Effects of Enhanced UV-B Radiation Exposure on Fruit-ripening, Photosynthesis, and Leaf-microstructure of Guifei Mango
-
摘要:
目的 探究增强UV-B辐射对贵妃杧果果实成熟期、果实品质、叶片光合作用和显微结构的影响,为制定在增强UV-B辐射下的芒果栽培技术提供理论依据。 方法 选择16年生的贵妃杧果树,在田间采用紫外灯照射,人工模拟96 kJ·m−2·d−1的增强UV-B辐射处理,以自然光照为对照(CK),观测成熟果比率、叶片光合速率(Pn)、气孔导度(Gs)、叶片显微结构等变化,比较处理与对照的差异。 结果 与CK相比,处理的叶片上表皮和栅栏组织厚度分别高出2.29、30.35 μm,栅栏组织和海绵组织细胞排列紧密度上升,叶片厚度和栅海比值均显著升高36 μm和18%。叶片Pn和Gs呈上升趋势,成熟果比率在4月22日、29日和5月7日分别显著提高了6.77%、37.83%和17.52%;第一批果的可溶性糖、可溶性固形物、维生素C含量和糖酸比、固酸比显著高于对照,可滴定酸含量显著低于对照;处理的叶片上角质层、下表皮、下角质层厚度和气孔大小、形态均无显著变化。 结论 96 kJ·m−2·d−1的增强UV-B辐射通过改善叶肉光合组织显微结构和提高叶片Gs而增强贵妃杧果叶片光合作用,引起贵妃杧果果实早熟,这也对产期难以调节的贵妃杧果提供了一条产期调节技术的突破性研发新途径。 Abstract:Objective Effects of enhanced UV-B radiation exposure on the ripening and quality of fruit as well as the photosynthesis and microstructure of leaves of Guifei mango were studied.【Methods】Mature Guifei mongo trees of 16-year-old were exposed to 96 kJ·m−2·d−1 UV-B radiation (Tr) or natural light (CK). Criteria including ripened fruit percentage on a tree and photosynthetic rate (Pn), stomatal conductance (Gs), and microstructure of leaves were evaluated. Result Under Tr, the tree leaves became 2.29 μm thicker, the upper epidermis and palisade tissue 30.35 μm higher, the cell distribution of palisade tissue and spongy tissue denser, the ratio of palisade tissue and spongy tissue 18% higher, the Pn and Gs greater, and the ripened fruit rates 6.77% higher on April 22, 37.83% higher on April 29, and 17.52% higher on May 7 than CK. The soluble sugar, soluble solids, vitamin C, and sugar/acid and solid/acid ratios of the fruits on the first harvest were significantly higher, while the titratable acid content significantly lower, than those of CK. On the other hand, there was no significant effects exerted by Tr on the thickness of upper and lower cuticle or lower epidermis, nor the size and morphology of stoma of the leaves. Conclusion The photosynthesis of mango trees was promoted by the 96 kJ·m−2·d−1 enhanced UV-B radiation-induced microstructural alternation on the tissue of mesophyll and Gs increase in the leaves. The effect on fructescence could be applied to regulate Guifei mango maturation and ripening. -
Key words:
- UV-B radiation /
- mango /
- fructescence /
- quality /
- photosynthesis /
- microstructure
-
表 1 可溶性糖、可滴定酸、可溶性固形物含量的比较
Table 1. Comparison of soluble sugar, titratable acid, soluble solids content
项目Item 可溶性糖
Soluble sugar content/%可滴定酸
Titratale acid content/%可溶性固形物含量
Soluble solid conrent/%4月22日 4月29日 5月7日 4月22日 4月29日 5月7日 4月22日 4月29日 5月7日 对照 CK 9.07±0.60 10.23±0.56 9.26±0.45 0.62±0.35* 0.35±0.26 0.35±0.26 12.41±1.58 13.95±1.67 13.43±1.64 处理 Treatment 11.46±0.64* 12.08±0.85 9.42±0.45 0.33±0.26 0.29±0.24 0.36±0.27 13.51±1.64* 13.74±1.66 14.83±1.72 注:表中数据为“平均值±标准差”,表中*表示处理和对照差异显著(P<0.05)。表2、4同。
