Field Determination on Anthracnose-resistance of Sorghum Cultivars in Guizhou
-
摘要:
目的 观察高粱叶部炭疽病发病特点,筛选贵州地方抗炭疽病高粱资源,探明高粱抗病机理。 方法 于田间以粉碎秸秆及高粱病叶作为侵染源,将收集到的贵州地方高粱资源进行为期2年的叶部炭疽病抗性等级鉴定。 结果 两份资源B39-2、F41表现为高度抗病,等级数值为2。7份资源为中度抗病,但抗性表现依赖于病害环境。两份资源E36、F4含有极端分布的等级数值,266份资源为感病材料。资源中极少部分材料存在多个等级数值,说明这些资源存在杂合基因型。 结论 通过两年的田间抗病鉴定,鉴定出的2份高抗资源有稳定抗性,可用于后续研究与品种选育。鉴选方法上,使用粉碎秸秆和病叶作为侵染源比单独使用粉碎秸秆能更有效地鉴定高抗资源。 Abstract:Objective Resistance of local sorghum varieties in Guizhou to anthracnose was determined by artificially infecting the plants in the field. Method Using both crushed straws and diseased leaves to induce the anthracnose infection on 283 cultivars of sorghum in Guizhou, a field experimentation was conducted in two separate years to examine and classify the disease resistance of the crop plants. Result Among the cultivars, B39-2 and F41 showed a high, Grade 2 resistance to anthracnose. Seven cultivars were moderately resistant to the disease in varying degrees depending upon the environmental conditions. E36 and F4 exhibited resistance that varied greatly. A few were of heterozygous genotypes displaying multiple grades of resistance. And the remaining 266 specimens were susceptible to the disease. Conclusion Two outstanding local sorghum cultivars in Guizhou were highly and consistently resistant to anthracnose that were to be further studied for breeding programs. This study showed the combined use of crushed straws and diseased leaves to artificially infect sorghum plants to be more effective than applying crushed straws alone in determining the degree of the disease resistance. -
Key words:
- Sorghum /
- resistance /
- anthracnose /
- assessment /
- germplasm collection in Guizhou
-
表 1 炭疽病抗性鉴定地方高粱材料
Table 1. Sources of sorghum cultivars for anthracnose-resistance identification
序号
No.资源来源地
Accessions collection places资源数量
Accessions quantity/份1 贵阳市 55 2 遵义市 3 3 安顺市 11 4 六盘水市 4 5 黔西南州 5 6 黔南州 5 7 黔东南州 14 8 毕节地区 177 9 铜仁地区 9 表 2 高粱抗炭疽病害等级评价标准
Table 2. Evaluation criteria for grading sorghum anthracnose-resistance
病害等级
Rating
scale抗性评估
Resistance
evaluation感病症状
Disease symptom1 高抗 叶上偶有退绿斑点,无红斑,无分生孢子盘 2 高抗 叶片有紫色或红色斑点,但其中无分生孢子盘形成 3 中抗 叶片有带分生孢子盘的小坏疽,单叶坏疽数目少于20个 4 中抗 坏疽占据了单叶的面积约20%~30%,这样的叶片数少于总叶片数一半 5 中抗 坏疽至少占据单叶面积一半,这样的叶片数约为总叶片数一半 6 感病 坏疽至少占据了单叶面积一半,这样的叶片数约为总叶片数的3/4 7 高感 坏疽至少占据了单叶面积一半,几乎所有的叶片都是此症状 表 3 9份地方高粱资源的2016和2019年抗性鉴定等级数值
Table 3. Data on grading 9 sorghum specimens for anthracnose-resistance in 2016 and 2019
序号
No.资源
Accessions2016年
(Year)2019年
(Year)抗性等级
Resistance
classification数值①
Scores①数值②
Scores②数值①
Scores①数值②
