Effects of Crop Rotation and Fertilization on Yield and Nutrient Absorption of Vegetables/Rice
-
摘要:
目的 探讨菜田不同轮作施肥模式对作物产量稳定性和养分吸收状况的影响。 方法 利用连续6年田间定位试验,测定每个轮作周年内各季作物的产量,根据产量水平及其变异系数,分析菜-菜-稻和菜-菜-菜2种轮作体系分别在推荐施肥和习惯施肥模式下作物的产量稳定性;根据每个轮作周年各季作物农产品和茎叶的养分含量测定结果,分析不同轮作施肥模式对氮、磷、钾养分吸收、积累和利用效率的影响。 结果 菜-菜-稻轮作在推荐施肥模式下四季豆、芥菜、水稻产量分别比习惯施肥模式增产9.07%、7.77%和8.43%。菜-菜-菜轮作在推荐施肥模式下四季豆、芥菜、豇豆产量分别比习惯施肥模式增产7.24%、−0.88%和7.54%。轮作施肥模式主要影响四季豆和豇豆的养分利用效率,菜-菜-稻轮作在推荐施肥模式下四季豆作物吸收氮、磷、钾养分利用效率分别比习惯施肥增加13.50%、10.43%、12.16%;菜-菜-菜轮作在推荐施肥模式下豇豆作物吸收钾养分利用效率比习惯施肥增加12.84%。菜-菜-稻轮作中采用推荐施肥模式各季作物的年度养分积累量显著高于习惯施肥,而菜-菜-菜轮作中推荐施肥与习惯施肥对作物的年度养分积累量差异不显著。 结论 菜-菜-稻轮作结合推荐施肥模式能够促进轮作周年内各季作物高产稳产,并能够提高作物的养分吸收利用率和年度养分积累量,为最佳种植模式。 Abstract:Objective Effects of various types of crop rotation and fertilization on the yield and nutrient absorption of the vegetables and rice grown on the land were studied. Method Seasonal yields of the vegetables/rice were obtained from same assigned test lots for 6 consecutive years to determine the variation coefficient and yield stability of the vegetable-vegetable-rice (V-V-R) and vegetable-vegetable-vegetable (V-V-V) rotations on soil applied with either the recommended fertilization (RF) or conventional fertilization (CF). Efficiencies on nitrogen (N), phosphorus (P), and potassium (K) utilization by the vegetables/rice under the treatments were analyzed based on the nutrient contents in the leaves, stems, or grains of the plants. Result In V-V-R, the yields on the sequential plantings of kidney beans, mustard, and rice increased under RF by 9.07%, 7.77%, and 8.43%, respectively, over CF. Whereas in V-V-V the yield increases or reduction on kidney beans, mustard, and cowpeas were 7.24%, −0.88%, and 7.54%, respectively. On the other hand, the varied crop rotations and fertilizations appeared to mainly affect the nutrient utilization of kidney beans and cowpeas. The N, P, and K uptakes of the kidney beans were 13.50%, 10.43%, and 12.16%, respectively, higher with RF than CF in V-V-R; and that of the cowpea on K at 12.84% was the only significant difference found between RF and CF under V-V-V. The annual nutrient accumulation by the crops was significantly higher under RF than CF under V-V-R but not under V-V-V. Conclusion Planting vegetables and/or rice in the sequence of V-V-R combined with RF application could result in high and stable annual yields of all crops involved. Consequently, besides the significant improvements on NPK absorption, utilization, and accumulation of the crops, V-V-R rotation with RF was recommended for the farming where applicable. -
Key words:
- Crop rotation /
- fertilization /
- yield /
- nutrient absorption /
- fixed location experiment
-
表 1 一年三熟制轮作施肥定位试验设计方案