Note: The data in the table are "mean ± standard deviation", and there are significant differences between the data in the table and the treatment with * and the control (P<0.05). The same as Table 2, 4.表 2 糖酸比、固酸比、维生素C含量的比较
Table 2. Comparison of sugar /acid ratio, solid /acid ratio, and vitamin C content
项目Item 糖酸比
Sugar-acid ratio/%固酸比
Solid-acid ratio/%维生素C
Vitamin C/(mg·hg−1)4月22日 4月29日 5月7日 4月22日 4月29日 5月7日 4月22日 4月29日 5月7日 对照 CK 18.01±1.90 31.63±2.52 21.06±2.05 22.38±2.12 43.68±2.96 41.45±2.88 15.00±1.06 16.25±0.75 15.00±0.58 处理 Treatment 36.93±2.72* 42.16±2.90 21.20±2.06 43.79±2.96* 48.36±3.11 38.70±2.78 16.25±0.76 17.50±0.62 22.50±0.81* 表 3 增强 UV- B 辐射对杧果叶片表面气孔形态的影响
Table 3. Effect of Tr on surface stomata of mango leaves
项目Item 对照 CK 处理 Treatment 气孔长度 Stoma length/μm 6.99±0.097 7.06±0.098 气孔宽度 Stomata width/μm 0.72±0.037 0.77±0.035 气孔面积 Stomatal area/μm2 3.99±0.10 4.27±0.10 气孔密度 Stomatal density /个·cm−2 13250±7.07 13000±7.30 表 4 叶片横切面各组织形态结构的变化
Table 4. Morphological changes on transverse section of mango leaves
项目 Item 对照 CK 处理 Treatment 上角质层 Upper stratum corneum/μm 1.02±0.03 1.18±0.05 上表皮 Uppere pidermis/μm 19.28±0.35 21.57±0.66* 栅栏组织 Palisade tissue/μm 45.95±0.80 76.30±2.56* 海绵组织 Spongy tissue/μm 150.22±1.65 155.24±1.69 下表皮 Lower epidermis/μm 18.14±0.53 17.48±0.61 下角质层 Lower stratum corneum/μm 0.97±0.04 1.01±0.04 叶片厚度 Leaf thickness/μm 236.59±1.46 272.59±3.99* 栅海比 Ratio of palosade tissue to spongy tissue 0.31±0.01 0.49±0.02* 叶片栅栏组织结构紧密度 Tightness of leaf palisade tissue structure/% 19.46%±0.28% 27.95%±0.69%* 上角质层 Upper stratum corneum/μm 63.42%±0.50%* 56.99%±0.57% -
[1] TERAMURA A H. Effects of ultraviolet-B radiation on the growth and yield of crop plants [J]. Physiologia Plantarum, 1983, 58(3): 415−427. doi: 10.1111/j.1399-3054.1983.tb04203.x [2] ROZEMA J, VAN DE STAAIJ J, BJÖRN L O, et al. UV-B as an environmental factor in plant life: Stress and regulation [J]. Trends in Ecology & Evolution, 1997, 12(1): 22−28. [3] KRIZEK D T. Influence of PAR and UV-A in determining plant sensitivity and photomorphogenic responses to UV-B radiation [J]. Photochemistry and Photobiology, 2004, 79(4): 307−315. doi: 10.1562/2004-01-27-IR.1 [4] LLOYD S A. Stratospheric ozone depletion [J]. Lancet, 1993, 342(8880): 1156−1158. doi: 10.1016/0140-6736(93)92130-L [5] TAALAS P, KAUROLA J, KYLLING A, et al. The impact of greenhouse gases and halogenated species on future solar UV radiation doses [J]. Geophysical Research Letters, 2000, 27(8): 1127−1130. doi: 10.1029/1999GL010886 [6] 孟凡来, 白磊, 郭华春, 等. 云南低纬高原不同类型紫甘薯对UV-B辐射增强的响应 [J]. 热带农业科学, 2021, 41(2):24−32.MENG F L, BAI L, GUO H C, et al. Response of two types of purple sweet potatoes to UV-B radiation enhancement in Yunnan low latitude plateau [J]. Chinese Journal of Tropical Agriculture, 2021, 41(2): 24−32.