Expression Patterns of Various Maize ZmbZIPs
-
摘要:
目的 对10个玉米ZmbZIP基因应答逆境胁迫表达进行分析,以期为进一步深入研究玉米bZIP基因在玉米生长发育或者抵御各类逆境胁迫中的作用机制等提供科学数据。 方法 设置200 mmol·L−1的NaCl溶液、20% PEG6000 (Polyethylene Glycol 6000)、4 ℃低温和硝态氮或铵态氮缺乏胁迫试验,选取10个ZmbZIP基因,探测其应答响应表达模式。 结果 进化分析结果揭示10个ZmbZIP可以细分为5个亚组,其保守区域分布在碱性结构域和亮氨酸拉链结构域等部分。 组织表达分析结果表明10个ZmbZIP基因的表达模式不同,预示着在玉米生长进程中的不同功能。人为模拟盐、干旱、低温和氮缺乏胁迫等逆境,结果表明不同的胁迫处理下10个ZmbZIP基因的表达水平存在较大的差异,预示着在应对逆境胁迫途径中广泛的作用。 结论 10个ZmbZIP基因在玉米扬花期不同组织中,以及应答不同逆境胁迫条件下的表达模式不同,预示着ZmbZIP基因广泛参与玉米生长发育进程及逆境胁迫响应调控途径。 Abstract:Objective Expression patterns of 10 ZmbZIPs in Zea mays under stresses were analyzed for further understanding of the biological functions of bZIP associated with the plant development and stress responses. Method Expressions of the ZmbZIPs under imposed stresses of 200 mmol·L−1 NaCl, 20% PEG6000, 4℃, and nitrogen deficiency were studied. Result The evolutionary analysis divided the 10 ZmbZIP genes with a conserved domain consisting of a basic region and a leucine zipper into 5 subgroups. These genes expressed differently in different tissues indicating their diverse roles in the development of a maize plant. And they showed significantly differentiated expression patterns under the simulated salt, drought, low temperature, and nitrogen deficiency stresses reflecting their diverse and important roles played in the stress signaling pathways. Conclusion Differentiations on the expression patterns of 10 ZmbZIPs in different tissues and under different stresses as demonstrated in this study revealed diversity in biological functions of the genes in maize. -
Key words:
- bZIP gene /
- stress /
- expression pattern /
- maize
-
图 1 10个ZmbZIPs的生物信息学分析
注:A. ZmbZIP基因的染色体定位; B. ZmbZIP的基因结构分析;C. 保守的ZmbZIP结构域多重序列比对;D. ZmbZIP蛋白的进化树分析。
Figure 1. Bioinformatics of 10 ZmbZIPs
Note: A: Chromosomal distribution of ZmbZIPs; B: gene structure of ZmbZIPs; C: multiple sequence alignment of conserved bZIP domain; D: phylogenetic tree of ZmbZIPs.
表 1 ZmbZIP基因表达分析的实时荧光定量引物
Table 1. qRT-PCR primers for expression analysis on ZmbZIPs
基因名称
Gene name基因号
Gene locus上游引物
Forward primer(5′→3′)下游引物
Reverse primer(5′→3′)ZmbZIP3 GRMZM2G038015 CCATGATCTTGTCGTCCCGTTC CTTACCTGCTTCCTCGAACACTGCC ZmbZIP8 GRMZM2G479885 GCTCCTGCTTCCTCCACTCCTTC ACCTCGAAAAGATCCTCTACCGCTG ZmbZIP27 AC203957.3_FGT004 GCTAAGGAAGCAGCAACACCACGA TGATGCACCAGAGGATCTCGG ZmbZIP41 GRMZM2G160902 GGAGCCAGAGATCCAAACAAACCTC GCAGGTGAGTGGCGATCTTCATAAAG ZmbZIP52 GRMZM2G368491 CGCTCCAAAACCTGCTTGTACGTC AAAGCAAATCACGGAAGCAACGCTG ZmbZIP68 GRMZM2G361611 TCCCGTTCCATCTAGTAGCATCCAC AGGAAACGACTGAAACCGAGACGAC ZmbZIP74 GRMZM2G444748 TCGTCGCCGTTTCAGTCGTTC ACACTAGCAGAGATCAAAGCCGTC ZmbZIP85 GRMZM2G448607 GCAGCCCATCGGGTTCTGAG ACACTGACAAGAAGAGCAAACCATG ZmbZIP101 GRMZM2G092137 CTCGTCCTGTCCGAGCACCTC GTGAGTCCAACTACTGGCGGCTTAC ZmbZIP132 Zm00001d047644 AGAACAACAACCGCAGACTCTCAAC CCGCCTCCCACCTTCAACGAC 表 2 10个玉米bZIP基因基本信息
Table 2. Basic information on 10 bZIP genes of Z. mays
基因号 Gene ID 基因名称 Gene name 大小 Size /aa 分子量 MW /kDa 等电点 PI 染色体 Chromosome 可变剪切 Splice variants GRMZM2G038015 ZmbZIP3 246 26.83 5.53 Chr1:49496883-49497413 1 GRMZM2G479885 ZmbZIP8 151 16.86 7.49 Chr1:148806103-148807147 1 AC203957.3_FGT004 ZmbZIP27 170 19 8.92 Chr2:179315956-179317710 1 GRMZM2G160902 ZmbZIP41 152 16.71 9.1 Chr3:129456939-129457397 1 GRMZM2G368491 ZmbZIP52 142 15.53 10.06 Chr3:231393431-231393859 1 GRMZM2G361611 ZmbZIP68 162 17.13 6.71 Chr4:244691517-244692145 1 GRMZM2G444748 ZmbZIP74 170 17.67 7.19 Chr5:77126570-77127082 1 GRMZM2G448607 ZmbZIP85 135 15.01 10.85 Chr6:25657757-25658164 1 GRMZM2G092137 ZmbZIP101 121 13.41 4.77 Chr7:86720505-86722227 1 Zm00001d047644 ZmbZIP132 129 14.48 11.41 Chr9:137917348-137917737 1 -
