Identification and Expression Analysis of ETR Gene Family in Camellia sinensis
-
摘要:
目的 鉴定并分析CsETR基因,预测其潜在分子功能,以期从分子水平了解乙烯受体在茶树生长过程中应对胁迫的作用机制。 方法 采用生物信息学分析方法鉴定ETR基因家族成员并预测其潜在分子功能,采用实时荧光定量分析法分析其在不同胁迫处理下的表达水平。 结果 从茶树基因组中确定了6个茶树ETR基因家族成员,均包含N端跨膜区、GAF区和组氨酸(His)激酶结构域;系统发育树分析显示其为两组,与乙烯受体的两个亚家族分别对应;茶树ETR基因家族中每个成员含有1~12个外显子。ETR家族基因在茶树果实和茎中表达量较高,且该家族表现出明显的组织表达特异性。实时荧光定量分析结果显示:低温处理下,6个基因的表达水平上调,其中ERS1-1基因的表达水平上调最为明显;在植物生长调节剂ABA、JA和GA处理下大部分基因表达水平上调,其中ERS1-3基因上调最为明显,而ETR2-2基因在ABA处理下表达水平呈缓慢下调趋势。 结论 共鉴定出6个CsETR基因家族成员,并预测分析了其潜在的分子功能,该基因家族成员在果实和茎中表达量较高,且低温能诱导CsETR基因的表达,其中ERS1-3基因在ABA、MeJA和GA的处理下表达量显著上调。 Abstract:Objective CsETRs were identified and analyzed to predict the potential molecular functions involving the mechanism of ethylene receptor in response to stress in tea plants. Method Bioinformatics was used to identify members in the ETR family and predict their potential molecular functions. Real-time fluorescence quantitative analysis was employed for the expressions of the genes under stresses. Result Six ETRs were identified from the genome of tea plants. They all consisted of N-terminal transmembrane region, GAF region, and histidine (His) kinase domain. Phylogenetic tree analysis divided them into two groups. Each member of the ETR family contained 1-12 exons. Significantly differentiated in tissues, the expressions of ETRs were high in the fruits and stems. The fluorescence quantitative expressions of the 6 genes, especially ERS1-1, were upregulated to varying degrees when exposed to low temperature. Under the stress of plant growth regulators ABA, JA, or GA, most of the genes were upregulated, especially ERS1-3, but ETR2-2 downregulated slowly when treated by ABA. Conclusion On tea plants, 6 CsETRs in the family were identified with their potential molecular functions predicted and analyzed in this study. CsETRs were highly expressed in the fruits and stems that could be induced by low-temperature stress. Whereas ABA, MeJA, or GA could significantly upregulate the expression of ERS1-3. -
Key words:
- Camellia sinensis /
- ETR gene /
- plant growth regulators /
- abiotic stress /
- expression analysis
-
表 1 茶树CsETR家族成员引物序列
Table 1. Primer sequence of CsETRs in tea plants
基因名称
Gene name上游引物
Forward primers
(5′→3′)下游引物
Reverse primer
(5′→3′)ERS1-1 AATGGCCTGCTGATGAGCTT CACAGAAGATCCAGCAGGCA ERS1-2 GAGGATGGCAGCCTTCAACT AGTACATCCCTTGCCAAGCC ERS1-3 GGCACCAGATTTACCTGCCT GCTGAGCTTTCTGCAACACC EIN4 AATTGTGCCGTTTGGATGCC GAGTTTCTTGCCTGGCTTGC ETR2-1 GCAAATCGCTTGATCGGCAT CCATCATTGCGCTCTGCTTC ETR2-2 ATAAAGGAAGCCGCTTGCCT TCCCGGTTCAGAGATGCCTA CsGAPDH TTGGCATCGTTGAGGGTCT CAGTGGGAACAGGAAAGC 表 2 茶树CsETR基因家族的序列特征
Table 2. Characteristics of CsETR sequences in tea plants
基因
Gene name基因组编号
Genome ID编码序列长度
CDS/bp开放阅读框长度
ORF/aa分子量
MW/kD等电点
pI平均亲水性
Grand average of hydropathicity亚细胞定位
Subcellular localizationCsERS1-1 TEA017521 1845 614 68.63 6.09 0.162 质膜 Plasma membrane CsERS1-2 TEA032252 1923 640 71.71 7.02 0.144 质膜 Plasma membrane CsERS1-3 TEA012203 1932 643 71.89 6.67 0.250 质膜 Plasma membrane CsEIN4 TEA025082 2292 763 85.56 7.27 0.014 质膜 Plasma membrane CsETR2-1 TEA002824 2292 763 84.73 6.32 0.077 质膜 Plasma membrane CsETR2-2 TEA020178 2292 763 85.56 7.57 0.054 质膜 Plasma membrane -