(in Chinese) [7] 谢春梅, 李想, 盛建军, 等. UV-B辐射增强对元阳梯田地方水稻叶片氮代谢及产量的影响 [J]. 云南农业大学学报(自然科学), 2021, 36(2):345−352.XIE C M, LI X, SHENG J J, et al. Effects of enhanced UV-B radiation on the nitrogen metabolism of rice leaves and yield of traditional rice in Yuanyang terraces [J]. Journal of Yunnan Agricultural University (Natural Science), 2021, 36(2): 345−352.(in Chinese) [8] 王秀静. 潮间带大型海藻在UV-B辐射增强条件下的分子响应机制研究[D]. 烟台: 烟台大学, 2018.WANG X J. Research on molecular response mechanism of intertidal macroalgae under enhanced UV-B radiation[D]. Yantai: Yantai University, 2018. (in Chinese) [9] 刘英, 于雪莹, 于莉莉, 等. UV-B辐射下不同树龄杜仲叶片光合及部分生理特性的变化 [J]. 东北林业大学学报, 2020, 48(6):42−46, 50.LIU Y, YU X Y, YU L L, et al. Changes of photosynthetic and physiological characteristics in Eucommia ulmoides oliver leaves of different tree ages under UV-B radiation [J]. Journal of Northeast Forestry University, 2020, 48(6): 42−46, 50.(in Chinese) [10] 祁虹, 段留生, 王树林, 等. 全生育期UV-B辐射增强对棉花生长及光合作用的影响 [J]. 中国生态农业学报, 2017, 25(5):708−719.QI H, DUAN L S, WANG S L, et al. Effect of enhanced UV-B radiation on cotton growth and photosynthesis [J]. Chinese Journal of Eco-Agriculture, 2017, 25(5): 708−719.(in Chinese) [11] LIDON F C, RAMALHO J C. Impact of UV-B irradiation on photosynthetic performance and chloroplast membrane components in Oryza sativa L [J]. Journal of Photochemistry and Photobiology B:Biology, 2011, 104(3): 457−466. doi: 10.1016/j.jphotobiol.2011.05.004 [12] 吴能表, 马红群, 胡丽涛, 等. 增强UV-B辐射对胡椒薄荷叶片光合机构和光合特性的影响 [J]. 中国中药杂志, 2009, 34(23):2995−2998. doi: 10.3321/j.issn:1001-5302.2009.23.003WU N B, MA H Q, HU L T, et al. Effect of enhanced UV-B radiation on photosynthetic structure and photosynthetic characteristics of Mentha piperita [J]. China Journal of Chinese Materia Medica, 2009, 34(23): 2995−2998.(in Chinese) doi: 10.3321/j.issn:1001-5302.2009.23.003 [13] 罗南书. 增强UV-B辐射对C4植物和CAM植物光合作用的影响[D]. 重庆: 西南师范大学, 2004.LUO N S. Effects of enhanced UV-B radiation on photosynthesis of C4 and CAM plants[D]. Chongqing: Southwest University, 2004. (in Chinese) [14] 王军. 补充紫外-B辐射和CO2施肥在冬季大棚番茄生产中的应用研究[D]. 杨凌: 西北农林科技大学, 2004.WANG J. Study on application of UV-B supplement combined with CO2 enrichment in winter plastic greenhouse tomato planting[D]. Yangling: Northwest A & F University, 2004.(in Chinese) [15] 杨乐, 杨俊枫, 侯智霞, 等. UV-B对不同发育时期离体蓝莓主要果实品质及相关酶活性的影响 [J]. 西北植物学报, 2015, 35(12):2477−2482. doi: 10.7606/j.issn.1000-4025.2015.12.2477YANG L, YANG J F, HOU Z X, et al. Effects of UV-B treatment on the major quality of blueberry and related enzyme activities in different developmental stages [J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(12): 2477−2482.(in Chinese) doi: 10.7606/j.issn.1000-4025.2015.12.2477 [16] 罗南书, 刘芸, 钟章成, 等. 田间增加UV-B辐射对丝瓜光合作用日变化及水分利用效率的影响 [J]. 