Sulfonamides Adsorption of Corn Straws Biochar in Aqueous Environment
-
摘要:
目的 研究农业废弃物玉米秸秆生物炭对水中磺胺类抗生素的吸附效果,为废水中磺胺类抗生素污染物的治理提供理论依据。 方法 使用玉米秸秆制成生物炭,通过扫描电子显微镜(SEM)、X射线衍射(XRD)、灰分测定、傅里叶变换红外光谱(FTIR)对生物炭理化性质进行表征分析,研究生物炭不同添加量、抗生素初始质量浓度、吸附时间、pH值和不同吸附温度下,玉米秸秆生物炭对磺胺嘧啶(SDZ)和磺胺氯哒嗪(SCP)的吸附效果,并开展了吸附动力学和吸附热力学研究。 结果 玉米秸秆生物炭对磺胺类抗生素的吸附效果受生物炭添加量、吸附时间、磺胺类抗生素初始浓度、吸附温度和溶液pH值的影响较为显著,在吸附温度25 ℃、pH为5、吸附时间4 h、初始质量浓度10 mg·L−1的条件下,玉米秸秆生物炭对SDZ的去除率可达到94.57 %(生物炭添加量8 g·L−1),对SCP的去除率可达到98.12%(生物炭添加量5 g·L−1)。玉米秸秆生物炭对磺胺类抗生素的吸附动力学更为符合准二级动力学方程,吸附等温线则符合Freundlich方程。吸附过程主要受到快速反应控制,而在循环吸附3次后对SDZ和SCP仍能达到40 %以上的去除率,表明玉米秸秆生物炭具有可重复使用性。 结论 玉米秸秆生物炭对于磺胺类抗生素具有良好的吸附效果,具有成本低、效率高和易获取的优点,可被用作优良的吸附材料,能有效处理水环境中的磺胺类抗生素污染。 Abstract:Purpose Efficiency of biochar made of spent corn straws in adsorbing sulfonamide residues in water solutions of various conditions was studied for aquacultural application. Methods The biochar was made from stover after corn harvest. The physicochemical properties of the biochar were determined by FTIR, SEM, XRD, and elemental analyzer. In water solutions of varied conditions, including biochar addition, sulfonamide concentration, pH, and treatment time and temperature, the kinetics, thermodynamics, and efficiencies of the biochar adsorptions on sulfadiazine (SDZ) and sulfachlorpyridazine (SCP) were studied. Results The sulfonamides removal rate significantly affected by the amount of biochar used, initial antibiotic concentration in solution, adsorption treatment time, and solution pH. At 25oC and pH 5, 94.57% of 10 g·L−1 initial concentration of SDZ in solution was removed by 8 g·L−1 addition of the biochar in 4h, while 98.12% of SCP at 10 g·L−1 initial concentration was adsorbed by 5 g·L−1 biochar. The sulfonamide adsorption kinetics of the biochar was a pseudo-second-order function, and the isotherms fitted a Freundlich equation. The adsorption process is mainly controlled by rapid reaction. Since a greater than 40% removal rate on SDZ or SCP could still be achieved by a same biochar application after 3 cycles, repeated usage of the adsorption material seemed durable. Conclusion The corn straws biochar exhibited a capacity in effectively adsorbing residues of sulfonamide antibiotics in water solutions. It suggested a potential utilization of the low cost, highly efficient, and easily available material in aquaculture ponds for mitigating the antibiotic contamination. -
Key words:
- corn straws /
- biochar /
- sulfonamides /
- adsorption
-
表 1 生物炭的元素含量
Table 1. The elements contents of biochar
元素 Elemental C H O N S 灰分 Ash 占比 Percentage/% 78.634 1.561 9.054 1.820 0.362 8.931 表 2 生物炭的原子质量比
Table 2. The atomic mass ratio of biochar
原子质量比类型 Atomic mass ratio type (N+O)/C H/C (C+H)/O O/C 比值 Ratio 0.138 0.020 8.857 0.115 表 3 不同温度下的吸附等温方程及参数
Table 3. Chemical composition of biochar
抗生素
Antibiotics温度
Temperature/℃Langmuir Freundlich qm kL R2 n kF R2 SDZ 10 4.708 0.492 0.947 1.508 2.833 0.963 25 5.798 0.196 0.963 1.241 2.769 0.962 40 5.636 0.132 0.982 1.199 2.506 0.977 SCP 10 9.953 0.302 0.960 1.161 4.181 0.958 25 9.946 1.050 0.956 1.262 4.307 0.976 40 9.872 0.072 0.934 1.173 3.545 0.965 表 4 不同温度下的吸附动力学方程及相关系数
Table 4. Atomic mass ratio of biochar
抗生素
Antibiotics温度
Temperature/℃准一级动力学方程
First-order kinetic equation准二级动力学方程
Second-order kinetic equation颗粒内扩散方程
