
TAA必需氨基酸
EAA呈味氨基酸
FAA尿囊素
Allantoin可溶性糖 SS −0.605 蔗糖 Sucrose −0.485 0.781* 粗多糖 CP 0.073 −0.073 −0.089 淀粉 Starch 0.066 −0.644 −0.721* −0.003 蛋白质 Protein −0.687* 0.005 −0.174 0.364 0.508 总氨基酸 TAA −0.380 −0.050 −0.326 0.266 0.625 0.757* 必需氨基酸 EAA −0.210 −0.313 −0.481 0.434 0.694* 0.764* 0.943** 呈味氨基酸 FAA −0.415 0.104 −0.263 0.164 0.562 0.690* 0.975** 0.852** 尿囊素 Allantoin −0.427 −0.314 −0.481 0.353 0.635 0.913** 0.746* 0.834** 0.640 总酚 TP −0.281 0.683* 0.965** −0.029 −0.722* −0.317 −0.360 −0.481 −0.310 −0.596 注:*表示显著相关(P<0.05), **表示极显著相关(P<0.01)。
Note: *: significant correlation (P<0.05); **: extremely significant correlation (P<0.01). -
[1] 高慧新, 周敏, 田慧, 等. 广山药的现代研究概况 [J]. 解放军药学学报, 2017, 33(1):72−74.GAO H X, ZHOU M, TIAN H, et al. Overview of modern research on Guangshanyao [J]. Pharmaceutical Journal of Chinese PLA, 2017, 33(1): 72−74.(in Chinese) [2] 福建省食品药品监督管理局. 福建省中药饮片炮制规范: (2012年版)[M]. 福州: 福建科学技术出版社, 2013. [3] 广东省食品药品监督管理局. 广东省中药材标准(第二册)[M]. 广州: 广东科技出版社, 2011. [4] 广西壮族自治区食品药品监督管理局. 广西壮族自治区壮药质量标准 [M] . 南宁: 广西科技出版社, 2008. [5] 董庆海, 吴福林, 王涵, 等. 山药的化学成分和药理作用及临床应用研究进展 [J]. 特产研究, 2018, 40(4):98−103.DONG Q H, WU F L, WANG H, et al. Research progress on chemical constituents, pharmacological activity and clinical application of Chinese yam [J]. Special Wild Economic Animal and Plant Research, 2018, 40(4): 98−103.(in Chinese) [6] 李丹, 吕洪艳, 陆海民. 不同品种怀山药中山药多糖和淀粉积累动态比较 [J]. 中草药, 2009, 40(S1):250−253.LI D, LYU H Y, LU H M. Dynamic comparison of polysaccharides and starch accumulation in different varieties of yam [J]. Chinese Traditional and Herbal Drugs, 2009, 40(S1): 250−253.(in Chinese) [7] 马蕊, 杨珂, 李文辉, 等. 不同生长期怀山药化学成分分析 [J]. 食品研究与开发, 2019, 40(13):84−92.MA R, YANG K, LI W H, et al. Analysis of chemical constituents of Huai yam in different growth period [J]. Food Research and Development, 2019, 40(13): 84−92.(in Chinese) [8] 张铅, 蒋璐, 张培通, 等. 长江中下游地区参薯块茎发育动态特征分析 [J]. 植物生理学报, 2020, 56(12):2736−2744.ZHANG Q, JIANG L, ZHANG P T, et al. Dynamic characteristics and anatomical analysis of yam(Dioscorea alata) Tuber development in the middle and lower reaches of the Yangtze River [J]. Plant Physiology Journal, 2020, 56(12): 2736−2744.(in Chinese) [9] 陈华龙. 不同生长期的粤北产广山药中尿囊素的含量动态研究 [J]. 中国药房, 2015, 26(12):1698−1699. doi: 10.6039/j.issn.1001-0408.2015.12.40CHEN H L. Dynamic study on the content of allantoin from wide yam in different growing periods produced in north Gangdong [J]. China Pharmacy, 2015, 26(12): 1698−1699.(in Chinese) doi: 10.6039/j.issn.1001-0408.2015.12.40 [10] 罗海玲, 龚明霞, 周芸伊, 等. 