[1] JAKOBY M, WEISSHAAR B, DRÖGE-LASER W, et al. bZIP transcription factors in Arabidopsis [J]. Trends in Plant Science, 2002, 7(3): 106−111. doi: 10.1016/S1360-1385(01)02223-3 [2] DRÖGE-LASER W, SNOEK B L, SNEL B, et al. The Arabidopsis bZIP transcription factor family—an update [J]. Current Opinion in Plant Biology, 2018, 45: 36−49. doi: 10.1016/j.pbi.2018.05.001 [3] LIU J Y, CHEN N N, CHEN F, et al. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera) [J]. BMC Genomics, 2014, 15: 281. doi: 10.1186/1471-2164-15-281 [4] ZHANG Y, GAO W L, LI H T, et al. Genome-wide analysis of the bZIP gene family in Chinese jujube (Ziziphus jujuba Mill. ) [J]. BMC Genomics, 2020, 21(1): 483. doi: 10.1186/s12864-020-06890-7 [5] NIJHAWAN A, JAIN M, TYAGI A K, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice [J]. Plant Physiology, 2008, 146(2): 323−324. [6] WEI K F, CHEN J, WANG Y M, et al. Genome-wide analysis of bZIP-encoding genes in maize [J]. DNA Research, 2012, 19(6): 463−476. doi: 10.1093/dnares/dss026 [7] WANG J Z, ZHOU J X, ZHANG B L, et al. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on Sorghum [J]. Journal of Integrative Plant Biology, 2011, 53(3): 212−231. doi: 10.1111/j.1744-7909.2010.01017.x [8] LIU M Y, WEN Y D, SUN W J, et al. Genome-wide identification, phylogeny, evolutionary expansion and expression analyses of bZIP transcription factor family in tartaty buckwheat [J]. BMC Genomics, 2019, 20(1): 483. doi: 10.1186/s12864-019-5882-z [9] ZHOU Y, XU D X, JIA L D, et al. Genome-wide identification and structural analysis of bZIP transcription factor genes in Brassica napus [J]. Genes, 2017, 8(10): 288. doi: 10.3390/genes8100288 [10] YANG Y, YU T F, MA J, et al. The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants [J]. International Journal of Molecular Sciences, 2020, 21(2): 670. doi: 10.3390/ijms21020670 [11] WANG Y Y, ZHANG Y J, ZHOU R, et al. Identification and characterization of the bZIP transcription factor family and its expression in response to abiotic stresses in sesame [J]. PLoS One, 2018, 13(7): e0200850. doi: 10.1371/journal.pone.0200850 [12] GAI W X, MA X, QIAO Y M, et al. Characterization of the bZIP transcription factor family in pepper (Capsicum annuum L. ): CabZIP25 positively modulates the salt tolerance [J]. Frontiers in Plant Science, 2020, 11: 139. doi: 10.3389/fpls.2020.00139 [13] LI D Y, FU F Y, ZHANG H J, et al. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L. ) [J]. BMC Genomics, 2015, 16: 771. doi: 10.1186/s12864-015-1990-6 [14] YANG Z M, SUN J, CHEN Y, et al. Genome-wide identification, structural and gene expression analysis of the bZIP transcription factor family in sweet potato wild relative Ipomoea trifida [J]. BMC Genetics, 2019, 20(1): 1−18. doi: 10.1186/s12863-018-0706-8 [15] BAILLO, KIMOTHO, ZHANG, et al. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement [J]. Genes, 2019, 10(10): 771. doi: 10.3390/genes10100771 [16] THUROW C, SCHIERMEYER A, KRAWCZYK S, et al. Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development [J]. The Plant Journal, 2005, 44(1): 100−113. doi: 10.1111/j.1365-313X.2005.02513.x [17] LINDEMOSE S, O'SHEA C, JENSEN M, et al. Structure, function and networks of transcription factors involved in abiotic stress responses [J]. International Journal of Molecular Sciences, 2013, 14(3): 5842−5878. doi: 10.3390/ijms14035842 [18] WANG W B, QIU X P, YANG Y X, et al. Sweetpotato bZIP transcription factor IbABF4 confers tolerance to multiple abiotic stresses [J]. Frontiers in Plant Science, 2019, 10: 630. doi: 10.3389/fpls.2019.00630 [19] ABE M. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex [J]. Science, 2005, 309(5737): 1052−1056. doi: 10.1126/science.1115983 [20] GANGAPPA S N, BOTTO J F. The multifaceted roles of HY5 in plant growth and development [J]. Molecular Plant, 2016, 9(10): 1353−1365. doi: 10.1016/j.molp.2016.07.002 [21] ZONG W, TANG N, YANG J, et al. