• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZmCOL3基因编码蛋白结构及功能的生物信息学分析

董柯清 王雷立 刘青青 张严玲 李安然 仝帧翰 董哲 王翠玲

董柯清,王雷立,刘青青,等. ZmCOL3基因编码蛋白结构及功能的生物信息学分析 [J]. 福建农业学报,2021,36(9):999−1006 doi: 10.19303/j.issn.1008-0384.2021.09.002
引用本文: 董柯清,王雷立,刘青青,等. ZmCOL3基因编码蛋白结构及功能的生物信息学分析 [J]. 福建农业学报,2021,36(9):999−1006 doi: 10.19303/j.issn.1008-0384.2021.09.002
DONG K Q, WANG L L, LIU Q Q, et al. Bioinformatics on Structure and Functions of ZmCOL3-encoded Protein [J]. Fujian Journal of Agricultural Sciences,2021,36(9):999−1006 doi: 10.19303/j.issn.1008-0384.2021.09.002
Citation: DONG K Q, WANG L L, LIU Q Q, et al. Bioinformatics on Structure and Functions of ZmCOL3-encoded Protein [J]. Fujian Journal of Agricultural Sciences,2021,36(9):999−1006 doi: 10.19303/j.issn.1008-0384.2021.09.002

ZmCOL3基因编码蛋白结构及功能的生物信息学分析

doi: 10.19303/j.issn.1008-0384.2021.09.002
基金项目: 河南省重点研发与推广专项(202102110010);国家自然科学基金河南省联合基金项目(U2004153);国家自然科学基金青年科学基金项目(31901561)
详细信息
    作者简介:

    董柯清(1997−),女,硕士研究生,研究方向:玉米分子遗传育种(E-mail:dongkq333@163.com

    通讯作者:

    王翠玲(1974−),女,副教授,研究方向:玉米分子遗传育种(E-mail:lywgg@126.com

  • 中图分类号: S 513

Bioinformatics on Structure and Functions of ZmCOL3-encoded Protein

  • 摘要:   目的  分析ZmCOL3基因编码蛋白的结构及功能,预测ZmCOL3基因可能具备的功能,为该基因在玉米开花调控及其他功能的研究提供思路。  方法  通过生物信息学的方法对ZmCOL3基因编码蛋白质的理化性质、保守结构域、二级结构、三级结构、信号肽、跨膜结构域、亚细胞定位及启动子顺式作用元件进行了预测,并对该基因在玉米不同组织的表达量进行了分析。  结果  ZmCOL3基因所编码的蛋白包含335个氨基酸,相对分子质量为35.39 kD,理论等电点为5.04,属于酸性蛋白,具有亲水性和不稳定性,含有1个CCT结构域和1个B-box结构域,没有信号肽和跨膜结构域,主要定位在细胞核中,其二级结构主要是由无规则卷曲组成,其次是α螺旋,还含有少量的延伸链和β转角,同源建模相似度为64.15%,该基因的启动子不仅含有TATA-box、CAAT-box启动子基本的顺式作用元件,还含有Sp1等光响应作用元件,以及脱落酸、茉莉酸甲酯等激素响应元件。在玉米的种子、初生根、节间、叶、雌穗和雄穗等6个部位中,叶片中ZmCOL3基因的表达量最高,其次是雄穗,在种子中该基因表达量最低,总体上看ZmCOL3基因在叶片中的表达量显著高于其他部位。  结论  ZmCOL3蛋白是一个亲水、不稳定的酸性蛋白,其含有CCT结构域和B-box结构域,符合CCT基因家族中COL亚家族的结构特征,属于该家族成员,可能参与生物钟的调控来影响玉米开花。启动子顺式作用元件分析发现ZmCOL3基因的启动子包含光响应及各种激素响应元件,推断该基因可能受到光周期调控和激素等非生物胁迫调控,暗示其可在多重反应调控网络中发挥作用。
  • 图  1  玉米ZmCOL3基因的蛋白组分

    注:A:丙氨酸;E:谷氨酸;R:精氨酸;P:脯氨酸;G:甘氨酸;S:丝氨酸;D:天冬氨酸;L:亮氨酸;V:缬氨酸;C:半胱氨酸;F:苯丙氨酸;H:组氨酸;K:赖氨酸;Y:酪氨酸;I:异亮氨酸;T:苏氨酸;M:蛋氨酸;N:天冬酰胺;Q:谷氨酰胺;W:色氨酸;O:吡咯赖氨酸;U:硒半胱氨酸;B、X、Z:酸水解后不确定的氨基酸

    Figure  1.  Composition of maize ZmCOL3

    Note: A: Alanine; E: Glutamic acid; R: Arginine; P: Proline; G: Glycine; S: Serine; D: Aspartic acid; L: Leucine; V: Valine; C: Cysteine; F: Phenylalanine; H: Histidine; K: Lysine; Y: Tyrosine; I: Isoleucine; T: Threonine; M: Methionine; N: Asparagine; Q: Glutamine; W: Tryptophan; O: Pyrrolysine; U: Selenocysteine; B, X, and Z: Uncertain amino acids after acid hydrolysis.