山药块茎发育过程中淀粉积累及差异蛋白分析 [J]. 华南农业大学学报, 2018, 39(6):61−69. doi: 10.7671/j.issn.1001-411X.2018.06.010LUO H L, GONG M X, ZHOU Y Y, et al. Analysis of starch accumulation and differentially expressed proteins during the development of Chinese yam Tuber [J]. Journal of South China Agricultural University, 2018, 39(6): 61−69.(in Chinese) doi: 10.7671/j.issn.1001-411X.2018.06.010 [11] 梁任繁, 李创珍, 张娟, 等. 山药块茎发育中物质积累及相关代谢酶变化 [J]. 作物学报, 2011, 37(5):903−910. doi: 10.3724/SP.J.1006.2011.00903LIANG R F, LI C Z, ZHANG J, et al. Changes of matter accumulation and relative enzymatic activity during yam Tuber development [J]. Acta Agronomica Sinica, 2011, 37(5): 903−910.(in Chinese) doi: 10.3724/SP.J.1006.2011.00903 [12] 史冬燕, 刘伟, 孙迅. 鸡皮糙山药块茎发育特点及其碳水化合物变化研究 [J]. 长江蔬菜, 2017(22):46−49.SHI D Y, LIU W, SUN X. Research on characteristics of development and changes of carbohydrate metabolism in Jipicao yam Tuber [J]. Journal of Changjiang Vegetables, 2017(22): 46−49.(in Chinese) [13] 孙霞. 毕克齐长山药生育和贮藏期间营养成分及相关酶活性的研究[D]. 呼和浩特: 内蒙古农业大学, 2008SUN X. Study on the Tuber nutrition content and pertinent enzyme activity of Bikeqi yam during growth development and storage period[D]. Hohhot: Inner Mongolia Agricultural University, 2008. (in Chinese [14] 王学奎. 植物生理生化实验原理和技术[M]. 第2版. 北京: 高等教育出版社, 2006. [15] 薛应龙, 上海植物生理学会. 植物生理学实验手册[M]. 上海: 上海科学技术出版社, 1985. [16] 华树妹, 陈芝华, 贺佩珍, 等. 福建山药种质资源多糖含量评价 [J]. 福建农业学报, 2014, 29(7):651−656. doi: 10.3969/j.issn.1008-0384.2014.07.009HUA S M, CHEN Z H, HE P Z, et al. Assessment on the polysaccharide content of germplasm of Chinese yam in Fujian Province [J]. Fujian Journal of Agricultural Sciences, 2014, 29(7): 651−656.(in Chinese) doi: 10.3969/j.issn.1008-0384.2014.07.009 [17] 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007. [18] 黄瑞平. 福建参薯类山药资源尿囊素含量的测定比较 [J]. 热带农业科学, 2012, 32(6):58−60,75. doi: 10.3969/j.issn.1009-2196.2012.06.013HUANG R P. Comparison of allantoin contents in dioscoreae rhizoma resources in Fujian [J]. Chinese Journal of Tropical Agriculture, 2012, 32(6): 58−60,75.(in Chinese) doi: 10.3969/j.issn.1009-2196.2012.06.013 [19] 关倩倩, 张文龙, 杜方岭, 等. 山药多糖生物活性及作用机理研究进展 [J]. 中国食物与营养, 2018, 24(3):11−14. doi: 10.3969/j.issn.1006-9577.2018.03.002GUAN Q Q, ZHANG W L, DU F L, et al. Research advancement in bioactivity of polysaccharide from Chinese yam and its mechanism [J]. Food and Nutrition in China, 2018, 24(3): 11−14.(in Chinese) doi: 10.3969/j.issn.1006-9577.2018.03.002 [20] 周庆峰, 康洁, 马亢, 等. 山药多糖对急性酒精中毒小鼠的解酒作用 [J]. 