Table 1. Experimental design of 3-crops rotation and fertilization on vegetables and/or rice
处理
Treatment轮作施肥模式
Crop rotation Fertilization modeN-P2O5-K2O施肥量
N-P2O5-K2O amount of fertilizer/(kg·hm−2)四季豆(第1季)
Kidney beam (The first)芥菜(第2季)
Mustard leaf (The second)早稻(第3季)
Early rice (The third)豇豆(第3季)
Cowpea (The third)T1 菜-菜-稻(推荐施肥)
V-V-R(RF)150-45-105 270-75-150 75-0-60 − T2 菜-菜-菜(推荐施肥)
V-V-V(RF)150-45-105 270-75-150 − 150-45-105 T3 菜-菜-稻(习惯施肥)
V-V-R(PF)171-67.5-67.5 286.5-204-189 141-45-0 − T4 菜-菜-菜(习惯施肥)
V-V-V(PF)171-67.5-67.5 286.5-204-189 − 201-135-135 注:四季豆种植时间9月初至11月底,芥菜种植时间为每年的12月初至2月底,早稻和豇豆每年种植时间为4月初至7月底。V-V-V表示菜-菜-稻轮作,V-V-R表示菜-菜-稻轮作,RF表示推荐施肥模式,CF表示习惯施肥模式。
Note: the planting time of kidney bean is from early September to the end of November, and mustard leaf is from early December to the end of February, rice and cowpea are planted from early April to the end of July. V-V-V means the vegetable-vegetable-vegetable rotation, V-V-R means the vegetable-vegetable-rice rotation, RF means the recommended fertilization, CF means the conventional fertilization.表 2 不同轮作施肥模式对供试作物产量的影响
Table 2. Effect on crop yield under treatments
试验处理
Treatment四季豆 Kidney beam 芥菜 Mustard leaf 早稻 Early rice 豇豆 Cowpea 平均产量
Average yield/
(kg·hm−2)变异系数
Coefficient of
variation/%平均产量
Average yield/
(kg·hm−2)变异系数
Coefficient of
variation/%平均产量
Average yield/
(kg·hm−2)变异系数
Coefficient of
variation/%平均产量
Average yield/
(kg·hm−2)变异系数
Coefficient of
variation/%T1 23.25±2.09 a 8.99 57.95±13.27 a 22.90 7.47±0.45 a 6.02 − − T2 20.31±3.31 c 16.30 47.93±16.11 c 33.61 − − 16.32±4.22 a 25.86 T3 21.14±2.03 b 9.60 53.45±15.43 b 28.87 6.84±0.49 b 7.16 − − T4 18.84±3.31 d 17.57 48.35±17.30 c 35.78 − − 15.09±3.57 b 23.66 注:表中四季豆、芥菜和豇豆产量为鲜重产量,早稻则为稻谷干重产量。不同小写字母表示不同处理间差异显著(P<0.05)。下表同。
Note: the products of kidney bean and mustard and cowpea are the fresh weight, and that of early rice is the dry weight. Data with different lowercase letters indicate significant differences between different treatments at P<0.05 . The same as follows.表 3 2014至2019年不同轮作施肥处理各季作物氮、磷、钾平均含量(单位:%)
Table 3. Average N, P, and K contents of vegetables/rice under treatments, 2014–2019
养分元素
Nutriment element处理
Treatment四季豆
Kidney beam芥菜
Mustard leaf早稻
Early rice豇豆
Cowpea籽粒
Grain植株
Plant植株
Plant籽粒
Grain植株
Plant籽粒
Grain植株
Plant氮 N T1 4.28 a 2.33 c 3.65 a 1.53 a 1.02 a − − T2 3.93 b 2.45 b 3.71 a − − 3.46 a 1.53 a T3 4.02 b 2.54 a 3.73 a 1.42 b 0.99 a − − T4 4.20 a 2.42 b 3.73 a − − 3.41 a 1.59 a 磷 P T1 0.55 a 0.31 a 0.73 a 0.31 b 0.16 a − − T2 0.53 a 0.31 a 0.67 a − − 0.67 a 0.36 a T3 0.53 a 0.32 a 0.71 a 0.38 a 0.15 a − − T4 0.54 a 0.29 a 0.72 a − − 0.62 a 0.37 a 钾 K T1 3.10 a 2.22 b 5.01 b 1.03 b 4.03 a − − T2 2.85 b 2.42 a 4.99 b − − 2.89 a 3.99 a T3 2.89 b 2.29 b 5.03 b 1.12 a 3.99 a − − T4 3.00 a 2.31 b 5.19 a − − 1.93 b 4.01 a 表 4 不同轮作施肥模式处理氮、磷、钾年度养分吸收积累量灰度线性模型