    图  2  ZmCOL3蛋白保守结构域的预测

    Figure  2.  Predicted conserved domain of ZmCOL3 protein

    图  3  ZmCOL3蛋白二级结构的预测

    Figure  3.  Predicted secondary structure of ZmCOL3 protein

    图  4  ZmCOL3蛋白的三级结构的预测

    Figure  4.  Predicted tertiary structure ofZmCOL3 protein

    图  5  ZmCOL3蛋白的跨膜结构域的预测

    Figure  5.  Predicted transmembrane domain of ZmCOL3 protein

    图  6  ZmCOL3蛋白信号肽的预测

    Figure  6.  Predicted signal peptide of ZmCOL3 protein

    图  7  ZmCOL3蛋白的亚细胞定位

    Figure  7.  Subcellular localization of ZmCOL3 protein

    图  8  ZmCOL3基因在玉米不同组织部位的表达情况

    注:不同小写字母表示差异显著性(P<0.05)。

    Figure  8.  Expressions of ZmCOL3 in maize tissues

    Note: Different lowercase letters indicate significant difference at P<0.05.

    表  1  ZmCOL3启动子顺式作用元件分析

    Table  1.   Analysis on cis acting elements of ZmCOL3 promoter

    元件名称
    Element name
    位置         
    Site         
    功能
    Function
    AAGAA-motif −222 胁迫响应 stress response element
    A-box −718,−768,−789,+1230,+1251,−1773 顺式作用调控元件 cis-acting regulatory element
    ABRE +1223,+1702,−2059,+2060,+2158 脱落酸响应顺式作用元件
    cis-acting element involved in the abscisic acid responsiveness
    ACE +54 光响应顺式作用元件
    cis-acting element involved in light responsiveness
    ARE +686,+959 厌氧诱导必需的顺式作用元件
    cis-acting regulatory element essential for the anaerobic induction
    CAAT-box −6,−142,+283,+600,−946,+1018,−1031等 启动子和增强子区的共同顺式作用元件
    common cis-acting element in promoter and enhancer regions
    CAT-box −350 与分生组织表达相关的顺式作用元件
    cis-acting regulatory element related to meristem expression
    CGTCA-motif +860,+1215 茉莉酸甲酯响应的顺式作用元件
    cis-acting regulatory element involved in the MeJA-responsiveness
    DRE core −894 ABRE的耦合功能元件 funtions as a coupling element of ABRE
    ERE −1299 乙烯响应元件 ethylene-responsive element
    GATA-motif +1023 光响应元件的一部分 part of a light responsive element
    G-box −22,−316,−1701,−1222,−2059 光响应顺式作用元件
    cis-acting regulatory element involved in light responsiveness
    GC-motif −592 与缺氧特异性诱导相关的增强子类元件
    enhancer-like element involved in anoxic specific inducibility
    I-box +971 光响应元件的一部分 part of a light responsive element
    JERE +900 JA和诱导子响应 JA and elicitor responsive
    LTR −764 低温响应的顺式作用元件
    cis-acting element involved in low-temperature responsiveness
    MYC −1279 茉莉酸甲酯响应的顺式作用元件
    cis-acting regulatory element involved in the MeJA-responsive
    O2-site +546,−1824 玉米醇溶蛋白调控的顺式作用元件
    cis-acting regulatory element involved in zein metabolism
    P-box −293 赤霉素响应元件 gibberellin-responsive element
    Sp1 +167,−583,−903,−2157 光响应元件 light responsive element
    STRE −235,−329,+865,−1080,+1242,−2053,−2076 热休克、渗透胁迫、低pH值、营养缺乏引起的活化
    activation by heat shock, osmotic stress, low pH, nutrient starvation
    TATA-box −107,+110,−178,−181,+182,+802,+917等 转录起始点−30左右的核心启动子元件
    core promoter element around −30 of transcription start
    TCA-element +195,−259 水杨酸响应的顺式作用元件
    cis-acting element involved in salicylic acid responsiveness
    TC-rich repeats −1912 防御和应激响应的顺式作用元件
    cis-acting element involved in defense and stress responsiveness
    TCT-motif +475 光响应元件的一部分 part of a light responsive element
    TGACG-motif −860,−1215 茉莉酸甲酯响应的顺式作用元件
    cis-acting regulatory element involved in the MeJA-responsiveness
    TGA-element −446 生长素响应元件 auxin-responsive element
    W box −772 植物特异性转录调节因子WRKY的结合位点
    binding sites for the WRKY plant-specific transcriptional regulators
    WUN-motif +982 创伤响应元件 wound-responsive element
    下载: 导出CSV
  • [1] 蔡云婷, 贾力, 拓昊苑. 玉米ZmTOC1aZmTOC1b基因的克隆、表达及亚细胞定位分析 [J]. 华北农学报, 2019, 34(4):24−31. doi: 10.7668/hbnxb.201751601

