High-yield Cultivation Factors Optimizing and Blast-resistance Analysis for Hybrid Rice Variety Guangyou 673
-
摘要:
目的 分析杂交稻品种广优673的栽培试验技术和稻瘟病抗性基因的来源,为水稻抗病新品种选育和广优673推广种植提供依据。 方法 以广优673为试验材料,运用最优设计进行密度、施氮量、秧龄3项栽培因子试验,建立产量与3项措施的回归模型,分析栽培措施对产量的影响,并利用稻瘟病抗性基因Pi2、Pi9和Pigm已开发的功能标记,开展稻瘟病抗性基因的分析和检测。 结果 广优673水稻秧龄短的,早插本田生长期长,需施用较多氮肥,有利于高产;而秧龄长的,本田生长期相应短些,不需施用过多的氮肥。密度、施氮量、秧龄3项栽培因子对广优673的产量都有影响,综合高产栽培措施为:每公顷插20.52万~27.48万丛,每公顷施纯氮144.70~183.76 kg,秧龄26~33 d。稻瘟病抗性基因检测与分析表明广优673含有稻瘟病抗性基因Pi2。 结论 杂交稻广优673具有高产、抗病、生育期适中等特点,产量≥8250 kg·hm−2的栽培因子模拟寻优结果为:每公顷插24.00万丛,每公顷施纯N 164.23 kg,秧龄29.5 d,并推测稻瘟病抗性主要来源于稻瘟病抗性基因Pi2。 Abstract:Objective In this study, essential agronomical practices of the hybrid rice variety Guangyou 673 and its resistance to rice blast were analyzed to provide a scientific basis for breeding new rice varieties with improved disease-resistant and to further expand the cultivation of Guangyou 673 variety. Methods Guangyou 673 was introduced for cultivation in Anxi County of Fujian Province. The impact of three essential agronomical practices, i.e., planting density (x1), nitrogen fertilization rate (x2) and seedling age (x3), on the performance of Guangyou 673 was evaluated. Regression models between grain yield and the above three agronomical factors were estimated to analyze the impact of agronomical practices on grain yield. The developed functional markers of the rice blast-resistance genes Pi2, Pi9 and Pigm were used to identify the blast-resistance genes in the genetic background of Guangyou 673. Results All the three studied agronomical practices revealed significant effects on grain yield of Guangyou 673. The results showed that shortening the seedling age which was with a long growth period necessitates more nitrogen fertilization to achieve higher grain yield. On the contrary, lengthening the seedling age which was with shorter growth period required less nitrogen fertilization. The maximum grain yield was achieved when planting density ranged from 2.052–2.748×106 clusters per ha, N fertilizer 144.70–183.76 kg·hm−2, and seedling age ranged from 26–33 days. Genotyping of Guangyou 673 with the functional molecular markers of Pi2, Pi9 and Pigm genes revealed that the variety Guangyou 673 contained the Pi2 blast-resistance gene. Conclusion Hybrid rice variety Guangyou 673 had great characteristics of high grain yield, blast resistance and moderate growth period. The high yield more than 8 250 kg·hm−2 could be achieved with N fertilizer 144.70–183.76 kg ·hm−2, average plant density 2.4×106 clusters per ha, and growth period 26–33 days. The results further suggested that Pi2 gene maybe the main source of blast resistance in Guangyou 673. -
Key words:
- hybrid rice /
- Guangyou 673 /
- characteristics /
- culture test /
- blast resistance
-
表 1 因素水平及编码
Table 1. Code and levels of factors
编码值
Code value实际值
Actual valuex1 密度
Densityx2 N肥
N fertilizerx3 秧龄
Seedling agex1密度
Density/
(万丛·hm−2)x2 N肥
N fertilizer/
(kg·hm−2)x3 秧龄
Seedling
age/d−2 −2 −2 7.50 0.00 20 −1.414 −1.414 −1 11.85 67.50 27 0 0 0 22.50 135.00 34 1.414 1.414 1 33.15 202.50 41 2 2 2 37.50 270.00 48 表 2 栽培试验的产量结果
Table 2. Yield of cultivation experiment
编号
Numberx1 密度
Densityx2 施N量
Nitrogenx3秧龄
Seedling age产量
Yield/(kg·hm−2)小区1
Plot 1小区2
Plot21 0 0 2 6388.20 6597.69 2 0 0 −2 8576.30 8786.80 3 −1.414 −1.414 1 7233.70 7567.90 4 1.414 −1.414 1 7672.40 7890.67 5 −1.414 1.414 1 7180.20 7398.67 6 1.414 1.414 1 8490.56 8100.85 7 2 0 −1 8065.40 8180.04 8 −2 0 −1 8260.45 8342.10 9 0 2 −1 8089.41 8168.67 10 0 −2 −1 6299.73 6082.61 11 0 0 0 9170.11 9380.67 表 3 偏回归系数的t值检验
Table 3. The t test of partial regression coefficient