Table 4. Linear grey model on NPK absorption of vegetables/rice as affected by treatments
处理
Treatment氮养分积累量
N nutrient accumulation磷养分积累量
P nutrient accumulation钾养分积累量
K nutrient accumulationy=a+bt R2 b的95%置信区间
95% confidence
interval of by=a+bt R2 b的95%置信区间
95% confidence
interval of by=a+bt R2 b的95%置信区间
95% confidence
interval of bT1 y=0.085+1.293t 0.994 1.15~1.43 y=−0.032+0.242t 1.000 0.23~0.26 y=−0.158+1.549t 1.000 1.47~1.63 T2 y=0.311+0.852t 0.955 0.60~1.11 y=0.025+0.147t 0.997 0.12~0.18 y=0.0311+1.013t 0.986 0.85~1.18 T3 y=0.098+1.199t 0.994 1.07~1.33 y=−0.068+0.235t 1.000 0.23~0.24 y=−0.286+1.374t 1.000 1.26~1.49 T4 y=0.380+0.883t 0.958 0.63~1.14 y=0.020+0.155t 0.981 0.13~0.18 y=0.379+1.046t 0.988 0.89~1.21 -
[1] 王志强, 黄国勤, 赵其国. 新常态下我国轮作休耕的内涵、意义及实施要点简析 [J]. 土壤, 2017, 49(4):651−657.WANG Z Q, HUANG G Q, ZHAO Q G. Brief analysis on connotation, significance and implementing essentials of rotation fallow under new normal in China [J]. Soils, 2017, 49(4): 651−657.(in Chinese) [2] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势 [J]. 植物营养与肥料学报, 2014, 20(4):783−795. doi: 10.11674/zwyf.2014.0401JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China [J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783−795.(in Chinese) doi: 10.11674/zwyf.2014.0401 [3] 王敬国, 林杉, 李保国. 氮循环与中国农业氮管理 [J]. 中国农业科学, 2016, 49(3):503−517. doi: 10.3864/j.issn.0578-1752.2016.03.009WANG J G, LIN S, LI B G. Nitrogen Cycling and Management Strategies in Chinese Agriculture [J]. Scientia Agricultura Sinica, 2016, 49(3): 503−517.(in Chinese) doi: 10.3864/j.issn.0578-1752.2016.03.009 [4] 郭智, 刘红江, 张岳芳, 等. 不同施肥模式对菜地氮素径流损失与表观平衡的影响 [J]. 水土保持学报, 2018, 32(4):37−42,50.GUO Z, LIU H J, ZHANG Y F, et al. Effects of different fertilization modes on nitrogen loss by surface runoff and the apparent nitrogen balance in the vegetable fields of Taihu lake region, China [J]. Journal of Soil and Water Conservation, 2018, 32(4): 37−42,50.(in Chinese) [5] 李盟军, 姚建武, 王荣辉, 等. 不同养分管理措施下常年菜地蔬菜生长及氮素径流特征 [J]. 植物营养与肥料学报, 2015, 21(5):1190−1199. doi: 10.11674/zwyf.2015.0512LI M J, YAO J W, WANG R H, et al. Effects of different nutrition management on vegetable growth and runoff characteristics of soil nitrogen in perennial vegetable field [J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(5): 1190−1199.(in Chinese) doi: 10.11674/zwyf.2015.0512 [6] WANG S, YANG M, LIAO S P, et al. Yield and the 15 N fate in rice/maize season in the Yangtze River basin [J]. Agronomy Journal, 2019, 111(2): 517−527. doi: 10.2134/agronj2018.06.0379 [7] LINH T B, GUONG V T, TRAN V T T, et al. Effects of crop rotation on properties of a Vietnam clay soil under rice-based cropping systems in small-scale farmers' fields [J]. Soil Research, 2017, 55(2): 162. doi: 10.1071/SR16123 [8] 姚金玲, 郭海刚, 倪喜云, 等. 