Content and Migration of Heavy Metals in Dictyophora rubrovalvata and Soil
-
摘要:
目的 探讨红托竹荪与覆土土壤重金属元素含量之间的关系,以期为改善竹荪品质提供理论参考。 方法 对红托竹荪中菌柄+菌裙、菌托、菌盖、覆土土壤中的5种重金属(Cd、Pb、Hg、As、Cr)进行含量测定,同时对红托竹荪及其覆土土壤重金属进行污染评价,分析红托竹荪中不同部位对这5种重金属的富集特性及各元素的相关性。 结果 红托竹荪中重金属元素含量由高到低依次为Cd>Cr>As>Pb>Hg,变异系数变化范围为15.38%~65.66%,相对应的覆土土壤中重金属元素含量高低顺序为Cr>Pb>As>Cd>Hg。覆土土壤中5种重金属元素中仅Cd元素含量超标,其余4种元素均未超标。红托竹荪3个部位对元素Cd的富集系数均大于1.5,对元素As的富集系数均小于0.5,对元素Pb、Hg和Cr富集系数小于0.1。对红托竹荪中重金属元素进行的Pearson相关性统计显示,Pb与Cr在0.01水平(双侧)上显著相关,呈完全正相关关系,其他重金属元素之间的相关性都不明显,均未达到显著水平。对红托竹荪各重金属元素与覆土土壤重金属元素之间的相关性进行统计分析,结果显示除元素Hg呈正相关之外,其余4种元素均为负相关关系。 结论 红托竹荪中以单因子污染指数分析,红托竹荪的3个部位均受到Cd重度污染,Hg含量属于清洁水平,Pb和As尚属清洁。以内梅罗综合污染指数分析,竹荪全部受到污染,且污染相当严重。红托竹荪对不同重金属元素的富集能力有明显差异,除Cd元素相对富集之外,其他的4种元素都相对贫化。由Pearson相关性分析可知Pb与Cr存在协同效应,其他重金属元素之间相关性不明显。 Abstract:Objective Relationship between heavy metal contents in Dictyophora rubrovalvata and the soil the mushrooms were cultivated on was analyzed to understand the migratory pattern and pollution control. Method Contents of Cd, Pb, Hg, As, and Cr in stipe+skirt, receptacle, and cap of D. rubrovalvata as well as the overlying soil on the cultivation bed were analyzed to decipher the correlation between them. Result Contents of the heavy metals in D. rubrovalvata ranked Cd>Cr>As>Pb>Hg with a coefficient of variation ranging from 15.38% to 65.66%, while that in the soil Cr>Pb>As>Cd>Hg. Among the 5 heavy metals, only Cd in soil exceeded the safety standard. The enrichment coefficients of Cd in the 3 parts of D. rubrovalvata surpassed 1.5, while that of As less than 0.5 and those of Pb, Hg, and Cr below 0.1. A significant Pearson correlation was found between Pb and Cr at P<0.01 (bilateral), but not among other heavy metals.The correlation between heavy metal elements in D. rubrovalvata and heavy metal elements in soil was statistically analyzed,the results showed that the other four elements had negative correlation except Hg. Conclusion The tested D. rubrovalvata was heavily contaminated with Cd, clean on Hg, and relatively clean on Pb or As. The Nemerow indexing put all parts of the D. rubrovalvata seriously contaminated by heavy metals. There were significant differences in the enrichment ability of different heavy metal elements. Except for the relative enrichment of Cd, the other four elements were relatively depleted. According to Pearson correlation analysis, there is a synergistic effect between Pb and Cr, and the correlation between other heavy metals is not obvious. -
Key words:
- Dictyophora rubrovalvata /
- heavy metal /
- content /
- pollution assessment /
- transfer capacity
-
表 1 农用地土壤污染风险筛选值
Table 1. Risk assessment score on soil pollution for agricultural land (单位:mg·kg−1)
元素
Element农用地土壤污染风险筛选值
Risk screening value of soil pollution in agricultural landpH≤5.5 5.5<pH≤6.5 6.5<pH≤7.5 pH>7.5 Cd 0.3 0.3 0.3 0.6 Pb 70 90 120 170 Hg 1.3 1.8 2.4 3.4 As 40 40 30 25 Cr 150 150 200 250 表 2 农产品中重金属限量标准
Table 2. Standard safety limits on heavy metals in agricultural products
农产品A
griculture products元素
Element限量标准
