Bioinformatics on Structure and Functions of ZmCOL3 -encoded Protein
-
摘要:
目的 分析ZmCOL3基因编码蛋白的结构及功能,预测ZmCOL3基因可能具备的功能,为该基因在玉米开花调控及其他功能的研究提供思路。 方法 通过生物信息学的方法对ZmCOL3基因编码蛋白质的理化性质、保守结构域、二级结构、三级结构、信号肽、跨膜结构域、亚细胞定位及启动子顺式作用元件进行了预测,并对该基因在玉米不同组织的表达量进行了分析。 结果 ZmCOL3基因所编码的蛋白包含335个氨基酸,相对分子质量为35.39 kD,理论等电点为5.04,属于酸性蛋白,具有亲水性和不稳定性,含有1个CCT结构域和1个B-box结构域,没有信号肽和跨膜结构域,主要定位在细胞核中,其二级结构主要是由无规则卷曲组成,其次是α螺旋,还含有少量的延伸链和β转角,同源建模相似度为64.15%,该基因的启动子不仅含有TATA-box、CAAT-box启动子基本的顺式作用元件,还含有Sp1等光响应作用元件,以及脱落酸、茉莉酸甲酯等激素响应元件。在玉米的种子、初生根、节间、叶、雌穗和雄穗等6个部位中,叶片中ZmCOL3基因的表达量最高,其次是雄穗,在种子中该基因表达量最低,总体上看ZmCOL3基因在叶片中的表达量显著高于其他部位。 结论 ZmCOL3蛋白是一个亲水、不稳定的酸性蛋白,其含有CCT结构域和B-box结构域,符合CCT基因家族中COL亚家族的结构特征,属于该家族成员,可能参与生物钟的调控来影响玉米开花。启动子顺式作用元件分析发现ZmCOL3基因的启动子包含光响应及各种激素响应元件,推断该基因可能受到光周期调控和激素等非生物胁迫调控,暗示其可在多重反应调控网络中发挥作用。 Abstract:Objective Functions of ZmCOL3 involving the flowering regulation and other mechanisms in maize were investigated by analyzing the structure and functions of the protein encoded by the gene. Method Based on bioinformatics, the physicochemical properties, conserved domain, secondary and tertiary structures, signal peptide, transmembrane domain, subcellular localization, and cis acting elements of ZmCOL3 protein were predicted. Expression of the gene in various organs of a maize plant were analyzed. Result The ZmCOL3-encoded protein contained 335 amino acids with a molecular weight of 35.39 KD and a theoretical isoelectric point of 5.04. It was an unstable acidic, hydrophilic protein located primarily in the nucleus and consisted of a CCT domain and a B-box domain but no signal peptide or transmembrane domain. Its secondary structure was mostly irregular coils with some α helixes and a small number of extended chains and β turns. The homology modeling similarity was 64.15%. The promoter of ZmCOL3 gene not only contained the basic cis acting elements, such as TATA and CAAT boxes, but also light response elements, such as SP1, as well as hormone response elements, such as abscisic acid and methyl jasmonate. In various tissues, the leaves, followed by the male ears, had the highest and significantly higher expression of ZmCOL3 than the primary roots, internodes, or tassels, while and the seeds the lowest. Conclusion The unstable acidic, hydrophilic ZmCOL3 protein contained CCT and B-box domains consistent with the structural characteristics of COL subfamily in the CCT gene family of which it belonged. It was postulated to participate in the regulation of biological clock that affects maize florescence. The promoter of ZmCOL3 gene contained the elements responding to light and various hormones that suggested a possible involvement on the multiple response network regulating the photoperiod and abiotic stress of a maize plant. -
Key words:
- Maize /
- ZmCOL3 /
- flowering /
- CCT gene family /
- bioinformatics analysis
-
图 1 玉米ZmCOL3基因的蛋白组分
注:A:丙氨酸;E:谷氨酸;R:精氨酸;P:脯氨酸;G:甘氨酸;S:丝氨酸;D:天冬氨酸;L:亮氨酸;V:缬氨酸;C:半胱氨酸;F:苯丙氨酸;H:组氨酸;K:赖氨酸;Y:酪氨酸;I:异亮氨酸;T:苏氨酸;M:蛋氨酸;N:天冬酰胺;Q:谷氨酰胺;W:色氨酸;O:吡咯赖氨酸;U:硒半胱氨酸;B、X、Z:酸水解后不确定的氨基酸
Figure 1. Composition of maize ZmCOL3
Note: A: Alanine; E: Glutamic acid; R: Arginine; P: Proline; G: Glycine; S: Serine; D: Aspartic acid; L: Leucine; V: Valine; C: Cysteine; F: Phenylalanine; H: Histidine; K: Lysine; Y: Tyrosine; I: Isoleucine; T: Threonine; M: Methionine; N: Asparagine; Q: Glutamine; W: Tryptophan; O: Pyrrolysine; U: Selenocysteine; B, X, and Z: Uncertain amino acids after acid hydrolysis.