洱海流域不同轮作与施肥方式对农田氮磷径流损失的影响 [J]. 农业资源与环境学报, 2019, 36(5):600−613.YAO J L, GUO H G, NI X Y, et al. Influence of different crop rotations and fertilization methods on nitrogen and phosphorus runoff losses in Erhai Lake basin, China [J]. Journal of Agricultural Resources and Environment, 2019, 36(5): 600−613.(in Chinese) [9] 章明清, 李娟, 孔庆波, 等. 菜-稻轮作对菜田氮、磷利用特性和富集状况的影响 [J]. 植物营养与肥料学报, 2013, 19(1):117−126.ZHANG M Q, LI J, KONG Q B, et al. Effect of vegetable-paddy rice rotation system on N and P utilzation characters and their enrichments in vegetable fields [J]. Plant Nutrition and Fertilizer Science, 2013, 19(1): 117−126.(in Chinese) [10] 朱芸. 油—稻与麦—稻轮作体系水稻产量差异及其养分机制初探[D]. 武汉: 华中农业大学, 2019.ZHU Y. Study on rice yield differences and nutrient mechanism between rapeseed-rice and wheat-rice rotation systems[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese) [11] 周昱磊, 陈轩敬, 杨敏, 等. 不同轮作制度减量施肥对水稻群体质量及产量的影响 [J]. 贵州农业科学, 2016, 44(11):77−82. doi: 10.3969/j.issn.1001-3601.2016.11.017ZHOU Y L, CHEN X J, YANG M, et al. Effects of reducing chemical fertilizer application on rice population quality in different rotation system [J]. Guizhou Agricultural Sciences, 2016, 44(11): 77−82.(in Chinese) doi: 10.3969/j.issn.1001-3601.2016.11.017 [12] 王西和, 吕金岭, 刘骅. 灰漠土小麦-玉米-棉花轮作体系钾平衡与钾肥利用率 [J]. 土壤学报, 2016, 53(1):213−223. doi: 10.11766/trxb201503120673WANG X H, LÜ J L, LIU H. Potassium balance and use efficiency in grey desert soil under continuous wheat-maize-cotton crop rotation system [J]. Acta Pedologica Sinica, 2016, 53(1): 213−223.(in Chinese) doi: 10.11766/trxb201503120673 [13] CHI B J, ZHANG Y J, ZHANG D M, et al. Wide-strip intercropping of cotton and peanut combined with strip rotation increases crop productivity and economic returns [J]. Field Crops Research, 2019, 243: 107617. doi: 10.1016/j.fcr.2019.107617 [14] GOURAV, SANKHYAN N K, SHARMA R P, et al. Long term effect of fertilizers and amendments on the properties of an acid Alfisol and uptake of primary nutrients and sulfur in maize-wheat rotation in North Western Himalayas [J]. Journal of Plant Nutrition, 2019, 42(15): 1770−1788. doi: 10.1080/01904167.2019.1643372 [15] KIANI M, HERNANDEZ-RAMIREZ G, QUIDEAU S, et al. Quantifying sensitive soil quality indicators across contrasting long-term land management systems: Crop rotations and nutrient regimes [J]. Agriculture, Ecosystems & Environment, 2017, 248: 123−135. [16] 俄胜哲, 杨志奇, 罗照霞, 等. 长期定位施肥对黄绵土区作物产量及养分回收率的影响 [J]. 