Limited standard/(mg·kg−1)食用菌 Edible fungi Cd 0.2 Pb 1.0 Hg 0.1 As 0.5 表 3 内梅罗综合污染指数法评价等级
Table 3. Evaluation grades of Nemero comprehensive pollution indexing method
等级划分
Gradation综合污染指数
Comprehensive pollution
index污染等级
Pollution
degree污染水平
Pollution
levelⅠ PN≤0.7 安全 Safe 清洁 Clean Ⅱ 0.7<PN≤1.0 警戒级
Alert level尚清洁
Relatively cleanⅢ 1.0<PN≤2.0 轻度污染
Slight pollution开始受污染
Start to be pollutedⅣ 2.0<PN≤3.0 中度污染
Moderate pollution受中度污染
Moderately pollutedⅤ PN>3.0 重度污染
Heavy pollution受污染已相当严重
Heavy polluted表 4 试验方法考察结果
Table 4. Results of experimentation
元素
Element测定波长
Measuring wavelength/nm相关系数
Correlation coefficient线性范围
Linear range/(μg·L−1)检出限
Detection limit/(mg·kg−1)RSD/% 加标回收率
Recovery rate/%竹荪
D. rubrovalvata土壤
Soil竹荪
D. rubrovalvata土壤
Soil竹荪
D. rubrovalvata土壤
Soil竹荪
D. rubrovalvata土壤
SoilS1 S2 S3 S4 竹荪
D. rubrovalvata土壤
SoilCd 111 228.8 0.9994 0.9996 0.5~5.0 0.5~2.5 0.001 0.01 0.2 2.1 0.6 5.4 100 92.30 Pb 208 238.3 0.9998 0.999 0.5~5.0 5.0~50.0 0.005 0.1 8.2 0.3 9.7 4.8 100 91.80 Hg 253 253.7 0.9998 0.9995 0.1~1.0 0.2~1.6 0.001 0.002 0.2 2.3 2.6 5.3 104 107.00 As 75 193.7 0.9986 0.9998 0.5~5.0 10~50 0.002 0.01 2.8 4.6 4.9 1.2 98 95.20 Cr 52 357.9 0.9991 0.9991 0.5~5.0 200~2000 0.01 5 9.3 0.4 1.5 4.5 101 94.80 表 5 红托竹荪不同部位重金属元素含量
Table 5. Contents of heavy metals in parts of D. rubrovalvata (单位:mg·kg−1)
编号 Number Cd Pb Hg As Cr S1 8.6800 0.6890 0.0035 1.6800 1.2200 S2 3.5300 2.4000 0.0046 1.7500 2.0800 S3 3.1400 1.0400 0.0035 0.9000 1.3900 平均值
Average value5.1167 1.3763 0.0039 1.4433 1.5633 标准差
Standard deviation3.0921 0.9037 0.0006 0.4718 0.4554 CV/ % 60.43 65.66 15.38 32.69 29.13 表 6 红托竹荪不同部位重金属污染评价
Table 6. Evaluation of heavy metal pollution in parts of D. rubrovalvata
编号
Number单因子污染指数Pi
Single factor pollution index Pi内梅罗综合污染指数PN
Nemero composite pollution index PN污染等级
Pollution degree污染水平
Pollution levelCd Pb Hg As S1 43.400 0.689 0.035 3.360 31.816 重度污染 Heavy pollution 受污染已相当严重 Heavy polluted S2 17.650 2.400 0.046 3.500 13.099 重度污染 Heavy pollution 受污染已相当严重 Heavy polluted S3 15.700 1.040 0.035 1.800 11.576 重度污染 Heavy pollution 受污染已相当严重 Heavy polluted 表 7 竹荪不同部位重金属元素富集系数(CSi)
Table 7. Enrichment coefficients on heavy metals in parts of D. rubrovalvata
编号 Number Cd Pb Hg As Cr S1 5.711 0.026 0.018 0.226 0.009 S2 2.322 0.090 0.023 0.236 0.016 S3 2.066 0.039 0.018 0.121 0.010 注:富集能力判别:CSi<0.5,贫化;0.5<CSi<1.5,同一水平;1.5<CSi<3.0,相对富集;CSi>3.0,强烈富集。
Notes: Degrees of pollutant accumulation: CSi<0.5, depletion; 0.5<CSi<1.5, no significant changes; 1.5<CSi<3.0, relative enrichment; CSi>3.0, intense enrichment.表 8 竹荪不同部位重金属元素之间的相关性
Table 8. Correlation among heavy metals in parts of D. rubrovalvata
元素 Number Cd Pb Hg As Cr Cd 1 Pb −0.610 1 Hg −0.444 0.981 1 As 0.490 0.392 0.563 1 Cr −0.604 1.000** 0.982 0.399 1 注:**在0.01水平(双侧)上显著相关。
Notes: **significant correlation at 0.01 level (bilateral). -