Intra-particle diffusion equationk1 R2 k2 R2 kid R2 SDZ 10 0.0022 0.8480 0.1424 0.9997 0.0069 0.8851 25 0.0015 0.8663 0.3915 1.0000 0.0033 0.8583 40 0.0020 0.8328 0.1091 0.9996 0.0071 0.9680 SCP 10 0.0017 0.9109 0.3899 1.0000 0.0089 0.4577 25 0.0010 0.7744 1.4909 1.0000 0.0024 0.5494 40 0.0008 0.8605 0.3764 0.9998 0.0034 0.3568 -
[1] YANG W B, ZHENG F F, XUE X X, et al. Investigation into adsorption mechanisms of sulfonamides onto porous adsorbents [J]. Journal of Colloid and Interface Science, 2011, 362(2): 503−509. doi: 10.1016/j.jcis.2011.06.071 [2] ZHANG G X, ZHANG Q, SUN K, et al. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures [J]. Environmental Pollution, 2011, 159(10): 2594−2601. doi: 10.1016/j.envpol.2011.06.012 [3] KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar) [J]. Environmental Science & Technology, 2010, 44(4): 1247−1253. [4] BARAN W, ADAMEK E, ZIEMIAŃSKA J, et al. Effects of the presence of sulfonamides in the environment and their influence on human health [J]. Journal of Hazardous Materials, 2011, 196: 1−15. doi: 10.1016/j.jhazmat.2011.08.082 [5] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772−6782. [6] 谢胜, 李娟英, 赵庆祥. 磺胺类抗生素的活性炭吸附过程研究 [J]. 环境工程学报, 2012, 6(2):483−488.XIE S, LI J Y, ZHAO Q X. Research on adsorption process of sulfonamide antibiotics with activated carbon [J]. Chinese Journal of Environmental Engineering, 2012, 6(2): 483−488.(in Chinese) [7] INYANG M, GAO B, ZIMMERMAN A, et al. Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars [J]. Environmental Science and Pollution Research, 2015, 22(3): 1868−1876. doi: 10.1007/s11356-014-2740-z [8] 王宁, 侯艳伟, 彭静静, 等. 生物炭吸附有机污染物的研究进展 [J]. 环境化学, 2012, 31(3):287−295.WANG N, HOU Y W, PENG J J, et al. Research progess on sorption of orgnic contaminants to biochar [J]. Environmental Chemistry, 2012, 31(3): 287−295.(in Chinese) [9] 赵涛, 蒋成爱, 丘锦荣, 等. 皇竹草生物炭对水中磺胺类抗生素吸附性能研究 [J]. 水处理技术, 2017, 43(4):56−61, 65.ZHAO T, JIANG C A, QIU J R, et al. Research on adsorption properties of sulfonamides in aqueous solution by Pennisetum hydridum derived biochar [J]. Technology of Water Treatment, 2017, 43(4): 56−61, 65.(in Chinese) [10] 赵涛, 丘锦荣, 蒋成爱, 等. 水环境中磺胺类抗生素的污染现状与处理技术研究进展 [J]. 环境污染与防治, 2017, 39(10):1147−1152.ZHAO T, QIU J R, JIANG C A, et al. Research progress in pollution status and treatment technologies of sulfonamides in aquatic environment [J]. Environmental Pollution & Control, 2017, 39(10): 1147−1152.(in Chinese) [11] SHAO F L, ZHANG X, SUN X T, et al. Antibiotic removal by activated biochar: Performance, isotherm, and kinetic studies [J]. Journal of Dispersion Science and Technology, 2021, 42(9): 1274−1285. doi: 10.1080/01932691.2020.1737106 [12] NGUYEN V T, NGUYEN T B, CHEN C W, et al. Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground [J]. Bioresource Technology, 2019, 284: 197−203. doi: 10.1016/j.biortech.2019.03.096 [13] WANG H, CHU Y X, FANG C R, et al. Sorption of tetracycline on biochar derived from rice straw under different temperatures [J]. PLoS One, 2017, 12(8): e0182776. doi: 10.1371/journal.pone.0182776 [14] WANG T F, ZHAI Y B, ZHU Y, et al. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties [J]. Renewable and Sustainable Energy Reviews, 2018, 90: 223−247. doi: 10.1016/j.rser.2018.03.071 [15] TEIXIDÓ M, PIGNATELLO J J, BELTRÁN J L, et al. Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar) [J]. Environmental Science & Technology, 2011, 45(23): 10020−10027. [16] 田世烜, 张萌, 陈亮, 等. 3种污泥对磺胺二甲基嘧啶的吸附性能 [J]. 