西南师范大学学报(自然科学版), 2003, 28(3):436−439.LUO N S, LIU Y, ZHONG Z C, et al. Effects of enhanced ultraviolet-B(UV-B) radiation on diurnal changes of photosynthesis and water use efficiency in Luffa cylindrica [J]. Journal of Southwest China Normal University (Natural Science), 2003, 28(3): 436−439.(in Chinese) [17] LIU Y, ZHONG Z C. Differential response of leaf gas exchange to enhanced ultraviolet-B (UV-B) radiation in three species of herbaceous climbingplants [J]. Acta Ecologica Sinica, 2009, 29(2): 124−129. doi: 10.1016/j.chnaes.2009.05.006 [18] MARTÍNEZ-LÜSCHER J, MORALES F, DELROT S, et al. Short- and long-term physiological responses of grapevine leaves to UV-B radiation [J]. Plant Science, 2013, 213: 114−122. doi: 10.1016/j.plantsci.2013.08.010 [19] 王红, 杨成坤, 岳堃, 等. 不同UV-B辐射对杧果树果实品质及其抗氧化的影响 [J]. 热带作物学报, 2020, 41(2):275−283. doi: 10.3969/j.issn.1000-2561.2020.02.010WANG H, YANG C K, YUE K, et al. Effects of mango trees fruit quality and antioxidant under different UV-B radiation treatments [J]. Chinese Journal of Tropical Crops, 2020, 41(2): 275−283.(in Chinese) doi: 10.3969/j.issn.1000-2561.2020.02.010 [20] 王红, 岳堃, 杨成坤, 等. UV-B辐射增强处理抑制杧果叶片光合作用的生理原因分析 [J]. 园艺学报, 2020, 47(2):242−252.WANG H, YUE K, YANG C K, et al. Physiological reasons for inhibiting photosynthesis of mango leaves by enhanced UV-B radiation [J]. Acta Horticulturae Sinica, 2020, 47(2): 242−252.(in Chinese) [21] 周开兵, 李世军, 袁孟玲. 增强UV-B辐射对芒果株产和果实品质及光合作用的影响 [J]. 热带作物学报, 2018, 39(6):1102−1107. doi: 10.3969/j.issn.1000-2561.2018.06.010ZHOU K B, LI S J, YUAN M L. The influences of enhanced UV-B radiation on yield and fruits quality and photosynthesis of mango trees [J]. Chinese Journal of Tropical Crops, 2018, 39(6): 1102−1107.(in Chinese) doi: 10.3969/j.issn.1000-2561.2018.06.010 [22] 李合生. 2000. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社: 134–138. [23] 吕洪飞. 紫竹梅、吊竹梅和鸭跖草气孔分布与比较 [J]. 植物学通报, 2000, 35(4):375−380.LYU H F. Comparative study on the stomatic distribution on plants setereasea purpurea boom, Zebrina pendula schnizl and Commelina communis linn [J]. Chinese Bulletin of Botany, 2000, 35(4): 375−380.(in Chinese) [24] BASIOUNY F M, VAN T K, BIGGS R H. Some morphological and biochemical characteristics of C3 and C4 plants irradiated with UV-B [J]. Physiologia Plantarum, 1978, 42(1): 29−32. doi: 10.1111/j.1399-3054.1978.tb01533.x [25] 罗南书, 钟章成. 田间增加UV-B辐射对玉米光合生理的影响 [J]. 生态学杂志, 2006, 25(4):369−373. doi: 10.3321/j.issn:1000-4890.2006.04.005LUO N S, ZHONG Z C. Effects of enhanced ultraviolet-B radiation on photosynthesis of maize [J]. Chinese Journal of Ecology, 2006, 25(4): 369−373.(in Chinese) doi: 10.3321/j.issn:1000-4890.2006.04.005 [26] 朱敏, 高爱平, 邓穗生, 等. 贵妃杧和台牙杧2个杧果品种主要性状比较 [J]. 