Scores②1 B39-2 2 3 2 — 高抗 2 F41 2 — 2 — 高抗 3 C22(α) 3 2 5-2, 6, 7, 5-1, 4 — 中抗 4 C34(α) 4 6 5-2, 7, 6, 4, 5-1 — 中抗 5 D1(α) 3 2, 7 5-2, 7, 4, 6, 5-1 — 中抗 6 F2(α) 3, 4 — 4, 7 — 中抗 7 F10(α) 3 2, 4 7, 5-2, 6, 4 — 中抗 8 F15(α) 5 2, 3 5-2, 5-1 — 中抗 9 F48(α) 4 2, 3 7, 5-2, 6, 5-1, 4 — 中抗 注:2019年将等级5分为5-1和5-2。5-1:单叶上的坏疽数至少占据1/2单叶面积,这样的叶片数<1/2总叶片数,5-2:单叶上的坏疽数至少占据1/2单叶面积,这样的叶片数≈总叶片数。
Note: In 2019, Grade 5 was further divided into Grade 5-1 and Grande 5-2. Grade 5-1 was when number of leaves showing gangrenes on more than ½ of the surface of a single leaf to be no more than ½ of total number of leaves on a plant; and Grade 5-2, when that to be approximately equal to½ of total number of leaves on a plant.表 4 E36、F4抗性鉴定等级数值
Table 4. Data on E36 and F4 graded for anthracnose-resistance
资源
Accessions2016年(Year) 2019年(Year) 数值①
Scroes①数值②
Scroes②数值①
Scroes①数值②
Scroes②E36 3 4,7 3,4,7 — F4 2 6 2,4,5-1 2,4,7 表 5 15份地方高粱资源的2016、2019年抗性鉴定等级数值
Table 5. Data on grading 15 sorghum specimens for anthracnose-resistance in 2016 and 2019
资源
Accessions2016年(Year) 2019年(Year) 数值①
Scroes①数值②
Scroes②数值①
Scroes①数值②
Scroes②B1'(β) 3, 7 6 7 — B7'(β) 4 3, 7 7 — B11'(β) 3 5, 6, 7 7 — B14'(β) 4 3, 7 7 — B30'(β) 3, 7 2 7 — D25(β) 4 3 7 — D43(β) 3 6, 7 7 — E83(β) 3 4, 6, 7 7 — F6(β) 3 4, 6 7 — F16(β) 5 6 7 — F31(β) 4, 6 3 7 — F39(β) 3 4, 6, 7 7, 6 — F46(β) 3, 4 7 7 — F51(β) 4 2, 3 7 — F52(β) 3 4, 6 7 — -
[1] MENGISTU G, SHIMELIS H, LAING M, et al. Breeding for anthracnose (Colletotrichum sublineolum Henn.) resistance in sorghum: challenges and opportunities [J]. Australian Journal of Crop Science, 2018, 12(12): 1911−1920. doi: 10.21475/ajcs.18.12.12.p1230 [2] 徐秀德, 刘志恒. 高粱病虫害原色图鉴[M]. 北京: 中国农业科学技术出版社, 2012: 112-118. [3] 邓小锋, 彭秋, 李青风, 等. 高粱炭疽病抗性机理研究进展 [J]. 贵州农业科学, 2019, 4(11):68−74. doi: 10.3969/j.issn.1001-3601.2019.11.013DENG X F, PENG Q, LI Q F, et al. Research progress in resistance mechanism of sorghum anthracnose [J]. Guizhou Agricultural Sciences, 2019, 4(11): 68−74.(in Chinese) doi: 10.3969/j.issn.1001-3601.2019.11.013 [4] XU J, QIN P W, JIANG Y, et al. Evaluation of sorghum germplasm resistance to anthracnose by Colletotrichum sublineolum in China [J]. Crop Protection, 2020, 134: 105173. doi: 10.1016/j.cropro.2020.105173 [5] THOMAS M D, SISSOKO I, SACKO M. Development of Leaf Anthracnose and its Effect on Yield and Grain Weight of Sorghum in West Africa [J]. Plant Disease, 1996, 80: 151−153. doi: 10.1094/PD-80-0151 [6] 徐婧, 姜钰, 胡兰, 等. 高粱抗炭疽病资源筛选及病情与产量损失的关系 [J]. 中国农业科学, 2019, 52(22):4079−4087. doi: 10.3864/j.issn.0578-1752.2019.22.012XU J, JIANG Y, HU L, et al. Evaluation of Sorghum Accessions Resistance Against Colletotrichum sublineolum and Relationship Between Severity and Yield Loss on Sorghum [J]. Scientia Agricultura Sinica, 2019, 52(22): 4079−4087.