干旱地区农业研究, 2017, 35(1):55−63. doi: 10.7606/j.issn.1000-7601.2017.01.09E S Z, YANG Z Q, LUO Z X, et al. Effect of long-term fertilization on crop yields and nutrition accumulative recovery rates in Loessial soils region [J]. Agricultural Research in the Arid Areas, 2017, 35(1): 55−63.(in Chinese) doi: 10.7606/j.issn.1000-7601.2017.01.09 [17] 陈轩敬, 赵亚南, 柴冠群, 等. 长期不同施肥下紫色土综合肥力演变及作物产量响应 [J]. 农业工程学报, 2016, 32(S1):139−144.CHEN X J, ZHAO Y N, CHAI G Q, et al. Integrated soil fertility and yield response to long-term different fertilization in purple soil [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S1): 139−144.(in Chinese) [18] MUNKHOLM L J, HECK R J, DEEN B. Long-term rotation and tillage effects on soil structure and crop yield [J]. Soil and Tillage Research, 2013, 127: 85−91. doi: 10.1016/j.still.2012.02.007 [19] 鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2000. [20] 黄兴成, 李渝, 白怡婧, 等. 长期不同施肥下黄壤综合肥力演变及作物产量响应 [J]. 植物营养与肥料学报, 2018, 24(6):1484−1491. doi: 10.11674/zwyf.18174HUANG X C, LI Y, BAI Y J, et al. Evolution of yellow soil fertility under long-term fertilization and response of corp yield [J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1484−1491.(in Chinese) doi: 10.11674/zwyf.18174 [21] ZHANG H, XUE Y G, WANG Z Q, et al. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice [J]. Crop Science, 2009, 49(6): 2246−2260. doi: 10.2135/cropsci2009.02.0099 [22] 顾骁, 吴孚桂, 刘慧芳, 等. 豇豆-水稻轮作模式下水稻生长的不均匀性 [J]. 热带作物学报, 2019, 40(7):1259−1264. doi: 10.3969/j.issn.1000-2561.2019.07.002GU X, WU F G, LIU H F, et al. Heterogeneity of rice growth in the mode of cowpea-rice rotation [J]. Chinese Journal of Tropical Crops, 2019, 40(7): 1259−1264.(in Chinese) doi: 10.3969/j.issn.1000-2561.2019.07.002 [23] 杜加银, 茹美, 倪吾钟. 减氮控磷稳钾施肥对水稻产量及养分积累的影响 [J]. 植物营养与肥料学报, 2013, 19(3):523−533. doi: 10.11674/zwyf.2013.0301DU J Y, RU M, NI W Z. Effects of fertilization with reducing nitrogen, controlling phosphorus and stabilizing potassium on rice yield and nutrient accumulation [J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 523−533.(in Chinese) doi: 10.11674/zwyf.2013.0301 [24] 山楠, 串丽敏, 刘继培, 等. 基于产量反应和农学效率的白菜推荐施肥方法可行性研究 [J]. 植物营养与肥料学报, 2020, 26(9):1681−1690. doi: 10.11674/zwyf.20061SHAN N, CHUAN L M, LIU J P, et al. Availability of fertilizer recommendation based on yield response and agronomic efficiency of Chinese cabbage [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1681−1690.(in Chinese) doi: 10.11674/zwyf.20061 [25] MACHOLDT J, PIEPHO H P, HONERMEIER B. Does fertilization impact production risk and yield stability across an entire crop rotation? Insights from a long-term experiment [J]. Field Crops Research, 2019, 238: 82−92. doi: 10.1016/j.fcr.2019.04.014 [26] 郑宏艳, 刘书田, 侯彦林, 等. 生态平衡施肥模型与肥料效应函数模型关系研究 [J]. 