    CAI Y T, JIA L, TUO H Y. Cloning, expression and subcellular localization of ZmTOC1a andZmTOC1b genes in maize [J]. Acta Agriculturae Boreali-Sinica, 2019, 34(4): 24−31.(in Chinese) doi: 10.7668/hbnxb.201751601
    [2] POSTMA F M, LUNDEMO S, ÅGREN J. Seed dormancy cycling and mortality differ between two locally adapted populations of Arabidopsis thaliana [J]. Annals of Botany, 2016, 117(2): 249−256.
    [3] 许淑娟, 种康. “先驱”转录因子LEC1在早期胚胎重置春化状态的机制 [J]. 植物学报, 2018, 53(1):1−4. doi: 10.11983/CBB17234

    XU S J, CHONG K. Mechanism of the “pioneer” transcription factor LEC1 in resetting vernalized state in early embryos [J]. Chinese Bulletin of Botany, 2018, 53(1): 1−4.(in Chinese) doi: 10.11983/CBB17234
    [4] JIN M L, LIU X G, JIA W, et al. ZmCOL3, a CCT gene represses flowering in maize by interfering with the circadian clock and activating expression of ZmCCT [J]. Journal of Integrative Plant Biology, 2018, 60(6): 465−480. doi: 10.1111/jipb.12632
    [5] 赵淑靓. 玉米伪应答调节基因ZmPRR73的克隆与表达分析[D]. 洛阳: 河南科技大学, 2018.

    ZHAO S L. Gene Cloning and Expression Analysis of Pseudo-Response Regulator 73 (ZmPRR73) in Maize[D]. Luoyang : Henan University of Science and Technology, 2018. (in Chinese).
    [6] HUNG H Y, SHANNON L M, TIAN F, et al. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize [J]. PNAS, 2012, 109(28): E1913−E1921. doi: 10.1073/pnas.1203189109
    [7] HOLLAND J B. Plant genetics: Two steps on the path to maize adaptation [J]. Current Biology, 2018, 28(18): R1098−R1101. doi: 10.1016/j.cub.2018.07.049
    [8] GOODMAN M M, MORENO J, CASTILLO F, et al. Using tropical maize germplasm for temperate breeding [J]. Maydica, 2000, 45(3): 221−234.
    [9] DAO A, SANOU J, MITCHELL S E, et al. Genetic diversity among INERA maize inbred lines with single nucleotide polymorphism (SNP) markers and their relationship with CIMMYT, IITA, and temperate lines [J]. BMC Genetics, 2014, 15: 127.
    [10] LIU T L, NEWTON L, LIU M J, et al. A G-box-like motif is necessary for transcriptional regulation by circadian pseudo-response regulators in Arabidopsis [J]. Plant Physiology, 2015, 170(1): 528−539.
    [11] BÖHM J, SCHIPPRACK W, UTZ H F, et al. Tapping the genetic diversity of landraces in allogamous crops with doubled haploid lines: A case study from European flint maize [J]. Theoretical and Applied Genetics, 2017, 130(5): 861−873. doi: 10.1007/s00122-017-2856-x
    [12] BLÜMEL M, DALLY N, JUNG C. Flowering time regulation in crops—what did we learn from Arabidopsis? [J]. Current Opinion in Biotechnology, 2015, 32: 121−129. doi: 10.1016/j.copbio.2014.11.023
    [13] 贾伟, 尹悦佳, 柳青, 等. 抑制ZmCol3基因表达调控玉米开花期 [J]. 玉米科学, 2017, 25(6):28−33.