表 1 ZmCOL3启动子顺式作用元件分析
Table 1. Analysis on cis acting elements of ZmCOL3 promoter
元件名称
Element name位置
Site功能
FunctionAAGAA-motif −222 胁迫响应 stress response element A-box −718,−768,−789,+1230,+1251,−1773 顺式作用调控元件 cis-acting regulatory element ABRE +1223,+1702,−2059,+2060,+2158 脱落酸响应顺式作用元件
cis-acting element involved in the abscisic acid responsivenessACE +54 光响应顺式作用元件
cis-acting element involved in light responsivenessARE +686,+959 厌氧诱导必需的顺式作用元件
cis-acting regulatory element essential for the anaerobic inductionCAAT-box −6,−142,+283,+600,−946,+1018,−1031等 启动子和增强子区的共同顺式作用元件
common cis-acting element in promoter and enhancer regionsCAT-box −350 与分生组织表达相关的顺式作用元件
cis-acting regulatory element related to meristem expressionCGTCA-motif +860,+1215 茉莉酸甲酯响应的顺式作用元件
cis-acting regulatory element involved in the MeJA-responsivenessDRE core −894 ABRE的耦合功能元件 funtions as a coupling element of ABRE ERE −1299 乙烯响应元件 ethylene-responsive element GATA-motif +1023 光响应元件的一部分 part of a light responsive element G-box −22,−316,−1701,−1222,−2059 光响应顺式作用元件
cis-acting regulatory element involved in light responsivenessGC-motif −592 与缺氧特异性诱导相关的增强子类元件
enhancer-like element involved in anoxic specific inducibilityI-box +971 光响应元件的一部分 part of a light responsive element JERE +900 JA和诱导子响应 JA and elicitor responsive LTR −764 低温响应的顺式作用元件
cis-acting element involved in low-temperature responsivenessMYC −1279 茉莉酸甲酯响应的顺式作用元件
cis-acting regulatory element involved in the MeJA-responsiveO2-site +546,−1824 玉米醇溶蛋白调控的顺式作用元件
cis-acting regulatory element involved in zein metabolismP-box −293 赤霉素响应元件 gibberellin-responsive element Sp1 +167,−583,−903,−2157 光响应元件 light responsive element STRE −235,−329,+865,−1080,+1242,−2053,−2076 热休克、渗透胁迫、低pH值、营养缺乏引起的活化
activation by heat shock, osmotic stress, low pH, nutrient starvationTATA-box −107,+110,−178,−181,+182,+802,+917等 转录起始点−30左右的核心启动子元件
core promoter element around −30 of transcription startTCA-element +195,−259 水杨酸响应的顺式作用元件
cis-acting element involved in salicylic acid responsivenessTC-rich repeats −1912 防御和应激响应的顺式作用元件
cis-acting element involved in defense and stress responsivenessTCT-motif +475 光响应元件的一部分 part of a light responsive element TGACG-motif −860,−1215 茉莉酸甲酯响应的顺式作用元件
cis-acting regulatory element involved in the MeJA-responsivenessTGA-element −446 生长素响应元件 auxin-responsive element W box −772 植物特异性转录调节因子WRKY的结合位点
binding sites for the WRKY plant-specific transcriptional regulatorsWUN-motif +982 创伤响应元件 wound-responsive element -