[1] HAZRA A, DASGUPTA N, SENGUPTA C, et al. Next generation crop improvement program: Progress and prospect in tea (Camellia sinensis (L.) O. Kuntze) [J]. Annals of Agrarian Science, 2018, 16(2): 128−135. [2] HUA J, MEYEROWITZ E M. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana [J]. Cell, 1998, 94(2): 261−271. doi: 10.1016/S0092-8674(00)81425-7 [3] WEN X, ZHANG C L, JI Y S, et al. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl Terminus [J]. Cell Research, 2012, 22(11): 1613−1616. doi: 10.1038/cr.2012.145 [4] HUA J, SAKAI H, NOURIZADEH S, et al. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis [J]. The Plant Cell, 1998, 10(8): 1321−1332. doi: 10.1105/tpc.10.8.1321 [5] 冯斗, 张春发, 张颖. 香蕉乙烯受体基因cDNA的克隆及其表达分析 [J]. 热带作物学报, 2004, 25(1):6−10. doi: 10.3969/j.issn.1000-2561.2004.01.002FENG D, ZHANG C F, ZHANG Y. Ublished by Evert (2001). Slot Northern hybridization with the labeled probe of PGCHI indicated [J]. Chinese Journal of Tropical Crops, 2004, 25(1): 6−10.(in Chinese) doi: 10.3969/j.issn.1000-2561.2004.01.002 [6] 李丽, 孙健, 易萍, 等. 芒果乙烯受体ETR1和ERS1基因的克隆及序列分析 [J]. 南方农业学报, 2018, 49(6):1053−1060. doi: 10.3969/j.issn.2095-1191.2018.06.02LI L, SUN J, YI P, et al. Cloning and sequence analysis of ethylene receptor ETR1 and ERS1 genes from Mango [J]. Journal of Southern Agriculture, 2018, 49(6): 1053−1060.(in Chinese) doi: 10.3969/j.issn.2095-1191.2018.06.02 [7] 陈志晟, 颜彦, 赵思涵, 等. 木薯ETR1基因克隆及表达分析 [J]. 南方农业学报, 2020, 51(1):19−26. doi: 10.3969/j.issn.2095-1191.2020.01.003CHEN Z S, YAN Y, ZHAO S H, et al. Cloning and expression analysis of MeETR1 gene in cassava [J]. Journal of Southern Agriculture, 2020, 51(1): 19−26.(in Chinese) doi: 10.3969/j.issn.2095-1191.2020.01.003 [8] 王睿, 吴佳文, 毛仁俊, 陈国梁, 白朕卿. 丹参乙烯受体SmETR1基因的克隆及序列分析[J/OL]. 基因组学与应用生物学: 1−9[2021-05-06]. http://kns.cnki.net/kcms/detail/45.1369.Q.20210317.1532.002.html.WANG R, WU J W, ZHAO S H, et al. Cloning and sequence analysis of ethylene receptor SmETR1 gene from Salvia miltiorrhiza[J/OL]. Genomics and Applied Biology, 1-9[2021-05-06]. http://kns.cnki.net/kcms/detail/45.1369.Q.20210317.1532.002.html. [9] XIA E H, ZHANG H B, SHENG J, et al. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis [J]. Molecular Plant, 2017, 10(6): 866−877. doi: 10.1016/j.molp.2017.04.002 [10] WEI C L, YANG H, WANG S B, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality [J]. PNAS, 2018, 115(18): E4151−E4158. doi: 10.1073/pnas.1719622115 [11] WANG X C, FENG H, CHANG Y X, et al. Population sequencing enhances understanding of tea plant evolution [J]. Nature Communications, 2020, 11: 4447. doi: 10.1038/s41467-020-18228-8 [12] CHEN J D, ZHENG C, MA J Q, et al. The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization event in tea plant [J]. Horticulture Research, 2020, 7: 63. doi: 10.1038/s41438-020-0288-2 [13] ZHANG Q J, LI W, LI K, et al. The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in driving genome size evolution [J]. Molecular Plant, 2020, 13(7): 935−938. doi: 10.1016/j.molp.2020.04.009 [14] 陈丹, 俞滢, 岳川, 等. 茶树△12-脂肪酸去饱和酶基因FAD2和FAD6的克隆与表达分析 [J]. 茶叶科学, 2017, 37(6):541−550. doi: 10.3969/j.issn.1000-369X.2017.06.001CHEN D, YU Y, YUE C, et al. Cloning and expression analysis of △12-fatty acid desaturase in tea plants [J]. Journal of Tea Science, 2017, 37(6): 541−550.(in Chinese) doi: 10.3969/j.issn.1000-369X.2017.06.001 [15] 王鹏杰, 郑玉成, 林浥, 等. 茶树GRF基因家族的全基因组鉴定及表达分析 [J]. 西北植物学报, 2019, 39(3):413−421.WANG P J, ZHENG Y C, LIN Y, et al. Genome-wide identification and expression analysis of GRF gene family in Camellia sinensis [J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(3): 413−421.