偏回归系数 Partial regression coefficent bx1 bx2 bx3 bx1x2 bx1x3 bx2x3 bx12 bx22 bx32 t 2.11 5.85 5.73 1.64 3.05 4.35 3.43 9.08 7.24 显著水平 Significant level 0.10 0.01 0.01 0.20 0.05 0.01 0.01 0.01 0.01 表 4 每公顷产量 ≥8250 kg 措施分布范围
Table 4. Distribution range of factors when yield ≥8250 kg·hm−2
因素 Factor x1密度 Density/(万丛·hm−2) x2施N量 Nitrogen rate/(kg·hm−2) x3秧龄 Seedling age/d 编码区域 Coding region −0.264~0.664 0.144~0.722 −0.704~−0.096 农艺措施范围 Range of agronomic measures 20.52~27.48 144.70~183.76 26~33 平均 Average 24.00 164.23 29.5 -
[1] ROYCHOWDHURY M, JIA Y L, CARTWRIGHT R. Structure, function, and co-evolution of rice blast resistance genes [J]. Acta Agronomica Sinica, 2012, 38(3): 381−393. doi: 10.3724/SP.J.1006.2012.00381 [2] 张佩胜, 赵春德, 余宁, 等. 稻瘟病抗性基因的克隆及应用研究进展 [J]. 中国稻米, 2014, 20(5):1−7. doi: 10.3969/j.issn.1006-8082.2014.05.001ZHANG P S, ZHAO C D, YU N, et al. Recent progress on cloning and application of rice blast resistance genes [J]. China Rice, 2014, 20(5): 1−7.(in Chinese) doi: 10.3969/j.issn.1006-8082.2014.05.001 [3] ZHANG N, LUO J, ROSSMAN A Y, et al. Generic names in Magnaporthales [J]. IMA Fungus, 2016, 7(1): 155−159. doi: 10.5598/imafungus.2016.07.01.09 [4] 胡朝芹, 刘剑宇, 王韵茜, 等. 粳稻子预44抗LP11稻瘟病菌基因pizy6(t)的定位 [J]. 植物学报, 2017, 52(1):61−69. doi: 10.11983/CBB16126HU C Q, LIU J Y, WANG Y Q, et al. Mapping of Pizy6(t), a gene conferring resistance to the rice blast strain LP11, in Oryza sativa subsp.japonica cultivar Ziyu44 [J]. Chinese Bulletin of Botany, 2017, 52(1): 61−69.(in Chinese) doi: 10.11983/CBB16126 [5] 张晓慧, 冯晓敏, 林少扬. 水稻主栽品种空育131抗稻瘟病位点的扫描及其基因组重构建 [J]. 植物学报, 2017, 52(1):30−42. doi: 10.11983/CBB16107ZHANG X H, FENG X M, LIN S Y. Scanning for Pi loci and rebuilding an improved genome of elite rice variety kongyu 131 [J]. Chinese Bulletin of Botany, 2017, 52(1): 30−42.(in Chinese) doi: 10.11983/CBB16107 [6] 杨德卫, 李生平, 崔海涛, 等. 寄主植物与病原菌免疫反应的分子遗传基础 [J]. 遗传, 2020, 42(3):278−294.YANG D W, LI S P, CUI H T, et al. Molecular genetic mechanisms of interaction between host plants and pathogens [J]. Hereditas, 2020, 42(3): 278−294.(in Chinese) [7] 杨德卫, 王莫, 韩利波, 等. 水稻稻瘟病抗性基因的克隆、育种利用及稻瘟菌无毒基因研究进展 [J]. 植物学报, 2019, 54(2):265−276. doi: 10.11983/CBB18194YANG D W, WANG M, HAN L B, et al. Progress of cloning and breeding application of blast resistance genes in rice and avirulence genes in blast fungi [J]. Chinese Bulletin of Botany, 2019, 54(2): 265−276.(in Chinese) doi: 10.11983/CBB18194 [8] 茆诗松, 丁元, 周纪芗, 等. 回归分析及其试验设计[M]. 2版. 上海: 华东师范大学出版社, 1981: 23-68. [9] 田大刚, 王锋, 陈松彪, 等. 一种稻瘟病抗性基因座Pi2/9功能基因分子标记及其应用: 中国, CN201810054310. X[P] . 2021-03-26. [10] 朱永生, 董瑞霞, 谢鸿光, 等. 高产抗病杂交稻新品种广优673的选育 [J]. 福建农业学报, 2018, 33(7):683−686.ZHU Y S, DONG R X, XIE H G, et al. Breeding high-yield, high-resistance hybrid rice, guangyou 673 [J]. Fujian Journal of Agricultural Sciences, 2018, 33(7): 683−686.(in Chinese) [11] 徐中儒. 回归分析与试验设计[M]. 北京: 中国农业出版社, 1998: 58-154. [12] 佟立伟. 多元统计分析计算机程序[M]. 北京: 中国农业科学技术出版社, 1995: 3-88. [13] CHEN H L, CHEN B T, ZHANG D P, et al. Pathotypes of Pyricularia grisea in rice fields of central and Southern China [J]. Plant Disease, 2001, 85(8): 843−850. doi: 10.1094/PDIS.2001.85.8.843 [14] LIU G, LU G, ZENG L, et al. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6 [J]. Molecular Genetics and Genomics, 2002, 267(4): 472−480. doi: 10.1007/s00438-002-0677-2 [15] ZHOU B, QU S H, LIU G F, et al. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea [J]. Molecular Plant Microbe Interactions, 2006, 19(11): 1216−1228. doi: 10.1094/MPMI-19-1216 [16] DENG Y W, ZHAI K R, XIE Z, et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance [J]. Science, 2017, 355(6328): 962−965. doi: 10.1126/science.aai8898 [17] QU S H, LIU G F, ZHOU B, et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice [J]. Genetics, 2006, 172(3): 1901−1914. doi: 10.1534/genetics.105.044891