[1] 蔡云婷, 贾力, 拓昊苑. 玉米ZmTOC1a、ZmTOC1b基因的克隆、表达及亚细胞定位分析 [J]. 华北农学报, 2019, 34(4):24−31. doi: 10.7668/hbnxb.201751601CAI Y T, JIA L, TUO H Y. Cloning, expression and subcellular localization of ZmTOC1a andZmTOC1b genes in maize [J]. Acta Agriculturae Boreali-Sinica, 2019, 34(4): 24−31.(in Chinese) doi: 10.7668/hbnxb.201751601 [2] POSTMA F M, LUNDEMO S, ÅGREN J. Seed dormancy cycling and mortality differ between two locally adapted populations of Arabidopsis thaliana [J]. Annals of Botany, 2016, 117(2): 249−256. [3] 许淑娟, 种康. “先驱”转录因子LEC1在早期胚胎重置春化状态的机制 [J]. 植物学报, 2018, 53(1):1−4. doi: 10.11983/CBB17234XU S J, CHONG K. Mechanism of the “pioneer” transcription factor LEC1 in resetting vernalized state in early embryos [J]. Chinese Bulletin of Botany, 2018, 53(1): 1−4.(in Chinese) doi: 10.11983/CBB17234 [4] JIN M L, LIU X G, JIA W, et al. ZmCOL3, a CCT gene represses flowering in maize by interfering with the circadian clock and activating expression of ZmCCT [J]. Journal of Integrative Plant Biology, 2018, 60(6): 465−480. doi: 10.1111/jipb.12632 [5] 赵淑靓. 玉米伪应答调节基因ZmPRR73的克隆与表达分析[D]. 洛阳: 河南科技大学, 2018.ZHAO S L. Gene Cloning and Expression Analysis of Pseudo-Response Regulator 73 (ZmPRR73) in Maize[D]. Luoyang : Henan University of Science and Technology, 2018. (in Chinese). [6] HUNG H Y, SHANNON L M, TIAN F, et al. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize [J]. PNAS, 2012, 109(28): E1913−E1921. doi: 10.1073/pnas.1203189109 [7] HOLLAND J B. Plant genetics: Two steps on the path to maize adaptation [J]. Current Biology, 2018, 28(18): R1098−R1101. doi: 10.1016/j.cub.2018.07.049 [8] GOODMAN M M, MORENO J, CASTILLO F, et al. Using tropical maize germplasm for temperate breeding [J]. Maydica, 2000, 45(3): 221−234. [9] DAO A, SANOU J, MITCHELL S E, et al. Genetic diversity among INERA maize inbred lines with single nucleotide polymorphism (SNP) markers and their relationship with CIMMYT, IITA, and temperate lines [J]. BMC Genetics, 2014, 15: 127. [10] LIU T L, NEWTON L, LIU M J, et al. A G-box-like motif is necessary for transcriptional regulation by circadian pseudo-response regulators in Arabidopsis [J]. Plant Physiology, 2015, 170(1): 528−539. [11] BÖHM J, SCHIPPRACK W, UTZ H F, et al. Tapping the genetic diversity of landraces in allogamous crops with doubled haploid lines: A case study from European flint maize [J]. Theoretical and Applied Genetics, 2017, 130(5): 861−873. doi: 10.1007/s00122-017-2856-x [12] BLÜMEL M, DALLY N, JUNG C. Flowering time regulation in crops—what did we learn from Arabidopsis? [J]. Current Opinion in Biotechnology, 2015, 32: 121−129. doi: 10.1016/j.copbio.2014.11.023 [13] 贾伟, 尹悦佳, 柳青, 等. 抑制ZmCol3基因表达调控玉米开花期 [J]. 玉米科学, 2017, 25(6):28−33.JIA W, YIN Y J, LIU Q, et al. Regulation of maize flowering time by down-regulatedZmCol3 gene expression [J]. Journal of Maize Sciences, 2017, 25(6): 28−33.(in Chinese) [14] MILLAR A J. The intracellular dynamics of circadian clocks reach for the light of ecology and evolution [J]. Annual Review of Plant Biology, 2016, 67: 595−618. doi: 10.1146/annurev-arplant-043014-115619 [15] 金敏亮. 玉米泛转录组的构建及玉米开花抑制因子ZmCOL3的功能解析[D]. 