食品研究与开发, 2019, 40(19):113−117.ZHOU Q F, KANG J, MA K, et al. Anti-alcoholism effects of rhizoma dioscoreae polysaccharide on acute alcohol intoxic mice [J]. Food Research and Development, 2019, 40(19): 113−117.(in Chinese) [21] 贺永朝, 吴枭锜, 宋洪波, 等. 高压均质改性淮山药淀粉及其消化性的研究 [J]. 现代食品科技, 2016, 32(5):227−233.HE Y Z, WU X Q, SONG H B, et al. Effect of high-pressure homogenization on the properties and digestibility of Dioscorea opposita starch [J]. Modern Food Science and Technology, 2016, 32(5): 227−233.(in Chinese) [22] 陈佳希, 李多伟. 山药的功能及有效成分研究进展 [J]. 西北药学杂志, 2010, 25(5):398−400. doi: 10.3969/j.issn.1004-2407.2010.05.047CHEN J X, LI D W. Research progress on the function and active components of yam [J]. Northwest Pharmaceutical Journal, 2010, 25(5): 398−400.(in Chinese) doi: 10.3969/j.issn.1004-2407.2010.05.047 [23] 樊靓, 汤尚文, 余海忠, 等. 山药中尿囊素研究进展 [J]. 现代农业科技, 2015(3):308,317.FAN L, TANG S W, YU H Z, et al. Research progress of allantoin in yam [J]. Modern Agricultural Science and Technology, 2015(3): 308,317.(in Chinese) [24] 慈志娟, 宋来庆, 田利光, 等. 烟台不同优系富士品种的酚类物质和褐变关系探讨 [J]. 山东农业科学, 2019, 51(1):46−50.CI Z J, SONG L Q, TIAN L G, et al. Study on relationship of polyphenolic compounds and browning of fuji apple varieties in Yantai [J]. Shandong Agricultural Sciences, 2019, 51(1): 46−50.(in Chinese) [25] 刘伟, 张群, 李志坚, 等. 不同品种黄花菜游离氨基酸组成的主成分分析及聚类分析 [J]. 食品科学, 2019, 40(10):243−250. doi: 10.7506/spkx1002-6630-20180523-336LIU W, ZHANG Q, LI Z J, et al. Principal component analysis and cluster analysis for evaluating free amino acids of different cultivars of daylily buds [J]. Food Science, 2019, 40(10): 243−250.(in Chinese) doi: 10.7506/spkx1002-6630-20180523-336 [26] 张武君, 刘保财, 陈菁瑛, 等. 福建省山药产业发展现状及对策 [J]. 福建农业科技, 2019(4):38−42.ZHANG W J, LIU B C, CHEN J Y, et al. Current situation and countermeasures of yam industry in Fujian Province [J]. Fujian Agricultural Science and Technology, 2019(4): 38−42.(in Chinese) [27] 李丽红, 华树妹, 陈芝华, 等. 福建山药地方品种表型性状的遗传多样性研究 [J]. 云南农业大学学报(自然科学), 2016, 31(2):257−262.LI L H, HUA S M, CHEN Z H, et al. Phenotypic genetic diversity research on Dioscorea landraces of Fujian Province [J]. Journal of Yunnan Agricultural University (Natural Science), 2016, 31(2): 257−262.(in Chinese) [28] 张武君, 陈菁瑛, 刘保财, 等. 37份福建山药地方品种主要性状遗传变异研究 [J]. 福建农业学报, 2019, 34(11):1246−1254.ZHANG W J, CHEN J Y, LIU B C, et al. Genetic variations on major traits of 37 Chinese yam germplasms [J]. Fujian Journal of Agricultural Sciences, 2019, 34(11): 1246−1254.(in Chinese)