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes [J]. Plant Physiology, 2016, 171(4): 2810−2825. doi: 10.1104/pp.16.00469 [22] HUANG C J, ZHOU J H, JIE Y C, et al. A ramie (Boehmeria nivea) bZIP transcription factor BnbZIP3 positively regulates drought, salinity and heavy metal tolerance [J]. Molecular Breeding, 2016, 36(8): 1−15. [23] WANG J Y, LI Q, MAO X G, et al. Wheat transcription factor TaAREB3 participates in drought and freezing tolerances in Arabidopsis [J]. International Journal of Biological Sciences, 2016, 12(2): 257−269. doi: 10.7150/ijbs.13538 [24] FUKAZAWA J, SAKAI T, ISHIDA S, et al. REPRESSION OF SHOOT GROWTH, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins [J]. The Plant Cell, 2000, 12(6): 901−915. doi: 10.1105/tpc.12.6.901 [25] HE S, SHAN W, KUANG J F, et al. Molecular characterization of a stress-response bZIP transcription factor in banana [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 113(2): 173−187. doi: 10.1007/s11240-012-0258-y [26] TU M X, WANG X H, HUANG L, et al. Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 125(3): 537−551. doi: 10.1007/s11240-016-0969-6 [27] LEE S C, CHOI H W, HWANG I S, et al. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses [J]. Planta, 2006, 224(5): 1209−1225. doi: 10.1007/s00425-006-0302-4 [28] SUN X L, LI Y, CAI H, et al. The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt, osmotic and drought stresses [J]. Journal of Plant Research, 2012, 125(3): 429−438. doi: 10.1007/s10265-011-0448-4 [29] FENG Y, WANG Y, ZHANG G F, et al. Group-C/S1 bZIP heterodimers regulate MdIPT5b to negatively modulate drought tolerance in apple species [J]. The Plant Journal, 2021, 107(2): 399−417. doi: 10.1111/tpj.15296 [30] GAO S Q, CHEN M, XU Z S, et al. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants [J]. Plant Molecular Biology, 2011, 75(6): 537−553. doi: 10.1007/s11103-011-9738-4 [31] LIAO Y, ZOU H F, WEI W, et al. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis [J]. Planta, 2008, 228(2): 225−240. doi: 10.1007/s00425-008-0731-3 [32] PARA A, LI Y, MARSHALL-COLON A, et al. Hit-and-Run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis [J]. PNAS, 2014, 111(28): 10371−10376. doi: 10.1073/pnas.1404657111 [33] CHEN X B, YAO Q F, GAO X H, et al. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition [J]. Current Biology, 2016, 26(5): 640−646. doi: 10.1016/j.cub.2015.12.066 [34] YANG J B, WANG M Y, LI W J, et al. Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat [J]. Plant Biotechnology Journal, 2019, 17(9): 1823−1833. doi: 10.1111/pbi.13103 [35] JUE D W, SANG X L, LU S Q, et al. Genome-wide identification, phylogenetic and expression analyses of the ubiquitin-conjugating enzyme gene family in maize [J]. PLoS One, 2015, 10(11): e0143488. doi: 10.1371/journal.pone.0143488 [36] YING S, ZHANG D F, FU J, et al. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis [J]. Planta, 2012, 235(2): 253−266. doi: 10.1007/s00425-011-1496-7 [37] CAO L R, LU X M, ZHANG P Y, et al. Systematic analysis of differentially expressed maize ZmbZIP genes between drought and rewatering transcriptome reveals bZIP family members involved in abiotic stress responses [J]. International Journal of Molecular Sciences, 2019, 20(17): 4103. doi: 10.3390/ijms20174103 [38] YANAGISAWA S, AKIYAMA A, KISAKA H, et al. Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions [J]. PNAS, 2004, 101(20): 7833−7838. doi: 10.1073/pnas.0402267101 [39] KURAI T, WAKAYAMA M, ABIKO T, et al. Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions [J]. Plant Biotechnology Journal, 2011, 9(8): 826−837. doi: 10.1111/j.1467-7652.2011.00592.x [40] HU B, WANG W, OU S J, et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies [J]. Nature Genetics, 2015, 47(7): 834−838. doi: 10.1038/ng.3337 [41] QU B Y, HE X, WANG J, et al. A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input [J]. Plant Physiology, 2015, 167(2): 411−423. doi: 10.1104/pp.114.246959 [42] LUANG S, SORNARAJ P, BAZANOVA N, et al. The wheat TabZIP2 transcription factor is activated by the nutrient starvation-responsive SnRK3/CIPK protein kinase [J]. Plant Molecular Biology, 2018, 96(6): 543−561. doi: 10.1007/s11103-018-0713-1