武汉: 华中农业大学, 2018.JIN M L. Maize Pan-transcriptome construction and functional analysis of maize flowering repressor ZmCOL3[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese). [16] COCKRAM J, THIEL T, STEUERNAGEL B, et al. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae [J]. PLoS One, 2012, 7(9): e45307. doi: 10.1371/journal.pone.0045307 [17] VALVERDE F. Constans and the evolutionary origin of photoperiodic timing of flowering [J]. Journal of Experimental Botany, 2011, 62(8): 2453−2463. doi: 10.1093/jxb/erq449 [18] 胡冬秀, 刘浩, 鲁清, 等. 花生CONSTANS-like(COL)家族基因的克隆与表达分析 [J]. 中国油料作物学报, 2020, 42(5):778−786.HU D X, LIU H, LU Q, et al. Cloning and expression analysis of CONSTANS-Like(COL) family genes in peanut(Arachis hypogaea L.) [J]. Chinese Journal of Oil Crop Sciences, 2020, 42(5): 778−786.(in Chinese) [19] CROCCO C D, BOTTO J F. BBX proteins in green plants: Insights into their evolution, structure, feature and functional diversification [J]. Gene, 2013, 531(1): 44−52. doi: 10.1016/j.gene.2013.08.037 [20] 付建新, 王翊, 戴思兰. 高等植物CO基因研究进展 [J]. 分子植物育种, 2010, 8(5):1008−1016. doi: 10.3969/mpb.008.001008FU J X, WANG Y, DAI S L. Advanced research on CO genes in higher plants [J]. Molecular Plant Breeding, 2010, 8(5): 1008−1016.(in Chinese) doi: 10.3969/mpb.008.001008 [21] WU W X, ZHANG Y X, ZHANG M, et al. The rice CONSTANS-like protein OsCOL15 suppresses flowering by promoting Ghd7 and repressing RID1 [J]. Biochemical and Biophysical Research Communications, 2018, 495(1): 1349−1355. doi: 10.1016/j.bbrc.2017.11.095 [22] 张雅文, 梁山, 徐国云, 等. 烟草CONSTANS-like基因家族的鉴定与分析 [J]. 植物学报, 2021, 56(1):33−43. doi: 10.11983/CBB20147ZHANG Y W, LIANG S, XU G Y, et al. Genome-wide identification and analysis of CONSTANS-like gene family in Nicotiana tabacum [J]. Chinese Bulletin of Botany, 2021, 56(1): 33−43.(in Chinese) doi: 10.11983/CBB20147 [23] DATTA S, HETTIARACHCHI G H C M, DENG X W, et al. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth [J]. The Plant Cell, 2006, 18(1): 70−84. [24] KIM S K, YUN C H, LEE J H, et al. OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice [J]. Planta, 2008, 228(2): 355−365. doi: 10.1007/s00425-008-0742-0 [25] 果天宇, 尹悦佳, 贾伟, 等. 玉米ZmCOL3pro217启动子的克隆及功能分析 [J]. 玉米科学, 2020, 28(2):54−60.GUO T Y, YIN Y J, JIA W, et al. Cloning and functional analysis of ZmCOL3pro217 promoter in maize [J]. Journal of Maize Sciences, 2020, 28(2): 54−60.(in Chinese) [26] SHEN C C, LIU H Y, GUAN Z Y, et al. Structural insight into DNA recognition by CCT/NF-YB/YC complexes in plant photoperiodic flowering [J]. The Plant Cell, 2020, 32(11): 3469−3484. doi: 10.1105/tpc.20.00067 [27] WYLIE S J, ADAMS M, CHALAM C, et al. ICTV virus taxonomy profile: Potyviridae [J]. Journal of General Virology, 2017, 98(3): 352−354. doi: 10.1099/jgv.0.000740 [28] ROBSON F, COSTA M M, HEPWORTH S R, et al. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants [J]. The Plant Journal, 2001, 28: 619−31.