农业资源与环境学报, 2014, 31(6):500−505.ZHENG H Y, LIU S T, HOU Y L, et al. Relationship of ecological balanced fertilization model and fertilizer effect function method [J]. Journal of Agricultural Resources and Environment, 2014, 31(6): 500−505.(in Chinese) [27] 包启平, 韩晓日, 崔志刚, 等. 东北春玉米氮肥推荐施肥模型研究 [J]. 植物营养与肥料学报, 2020, 26(4):705−716. doi: 10.11674/zwyf.19247BAO Q P, HAN X R, CUI Z G, et al. Recommended fertilization model for spring maize nitrogen fertilizer in Northeast China [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 705−716.(in Chinese) doi: 10.11674/zwyf.19247 [28] 康利允, 常高正, 高宁宁, 等. 不同氮、钾肥施用量对甜瓜养分吸收、分配及产量的影响 [J]. 中国农业科学, 2018, 51(9):1758−1770. doi: 10.3864/j.issn.0578-1752.2018.09.013KANG L Y, CHANG G Z, GAO N N, et al. Effects of different nitrogen and potassium fertilizing amount on nutrition absorption, nutrition distribution and yield of muskmelon [J]. Scientia Agricultura Sinica, 2018, 51(9): 1758−1770.(in Chinese) doi: 10.3864/j.issn.0578-1752.2018.09.013 [29] 武际, 郭熙盛, 王允青, 等. 氮钾配施对弱筋小麦氮、钾养分吸收利用及产量和品质的影响 [J]. 植物营养与肥料学报, 2007, 13(6):1054−1061. doi: 10.3321/j.issn:1008-505x.2007.06.011WU J, GUO X S, WANG Y Q, et al. Effects of combined application of nitrogen and potassium on absorption of N and K, grain yield and quality of weak gluten wheat [J]. Plant Nutrition and Fertilizer Science, 2007, 13(6): 1054−1061.(in Chinese) doi: 10.3321/j.issn:1008-505x.2007.06.011 [30] 赵营, 王世荣, 郭鑫年, 等. 施肥对水旱轮作作物产量、氮素吸收与土壤肥力的影响 [J]. 中国土壤与肥料, 2012(6):24−28.ZHAO Y, WANG S R, GUO X N, et al. Effect of fertilization on crops yield, N uptake and soil fertility in the paddy-dryland crops rotation system [J]. Soil and Fertilizer Sciences in China, 2012(6): 24−28.(in Chinese) [31] SAINJU U M, LENSSEN A W, ALLEN B L, et al. Soil residual nitrogen under various crop rotations and cultural practices [J]. Journal of Plant Nutrition and Soil Science, 2017, 180(2): 187−198. doi: 10.1002/jpln.201600496 [32] HAQUE M M, BISWAS J C, ISLAM M R, et al. Effect of long-term chemical and organic fertilization on rice productivity, nutrient use-efficiency, and balance under a rice-fallow-rice system [J]. Journal of Plant Nutrition, 2019, 42(20): 2901−2914. doi: 10.1080/01904167.2019.1659338 [33] YANG X L, LU Y L, TONG Y A, et al. A 5-year lysimeter monitoring of nitrate leaching from wheat-maize rotation system: Comparison between optimum N fertilization and conventional farmer N fertilization [J]. Agriculture, Ecosystems & Environment, 2015, 199: 34−42. [34] 王丹丹, 李岚涛, 韩本高, 等. 养分专家系统推荐施肥对冬小麦产量、养分转运及肥料利用的影响 [J]. 中国生态农业学报(中英文), 2020, 28(11):1692−1702.WANG D D, LI L T, HAN B G, et al. Effects of Nutrient Expert recommended fertilization on winter wheat yield, nutrient accumulation, transportation, and utilization [J]. Chinese Journal of Eco-Agriculture, 2020, 28(11): 1692−1702.(in Chinese)