    JIA W, YIN Y J, LIU Q, et al. Regulation of maize flowering time by down-regulatedZmCol3 gene expression [J]. Journal of Maize Sciences, 2017, 25(6): 28−33.(in Chinese)
    [14] MILLAR A J. The intracellular dynamics of circadian clocks reach for the light of ecology and evolution [J]. Annual Review of Plant Biology, 2016, 67: 595−618. doi: 10.1146/annurev-arplant-043014-115619
    [15] 金敏亮. 玉米泛转录组的构建及玉米开花抑制因子ZmCOL3的功能解析[D]. 武汉: 华中农业大学, 2018.

    JIN M L. Maize Pan-transcriptome construction and functional analysis of maize flowering repressor ZmCOL3[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese).
    [16] COCKRAM J, THIEL T, STEUERNAGEL B, et al. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae [J]. PLoS One, 2012, 7(9): e45307. doi: 10.1371/journal.pone.0045307
    [17] VALVERDE F. Constans and the evolutionary origin of photoperiodic timing of flowering [J]. Journal of Experimental Botany, 2011, 62(8): 2453−2463. doi: 10.1093/jxb/erq449
    [18] 胡冬秀, 刘浩, 鲁清, 等. 花生CONSTANS-like(COL)家族基因的克隆与表达分析 [J]. 中国油料作物学报, 2020, 42(5):778−786.

    HU D X, LIU H, LU Q, et al. Cloning and expression analysis of CONSTANS-Like(COL) family genes in peanut(Arachis hypogaea L.) [J]. Chinese Journal of Oil Crop Sciences, 2020, 42(5): 778−786.(in Chinese)
    [19] CROCCO C D, BOTTO J F. BBX proteins in green plants: Insights into their evolution, structure, feature and functional diversification [J]. Gene, 2013, 531(1): 44−52. doi: 10.1016/j.gene.2013.08.037
    [20] 付建新, 王翊, 戴思兰. 高等植物CO基因研究进展 [J]. 分子植物育种, 2010, 8(5):1008−1016. doi: 10.3969/mpb.008.001008

    FU J X, WANG Y, DAI S L. Advanced research on CO genes in higher plants [J]. Molecular Plant Breeding, 2010, 8(5): 1008−1016.(in Chinese) doi: 10.3969/mpb.008.001008
    [21] WU W X, ZHANG Y X, ZHANG M, et al. The rice CONSTANS-like protein OsCOL15 suppresses flowering by promoting Ghd7 and repressing RID1 [J]. Biochemical and Biophysical Research Communications, 2018, 495(1): 1349−1355. doi: 10.1016/j.bbrc.2017.11.095
    [22] 张雅文, 梁山, 徐国云, 等. 烟草CONSTANS-like基因家族的鉴定与分析 [J]. 植物学报, 2021, 56(1):33−43. doi: 10.11983/CBB20147

    ZHANG Y W, LIANG S, XU G Y, et al. Genome-wide identification and analysis of CONSTANS-like gene family in Nicotiana tabacum [J]. Chinese Bulletin of Botany, 2021, 56(1): 33−43.(in Chinese) doi: 10.11983/CBB20147
    [23] DATTA S, HETTIARACHCHI G H C M, DENG X W, et al. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth [J]. The Plant Cell, 2006, 18(1): 70−84.
    [24] KIM S K, YUN C H, LEE J H, et al. OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice [J]. Planta, 2008, 228(2): 355−365. doi: 10.1007/s00425-008-0742-0
    [25] 果天宇, 尹悦佳, 贾伟, 等. 玉米ZmCOL3pro217启动子的克隆及功能分析 [J]. 玉米科学, 2020, 28(2):54−60.

    GUO T Y, YIN Y J, JIA W, et al. Cloning and functional analysis of ZmCOL3pro217 promoter in maize [J]. Journal of Maize Sciences, 2020, 28(2): 54−60.(in Chinese)
    [26] SHEN C C, LIU H Y, GUAN Z Y, et al. Structural insight into DNA recognition by CCT/NF-YB/YC complexes in plant photoperiodic flowering [J]. The Plant Cell, 2020, 32(11): 3469−3484. doi: 10.1105/tpc.20.00067
    [27] WYLIE S J, ADAMS M, CHALAM C, et al. ICTV virus taxonomy profile: Potyviridae [J]. Journal of General Virology, 2017, 98(3): 352−354. doi: 10.1099/jgv.0.000740
    [28] ROBSON F, COSTA M M, HEPWORTH S R, et al. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants [J]. The Plant Journal, 2001, 28: 619−31.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1037
  • HTML全文浏览量:  402
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 修回日期:  2021-06-06
  • 网络出版日期:  2021-08-10
  • 刊出日期:  2021-09-28

目录

    /

    返回文章
    返回