(in Chinese) [16] XIA E H, LI F D, TONG W, et al. Tea Plant Information Archive: A comprehensive genomics and bioinformatics platform for tea plant [J]. Plant Biotechnology Journal, 2019, 17(10): 1938−1953. doi: 10.1111/pbi.13111 [17] SCHULTZ J, MILPETZ F, BORK P, et al. SMART, a simple modular architecture research tool: Identification of signaling domains [J]. PNAS, 1998, 95(11): 5857−5864. doi: 10.1073/pnas.95.11.5857 [18] MARCHLER-BAUER A, DERBYSHIRE M K, GONZALES N R, et al. CDD: NCBI's conserved domain database [J]. Nucleic Acids Research, 2015, 43(Database issue): D222−D226. [19] DUVAUD S, GABELLA C, LISACEK F, et al. Expasy, the Swiss bioinformatics resource portal, as designed by its users [J]. Nucleic Acids Research, 2021, 49(W1): W216−W227. doi: 10.1093/nar/gkab225 [20] HORTON P, PARK K J, OBAYASHI T, et al. WoLF PSORT: Protein localization predictor [J]. Nucleic Acids Research, 2007, 35(Web Server issue): W585−W587. [21] NEWMAN L, DUFFUS A L J, LEE C. Using the free program MEGA to build phylogenetic trees from molecular data [J]. The American Biology Teacher, 2016, 78(7): 608−612. doi: 10.1525/abt.2016.78.7.608 [22] HU B, JIN J P, GUO A Y, et al. GSDS 2.0: An upgraded gene feature visualization server [J]. Bioinformatics, 2015, 31(8): 1296−1297. doi: 10.1093/bioinformatics/btu817 [23] BAILEY T L, BODEN M, BUSKE F A, et al. MEME Suite: Tools for motif discovery and searching [J]. Nucleic Acids Research, 2009, 37(Suppl_2): W202−W208. [24] 陈雪津, 王鹏杰, 郑玉成, 等. 茶树BES1转录因子全基因组鉴定与分析 [J]. 西北植物学报, 2019, 39(5):876−885.CHEN X J, WANG P J, ZHENG Y C, et al. Genome-wide identification and analysis of BES1 transcription factor family in Camellia sinensis [J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(5): 876−885.(in Chinese) [25] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method [J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262 [26] TIEMAN D M, KLEE H J. Differential expression of two novel members of the tomato ethylene-receptor family [J]. Plant Physiology, 1999, 120(1): 165−172. doi: 10.1104/pp.120.1.165 [27] 郭呈宇, 柳俊, 李园磊, 等. 甜瓜果实成熟相关基因家族的全基因组鉴定及分析 [J]. 华北农学报, 2019, 34(2):35−43. doi: 10.7668/hbnxb.201750903GUO C Y, LIU J, LI Y L, et al. Genome-wide identification and analysis of gene families related to fruit ripening of melon [J]. Acta Agriculturae Boreali-Sinica, 2019, 34(2): 35−43.(in Chinese) doi: 10.7668/hbnxb.201750903 [28] WATANABE H, SAIGUSA M, SHU H S, et al. Cloning of a cDNA encoding an ETR2-like protein (Os-ERL1) from deep water rice (Oryza sativa L.) and increase in its mRNA level by submergence, ethylene, and gibberellin treatments [J]. Journal of Experimental Botany, 2004, 55(399): 1145−1148. doi: 10.1093/jxb/erh110 [29] XIE C, ZHANG Z G, ZHANG J S, et al. Spatial expression and characterization of a putative ethylene receptor protein NTHK1 in tobacco [J]. Plant and Cell Physiology, 2002, 43(7): 810−815. doi: 10.1093/pcp/pcf095 [30] GALLIE D R. Ethylene receptors in plants-why so much complexity? [J]. F1000Prime Reports, 2015, 7: 39. [31] ZHOU D B, KALAITZIS P, MATTOO A K, et al. The mRNA for an ETR1 homologue in tomato is constitutively expressed in vegetative and reproductive tissues [J]. Plant Molecular Biology, 1996, 30(6): 1331−1338. doi: 10.1007/BF00019564 [32] WURIYANGHAN H, ZHANG B, CAO W H, et al. The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice [J]. The Plant Cell, 2009, 21(5): 1473−1494. doi: 10.1105/tpc.108.065391 [33] 苏丽艳. 番茄SlETR6基因的克隆及非生物胁迫下的表达分析 [J]. 华北农学报, 2019, 34(1):19−25. doi: 10.7668/hbnxb.201751117SU L Y. Cloning and expression analysis of ethylene receptor gene SlETR6 in Solanum lycopersicum under abiotic stress [J]. Acta Agriculturae Boreali-Sinica, 2019, 34(1): 19−25.(in Chinese) doi: 10.7668/hbnxb.201751117 [34] 黄静丽. 甘蔗乙烯受体基因SoERS1表达、转化及启动子序列的研究[D]. 南宁: 广西大学, 2013.HUANG J L. Study on sugarcane ethylene receptor gene SoERS1Expression, genetic transformation and promoter sequences[D]. Nanning: Guangxi University, 2013. (in Chinese)