环境工程学报, 2012, 6(3):1020−1024.TIAN S X, ZHANG M, CHEN L, et al. Adsorption characteristics of sulfamethazine by three kinds of sludge [J]. Chinese Journal of Environmental Engineering, 2012, 6(3): 1020−1024.(in Chinese) [17] KONG X R, LIU Y X, PI J C, et al. Low-cost magnetic herbal biochar: Characterization and application for antibiotic removal [J]. Environmental Science and Pollution Research, 2017, 24(7): 6679−6687. doi: 10.1007/s11356-017-8376-z [18] LI J, LI B, HUANG H M, et al. Investigation into lanthanum-coated biochar obtained from urban dewatered sewage sludge for enhanced phosphate adsorption [J]. Science of the Total Environment, 2020, 714: 136839. doi: 10.1016/j.scitotenv.2020.136839 [19] 王子莹, 邱梦怡, 杨妍, 等. 不同生物炭吸附乙草胺的特征及机理 [J]. 农业环境科学学报, 2016, 35(1):93−100. doi: 10.11654/jaes.2016.01.013WANG Z Y, QIU M Y, YANG Y, et al. Sorption of acetochlor by biochars derived from wood dust and swine manure at different pyrolytic temperatures [J]. Journal of Agro-Environment Science, 2016, 35(1): 93−100.(in Chinese) doi: 10.11654/jaes.2016.01.013 [20] 夏广洁, 宋萍, 邱宇平. 牛粪源和木源生物炭对Pb(Ⅱ)和Cd(Ⅱ)的吸附机理研究 [J]. 农业环境科学学报, 2014, 33(3):569−575. doi: 10.11654/jaes.2014.03.025XIA G J, SONG P, QIU Y P. Sorption of Pb(Ⅱ)and Cd(Ⅱ)by manure-and wood-derived biochars [J]. Journal of Agro-Environment Science, 2014, 33(3): 569−575.(in Chinese) doi: 10.11654/jaes.2014.03.025 [21] ZHENG H, WANG Z Y, DENG X, et al. Characteristics and nutrient values of biochars produced from giant reed at different temperatures [J]. Bioresource Technology, 2013, 130: 463−471. doi: 10.1016/j.biortech.2012.12.044 [22] LIAN F, SUN B B, CHEN X, et al. Effect of humic acid (HA) on sulfonamide sorption by biochars [J]. Environmental Pollution, 2015, 204: 306−312. doi: 10.1016/j.envpol.2015.05.030 [23] RAJAPAKSHA A U, VITHANAGE M, LEE S S, et al. Steam activation of biochars facilitates kinetics and pH-resilience of sulfamethazine sorption [J]. Journal of Soils and Sediments, 2016, 16(3): 889−895. doi: 10.1007/s11368-015-1325-x [24] 王彦隽, 赵婷婷, 王维大. 玉米秸秆生物炭对水溶液中Th(Ⅳ)的吸附性能 [J]. 安全与环境学报, 2020, 20(6):2375−2382.WANG Y J, ZHAO T T, WANG W D. On adsorptive property of Th(Ⅳ)from aqueous solution via cornstalk biochar [J]. Journal of Safety and Environment, 2020, 20(6): 2375−2382.(in Chinese) [25] 缪旭东, 曹澄澄, 陈颖, 等. 玉米秸秆生物炭吸附挥发性有机物的基本特性 [J]. 环境科技, 2021, 34(1):24−29.MIAO X D, CAO C C, CHEN Y, et al. Basic properties of volatile organic compounds adsorption on straw-based biochar [J]. Environmental Science and Technology, 2021, 34(1): 24−29.(in Chinese) [26] MOHAN D, SARSWAT A, OK Y S, et al. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-A critical review [J]. Bioresource Technology, 2014, 160: 191−202. doi: 10.1016/j.biortech.2014.01.120 [27] 颜钰, 王子莹, 金洁, 等. 不同生物质来源和热解温度条件下制备的生物炭对菲的吸附行为 [J]. 农业环境科学学报, 2014, 33(9):1810−1816. doi: 10.11654/jaes.2014.09.019YAN Y, WANG Z Y, JIN J, et al. Phenanthrene adsorption on biochars produced from different biomass materials at two temperatures [J]. Journal of Agro-Environment Science, 2014, 33(9): 1810−1816.(in Chinese) doi: 10.11654/jaes.2014.09.019 [28] WANG Y B, LU J, WU J, et al. Adsorptive removal of fluoroquinolone antibiotics using bamboo biochar [J]. Sustainability, 2015, 7(9): 12947−12957. doi: 10.3390/su70912947 [29] 李雪冰, 付浩, 林朋飞, 等. pH值对活性炭吸附水中磺胺类抗生素的影响研究 [J]. 中国给水排水, 2015, 31(1):56−60.LI X B, FU H, LIN P F, et al. Influence of pH on adsorption of sulfonamide antibiotics by powdered activated carbon [J]. China Water & Wastewater, 2015, 31(1): 56−60.