中国南方果树, 2016, 45(6):65−68.ZHU M, GAO A P, DENG S S, et al. Comparison of the main characters of two mangovarieties, Guifei Mango and Taiya Mango [J]. South China Fruits, 2016, 45(6): 65−68.(in Chinese) [27] FENG H Y, AN L Z, TAN L L, et al. Effect of enhanced ultraviolet-B radiation on pollen germination and tube growth of 19 taxa in vitro [J]. Environmental and Experimental Botany, 2000, 43(1): 45−53. doi: 10.1016/S0098-8472(99)00042-8 [28] VOGELMANN T C, GORTON H L. Leaf: light capture in the photosynthetic organ[M]//The Structural Basis of Biological Energy Generation. Dordrecht: Springer Netherlands, 2014: 363-377. [29] ICHIRO T, HIROKI O, TAKASHI F, et al. Light environment within a leaf. II. Progress in the past one-third century [J]. Journal of Plant Research, 2016, 129(3): 353−363. doi: 10.1007/s10265-016-0808-1 [30] 岳堃, 王红, 郭钰柬, 等. 增强UV-B辐射对芒果叶片光合组织结构的损伤 [J]. 热带生物学报, 2019, 10(4):324−330.YUE K, WANG H, GUO Y J, et al. Damages to the photosynthetic tissue structure of mango leaves by enhanced UV-B radiation [J]. Journal of Tropical Biology, 2019, 10(4): 324−330.(in Chinese) [31] 吴杏春, 林文雄, 黄忠良. UV-B辐射增强对两种不同抗性水稻叶片光合生理及超显微结构的影响 [J]. 生态学报, 2007, 27(2):554−564. doi: 10.3321/j.issn:1000-0933.2007.02.017WU X C, LIN W X, HUANG Z L. Influence of enhanced ultraviolet-B radiation on photosynthetic physiologies and ultrastructure of leaves in two different resistivity rice cultivars [J]. Acta Ecologica Sinica, 2007, 27(2): 554−564.(in Chinese) doi: 10.3321/j.issn:1000-0933.2007.02.017 [32] 杨玉皎, 郭淑萍, 杨顺林, 等. 增强UV-B辐射对芒果叶片光合生理和超显微结构的影响[J/OL]. 果树学报: 1−21[2021-06-21].YANG Y J, GUO S P, YANG S L, et al. Effects of enhanced UV-B radiation on photosynthetic physiology and ultramicrostructure of mango leaves[J/OL]. Acta Fructosa: 1−21. [2021-06-21]. (in Chinese) [33] 李俊, 杨玉皎, 王文丽, 等. UV-B辐射增强对马铃薯叶片结构及光合参数的影响 [J]. 生态学报, 2017, 37(16):5368−5381.LI J, YANG Y J, WANG W L, et al. Effects of enhanced UV-B radiation on potato leaf structure and photosynthetic parameters [J]. Acta Ecologica Sinica, 2017, 37(16): 5368−5381.(in Chinese) [34] SHEPHERD T, WYNNE GRIFFITHS D. The effects of stress on plant cuticular waxes [J]. New Phytologist, 2006, 171(3): 469−499. doi: 10.1111/j.1469-8137.2006.01826.x [35] 章英才, 闫天珍. 花花柴叶片解剖结构与生态环境关系的研究 [J]. 宁夏农学院学报, 2003, 24(1):31−33.ZHANG Y C, YAN T Z. Study on relationship between anatomical structure of leaves of Karelinia capsia (pall) less and ecological environment [J]. Journal of Ningxia Agricultural College, 2003, 24(1): 31−33.(in Chinese) [36] 冯乃杰, 郑殿峰, 赵玖香, 等. 植物生长物质对大豆叶片形态解剖结构及光合特性的影响 [J]. 作物学报, 2009, 35(9):1691−1697. doi: 10.3724/SP.J.1006.2009.01691FENG N J, ZHENG D F, ZHAO J X, et al. Effect of plant growth substances on morphological and anatomical structure of leaf and photosynthetic characteristics in soybean [J]. Acta Agronomica Sinica, 2009, 35(9): 1691−1697.(in Chinese) doi: 10.3724/SP.J.1006.2009.01691