(in Chinese) doi: 10.3864/j.issn.0578-1752.2019.22.012 [7] SNYDER B A, LEITE B, HIPSKIND J, et al. Accumulation of sorghum phytoalexins induced by Colletotrichum graminicola at the infection site [J]. Physiological and Molecular Plant Pathology, 1991, 39(6): 463−470. doi: 10.1016/0885-5765(91)90012-7 [8] NICHOLSON R L, KOLLIPARA S S, VINCENT J R, et al. Phytoalexin synthesis by the sorghum mesocotyl in response to infection by pathogenic and nonpathogenic fungi [J]. PNAS, 1987, 84: 5520−5524. doi: 10.1073/pnas.84.16.5520 [9] WHARTON P S, JULIAN A M. A cytological study of compatible and incompatible interactions between Sorghum bicolor and Colletotrichum sublineolum [J]. New Phytologist, 1996, 134: 25−34. doi: 10.1111/j.1469-8137.1996.tb01143.x [10] WHARTON P S, JULIAN A M, O'CONNELL R J. Ultrastructure of the infection of Sorghum bicolor by Colletotrichum sublineolum [J]. Phytopathology, 2001, 91(2): 149−158. doi: 10.1094/PHYTO.2001.91.2.149 [11] BASAVARAJU P, SHETTY N P, SHETTY H S, et al. Infection biology and defence responses in sorghum against Colletotrichum sublineolum [J]. Journal of Applied Microbiology, 2009, 107: 404−415. doi: 10.1111/j.1365-2672.2009.04234.x [12] DU Y G, CHU H, WANG M F, et al. Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in Sorghum [J]. Journal of Experimental Botany, 2010, 61(4): 983−994. doi: 10.1093/jxb/erp364 [13] CHALA A, TRONSMO A M, BRURBERG M B. Genetic differentiation and gene flow in Colletotrichum sublineolum in Ethiopia, the centre of origin and diversity of sorghum, as revealed by AFLP analysis [J]. Plant Pathology, 2011, 60: 474−482. doi: 10.1111/j.1365-3059.2010.02389.x [14] ERPELDING J E, PROM L K. Evaluation of Malian sorghum germplasm for resistance against anthracnose [J]. Plant Pathology Journal, 2004, 3(2): 65−71. doi: 10.3923/ppj.2004.65.71 [15] ERPELDING J E, PROM L K. Variation for anthracnose resistance within the sorghum germplasm collection from Mozambique, Africa [J]. Plant Pathology Journal, 2006, 5(1): 28−34. doi: 10.3923/ppj.2006.28.34 [16] ERPELDING J E. Field evaluation of anthracnose disease response for the sorghum germplasm collection from the Kayes region of Mali [J]. Tropical and Subtropical Agroecosystems, 2008(8): 291−296. [17] ERPELDING J E. Anthracnose disease response for photoperiod-insensitive Ethiopian germplasm from the U. S. sorghum collection [J]. World Journal of Agricultural Science, 2009, 5(6): 707−713. [18] PROM L K, ERPELDING J E, MONTES-GARCIA N. Chinese sorghum germplasm evaluated for resistance to downy mildew and anthracnose [J]. Communications in Biometry and Crop Science, 2007, 2(1): 26−31. [19] PROM L K, LSAKEIT T, PERUMAL R, et al. Evaluation of the Ugandan sorghum accessions for grain mold and anthracnose resistance [J]. Crop Protection, 2011, 30(5): 