[1]
|
JIANG G B, SHI J B, FENG X B. Mercury pollution in China [J]. Environmental Science & Technology, 2006, 40(12): 3672−3678.
|
[2]
|
许妍, 陈永青. 我国环境汞污染现状及其对健康的危害 [J]. 职业与健康, 2012, 28(7):879−881.XU Y, CHEN Y Q. Present situation of mercury pollution in the environment and its health hazards in China [J]. Occupation and Health, 2012, 28(7): 879−881.(in Chinese)
|
[3]
|
QIU G L, FENG X B, WANG S F, et al. Environmental contamination of mercury from Hg-mining areas in Wuchuan, northeastern Guizhou, China [J]. Environmental Pollution, 2006, 142(3): 549−558. doi: 10.1016/j.envpol.2005.10.015
|
[4]
|
DAI Q, FENG X, QIU G, et al. Mercury contaminations from gold mining using amalgamation technique in Xiaoqinling Region, Shanxi Province, PR China [J]. Journal De Physique IV (Proceedings), 2003, 107: 345−348. doi: 10.1051/jp4:20030312
|
[5]
|
FENG X B, DAI Q Q, QIU G L, et al. Gold mining related mercury contamination in Tongguan, Shaanxi Province, PR China [J]. Applied Geochemistry, 2006, 21(11): 1955−1968. doi: 10.1016/j.apgeochem.2006.08.014
|
[6]
|
袁晓博, 冯新斌, 仇广乐, 等. 中国大米汞含量研究 [J]. 地球与环境, 2011, 39(3):318−323.YUAN X B, FENG X B, QIU G L, et al. Mercury concentrations in rice from China [J]. Earth and Environment, 2011, 39(3): 318−323.(in Chinese)
|
[7]
|
ZHAO J T, LI Y F, LI Y Y, et al. Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level [J]. Metallomics, 2014, 6(10): 1951−1957. doi: 10.1039/C4MT00170B
|
[8]
|
WANG Y J, DANG F, EVANS R D, et al. Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: The key role of antagonism in soil [J]. Scientific Reports, 2016, 6: 19477. doi: 10.1038/srep19477
|
[9]
|
GONG Y, NUNES L M, GREENFIELD B K, et al. Bioaccessibility-corrected risk assessment of urban dietary methylmercury exposure via fish and rice consumption in China [J]. Science of the Total Environment, 2018, 630: 222−230. doi: 10.1016/j.scitotenv.2018.02.224
|
[10]
|
李浪, 朱金山. 水旱轮作稻田旱作季土壤汞微生物甲基化的研究进展 [J]. 贵州农业科学, 2020, 48(9):52−56. doi: 10.3969/j.issn.1001-3601.2020.09.011LI L, ZHU J S. Research progress on soil mercury microbial methylation during dry season in paddy field under water-dry rotation [J]. Guizhou Agricultural Sciences, 2020, 48(9): 52−56.(in Chinese) doi: 10.3969/j.issn.1001-3601.2020.09.011
|
[11]
|
高润霞, 罗文倩, 胡海艳, 等. 稻田土壤中汞的微生物甲基化研究进展 [J]. 宁夏农林科技, 2020, 61(1):46−49. doi: 10.3969/j.issn.1002-204x.2020.01.015GAO R X, LUO W Q, HU H Y, et al. Research progress of microbial methylation of mercury in paddy soil [J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2020, 61(1): 46−49.(in Chinese) doi: 10.3969/j.issn.1002-204x.2020.01.015
|
[12]
|
谷成, 钟寰, 张慧玲, 等. 秸秆还田影响汞污染地区“稻田汞”环境行为的研究进展 [J]. 科学通报, 2017, 62(24):2717−2723. doi: 10.1360/N972017-00230GU C, ZHONG H, ZHANG H L, et al. Advances in understanding Hg dynamics in mercury contaminated paddy soils under straw amendment [J]. Chinese Science Bulletin, 2017, 62(24): 2717−2723.(in Chinese) doi: 10.1360/N972017-00230
|
[13]
|
LI Y Y, ZHAO J T, ZHONG H, et al. Understanding enhanced microbial MeHg production in mining-contaminated paddy soils under sulfate amendment: Changes in Hg mobility or microbial methylators? [J]. Environmental Science & Technology, 2019, 53(4): 1844−1852.
|
[14]
|
胡正义, 夏旭, 吴丛杨慧, 等. 硫在稻根微域中化学行为及其对水稻吸收重金属的影响机理 [J]. 土壤, 2009, 41(1):27−31. doi: 10.3321/j.issn:0253-9829.2009.01.005HU Z Y, XIA X, WU C Y H, et al. Chemical behaviors of sulfur in the rhizosphere of rice and its impacts on heavy metals uptake in rice [J]. Soils, 2009, 41(1): 27−31.(in Chinese) doi: 10.3321/j.issn:0253-9829.2009.01.005
|
[15]
|
钟顺清, 仇广乐, 冯新斌. 铁硫耦合影响甲基汞在土壤-水稻系统中迁移转化的研究进展 [J]. 生态学杂志, 2017, 36(8):2351−2357.ZHONG S Q, QIU G L, FENG X B. Coupling effects of iron and sulfur on the migration and transformation of methylmercury in soil-rice system: A review [J]. Chinese Journal of Ecology, 2017, 36(8): 2351−2357.(in Chinese)
|
[16]
|
HU Z Y, ZHU Y G, LI M, et al. Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings [J]. Environmental Pollution, 2007, 147(2): 387−393. doi: 10.1016/j.envpol.2006.06.014
|
[17]
|
XU X H, ZHAO J T, LI Y Y, et al. Demethylation of methylmercury in growing rice plants: An evidence of self-detoxification [J]. Environmental Pollution, 2016, 210: 113−120. doi: 10.1016/j.envpol.2015.12.013
|
[18]
|
LI Y Y, ZHAO J T, ZHANG B W, et al. The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different mercury species [J]. Plant and Soil, 2016, 398(1/2): 87−97.
|
[19]
|
DOMINIQUE Y, MAURY-BRACHET R, MURESAN B, et al. Biofilm and mercury availability as key factors for mercury accumulation in fish (Curimata cyprinoides) from a disturbed Amazonian freshwater system [J]. Environmental Toxicology and Chemistry, 2007, 26(1): 45. doi: 10.1897/05-649R.1
|
[20]
|
朱宗强, 王训, 王衡, 等. 单一汞同位素示踪大气与农田作物汞的交换过程 [J]. 环境化学, 2018, 37(3):419−427. doi: 10.7524/j.issn.0254-6108.2017080902ZHU Z Q, WANG X, WANG H, et al. Mercury exchange process between crop foliage and atmosphere by using single mercury isotope [J]. Environmental Chemistry, 2018, 37(3): 419−427.(in Chinese) doi: 10.7524/j.issn.0254-6108.2017080902
|
[21]
|
STRICKMAN R J, MITCHELL C P J. Accumulation and translocation of methylmercury and inorganic mercury in Oryza sativa: An enriched isotope tracer study [J]. Science of the Total Environment, 2017, 574: 1415−1423. doi: 10.1016/j.scitotenv.2016.08.068
|
[22]
|
孙荣国, 毛雯, 马明, 等. 水体中甲基汞光化学降解特征研究 [J]. 环境科学, 2012, 33(12):4329−4334.SUN R G, MAO W, MA M, et al. Characteristics of monomethylmercury photodegradation in water body [J]. Environmental Science, 2012, 33(12): 4329−4334.(in Chinese)
|