(in Chinese) [30] 王楠, 吴玮, 杨春光, 等. 盐酸改性松针生物炭对磺胺甲噁唑的吸附性能 [J]. 环境工程学报, 2020, 14(6):1428−1436. doi: 10.12030/j.cjee.201908002WANG N, WU W, YANG C G, et al. Adsorption performance of hydrochloric acid-modified pine needle biochar on sulfamethoxazolef [J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1428−1436.(in Chinese) doi: 10.12030/j.cjee.201908002 [31] 李京京. 改性生物炭对水中四环素的吸附特性研究[D]. 哈尔滨: 东北农业大学, 2020.LI J J. Study on the adsorption of tetracycline in aqueous solution by modified biochar[D]. Harbin: Northeast Agricultural University, 2020. (in Chinese) [32] CHUN Y, SHENG G Y, CHIOU C T, et al. Compositions and sorptive properties of crop residue-derived chars [J]. Environmental Science & Technology, 2004, 38(17): 4649−4655. [33] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review [J]. Chemosphere, 2014, 99: 19−33. doi: 10.1016/j.chemosphere.2013.10.071 [34] 王开峰, 彭娜, 吴礼滨, 等. 水稻秸秆生物炭对磺胺类抗生素的吸附研究 [J]. 环境科学与技术, 2017, 40(9):61−67.WANG K F, PENG N, WU L B, et al. Sorption characteristics of sulfonamide antibiotics by rice straw biochar [J]. Environmental Science & Technology, 2017, 40(9): 61−67.(in Chinese) [35] ZHANG X B, ZHANG Y C, NGO H H, et al. Characterization and sulfonamide antibiotics adsorption capacity of spent coffee grounds based biochar and hydrochar [J]. Science of the Total Environment, 2020, 716: 137015. doi: 10.1016/j.scitotenv.2020.137015 [36] RAJAPAKSHA A U, VITHANAGE M, ZHANG M, et al. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars [J]. Bioresource Technology, 2014, 166: 303−308. doi: 10.1016/j.biortech.2014.05.029 [37] KIM J E, BHATIA S K, SONG H J, et al. Adsorptive removal of tetracycline from aqueous solution by maple leaf-derived biochar [J]. Bioresource Technology, 2020, 306: 123092. doi: 10.1016/j.biortech.2020.123092 [38] ENIOLA J O, KUMAR R, BARAKAT M A. Adsorptive removal of antibiotics from water over natural and modified adsorbents [J]. Environmental Science and Pollution Research, 2019, 26(34): 34775−34788. doi: 10.1007/s11356-019-06641-6 [39] PUTRA E K, PRANOWO R, SUNARSO J, et al. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics [J]. Water Research, 2009, 43(9): 2419−2430. doi: 10.1016/j.watres.2009.02.039 [40] SHIMABUKU K K, KEARNS J P, MARTINEZ J E, et al. Biochar sorbents for sulfamethoxazole removal from surface water, stormwater, and wastewater effluent [J]. Water Research, 2016, 96: 236−245. doi: 10.1016/j.watres.2016.03.049 [41] PENG B Q, CHEN L, QUE C J, et al. Adsorption of antibiotics on graphene and biochar in aqueous solutions induced by π-π interactions [J]. Scientific Reports, 2016, 6: 31920. doi: 10.1038/srep31920 [42] DENG J, ZHAI Z, YUAN Q, et al. Effect of solution pH on adsorption of cefradine by wheat straw and thermodynamic analysis [J]. Nature Environment and Pollution Technology, 2019, 18(1): 317−321. [43] 孟庆梅, 孟迪, 张艳丽, 等. 榴莲壳生物炭对磺胺嘧啶的吸附性能 [J]. 化工进展, 2020, 39(11):4651−4659.MENG Q M, MENG D, ZHANG Y L, et al. Adsorption characteristics of biochar prepared by durian shell on sulfadiazine [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4651−4659.(in Chinese) [44] 丁杰, 赵双阳, 赵琪, 等. 氧化改性活性炭吸附去除水相中磺胺类抗生素 [J]. 哈尔滨商业大学学报(自然科学版), 2014, 30(1):41−45.DING J, ZHAO S Y, ZHAO Q, et al. Activated carbons modified by oxidation remove sulfadiazine from aqueous phase [J]. Journal of Harbin University of Commerce (Natural Sciences Edition), 2014, 30(1): 41−45.(in Chinese)