566−571. doi: 10.1016/j.cropro.2010.12.025 [20] PROM L K, ERPELDING J E, PERUMAL R, et al. Response of sorghum accessions from four African countries against Colletotrichum sublineolum, causal agent of sorghum anthracnose [J]. American Journal of Plant Science, 2012(3): 125−129. [21] CUEVAS H E, PROM L K, ROSA-VALENTIN G. Population structure of the NPGS Senegalese Sorghum collection and its evaluation to identify new disease resistant genes [J]. PLoS One, 2018, 13(2): e0191877. doi: 10.1371/journal.pone.0191877 [22] CUEVAS H E, PROM L K. Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan Sorghum Core collection [J]. BMC Genomics, 2020, 21(1): 1−15. doi: 10.1186/s12864-019-6419-1 [23] 邓小锋, 陈满静, 曹绍书, 等. 贵州糯质高粱GBSSI基因型的鉴定 [J]. 贵州农业科学, 2020, 48(5):13−18. doi: 10.3969/j.issn.1001-3601.2020.05.004DENG X F, CHEN M J, CAO S S, et al. Identification of GBSSI genotype in glutinous sorghum in Guizhou [J]. Guizhou Agricultural Science, 2020, 48(5): 13−18.(in Chinese) doi: 10.3969/j.issn.1001-3601.2020.05.004 [24] 王小波. 贵州酱香型白酒用粱状况及对策分析[C]//贵州省农业科学院旱粮研究所. 谷粮网2019年第六届中国高粱产业高峰论坛会刊集, 2019: 34-39. [25] 邓小锋, 彭秋, 刘天友, 等. 贵州地方高粱资源炭疽病害田间抗性评估 [J]. 西南农业学报, 2017, 30:1074−1077.DENG X F, PENG Q, LIU T Y, et al. Resistance to anthracnose of local sorghum varieties in Guizhou [J]. Southwest China Journal of Agricultural Sciences, 2017, 30: 1074−1077.(in Chinese) [26] RAMASAMY P, MENZ M A, MEHTA P J, et al. Molecular mapping of Cg1, a gene for resistance to anthracnose (Colletotrichum sublineolum) in Sorghum [J]. Euphytica, 2008, 165(3): 597−606. [27] BURRELL A M, SHARMA A, PATIL N Y, et al. Sequencing of an anthracnose-resistant sorghum genotype and mapping of a major QTL reveal strong candidate genes for anthracnose resistance [J]. Crop Science, 2015, 55: 790−799. doi: 10.2135/cropsci2014.06.0430 [28] NIKS R E, PARLEVLIET J E, LINDHOUT P, et al. 张红生, 鲍永美, 等译. 植物抗病虫育种[M]. 北京: 科学出版社, 2012. [29] LO S C, HIPSKIND J D, NICHOLSON R L. cDNA cloning of a Sorghum pathogenesis-related protein (PR-10) and differential expression of defense-related genes following inoculation with Cochliobolus heterostrophus or Colletotrichum sublineolum [J]. Molecular Plant-Microbe Interactions, 1999, 12(6): 479−489. doi: 10.1094/MPMI.1999.12.6.479 [30] LO C S C, DE VERDIER K, NICHOLSON R L. Accumulation of 3-deoxyanthocyanidin phytoalexins and resistance to Colletotrichum sublineolum in sorghum [J]. Physiological and Molecular Plant Pathology, 1999, 55(5): 263−273. doi: 10.1006/pmpp.1999.0231 [31] MIZUNO H, YAZAWA T, KASUGA S, et al. Expression of Flavone synthase II and Flavonoid 3'-hydroxylase is associated with color variation in tan-colored injured leaves of Sorghum [J]. Frontiers in Plant Science, 2016(7): 1718.