[1] 黄年来. 中国大型真菌原色图鉴[M]. 北京: 中国农业出版社, 1998. [2] 何顺志, 徐文芬. 贵州中草药资源研究[M]. 贵阳: 贵州科技出版社, 2007. [3] 孙燕, 李浪, 刘妮, 等. 红托竹荪不同部位的无机元素含量及相关性 [J]. 贵州农业科学, 2019, 47(6):113−116. doi: 10.3969/j.issn.1001-3601.2019.06.026SUN Y, LI L, LIU N, et al. Concentration and correlation of inorganic elements in different parts of Dictyophora rubrovolota [J]. Guizhou Agricultural Sciences, 2019, 47(6): 113−116.(in Chinese) doi: 10.3969/j.issn.1001-3601.2019.06.026 [4] 施巧琴, 林琳, 陈析超, 等. 重金属在食用菌中的富集及对其生长代谢的影响 [J]. 真菌学报, 1991, 10(4):301−311.SHI Q Q, LIN L, CHEN X C, et al. Studies on the Accumulation of Heavy Metals and their Effect on the Growth and Metabolism in Edible Fungi [J]. Acta Mycologica Sinica, 1991, 10(4): 301−311.(in Chinese) [5] KALAC P, SVABODA L. A Review of trace element concentrations in edible mushrooms [J]. Food Chemistry, 2000, 69: 273−291. doi: 10.1016/S0308-8146(99)00264-2 [6] TEL G, GAVDAR H, DEVECI E, et al. Minerals and metals in mushroom species in Anatolia [J]. Food Additives and Contaminants, 2014, 7(3): 226−231. doi: 10.1080/19393210.2014.897263 [7] 何旭孔, 白冰, 邢增涛, 等. 香菇对培养料中镉的富集作用研究 [J]. 食品科学, 2013, 34(21):183−187.HE X K, BAI B, XING Z T, et al. Accumulation of Cadmium in Lentinula edodes from Its Compost [J]. Food Science, 2013, 34(21): 183−187.(in Chinese) [8] 袁蕾, 谭娅, 胡泽刚, 等. 地木耳的营养成分与铅汞含量分析 [J]. 食品安全质量检测学报, 2020(4):1145−1149.YUAN L, TAN Y, HU Z G, et al. Analysis of nutrient composition and lead and mercury content of Nostoc commune [J]. Food Safety and Quality Detection Technology, 2020(4): 1145−1149.(in Chinese) [9] 高婧, 张念恒, 李雪春, 等. 几种食用菌中重金属含量的测定与分析 [J]. 广州化工, 2019, 47(22):120−122. doi: 10.3969/j.issn.1001-9677.2019.22.043GAO J, ZHANG N H, LI X C, et al. Determination and Analysis of Heavy Metals Content in Several Edible Fungi [J]. Guangzhou Chemical Industry, 2019, 47(22): 120−122.(in Chinese) doi: 10.3969/j.issn.1001-9677.2019.22.043 [10] 林咏梅. 3种食用菌重金属检测与污染评价 [J]. 商品与质量, 2018, 49:216. doi: 10.3969/j.issn.1006-656X.2018.23.207LIN Y M. Detection and pollution evaluation of heavy metals in three kinds of edible fungi [J]. The Journal Quality of Goods, 2018, 49: 216.(in Chinese) doi: 10.3969/j.issn.1006-656X.2018.23.207 [11] 张玉洁, 胡国海, 李洪超. 云南省部分地区食用菌重金属含量的分析及评价 [J]. 北方园艺, 2011(20):171−174.ZHANG Y J, HU G H, LI H C. Analysis and Assessment of Heavy Metal Pollution in Fresh Edible Mushrooms Collected from Several Aereas in Yunman Province [J]. Northern Horticulture, 2011(20): 171−174.(in Chinese) [12] 陈黎, 刘俊, 张璐, 等. 四川地区食用菌中7种重金属含量测定及污染评价 [J]. 食品科学, 2010, 31(16):220−223.CHEN L, LIU J, ZHANG L, et al. Determination of Seven Heavy Metals and Pollution Assessment in Edible Fungi from Sichuan Province [J]. Food Science, 2010, 31(16): 220−223.(in Chinese) [13] 杨晓东, 尼珍, 闻剑, 等. 西藏林芝地区野生食用菌重金属污染状况调查 [J]. 西藏医药, 2017, 38(6):53−56.YANG X D, NI Z, WEN J, et al. Investigation of the Heavy Metal Pollution of Wild Edible Mushrooms in Nyingchi [J]. Tibetan Journal of Medicine, 2017, 38(6): 53−56.(in Chinese) [14] 万国生, 胡文宏, 汪玉秀, 等. 甘肃省2013年食用菌铅镉监测结果分析 [J]. 中国卫生检验杂志, 2014, 24(7):995−997.WAN G S, HU W H, WANG Y X, et al. Analysis of monitoring results of lead and cadmium in edible fungi in Gansu province in 2013 [J]. Chinese Journal of Health Laboratory Technology, 2014, 24(7): 995−997.(in Chinese) [15] 付洁, 孙洪欣, 张敏, 等. 市售食用菌中重金属含量特征及其健康风险评价 [J]. 中国食品学报, 2019, 19(6):230−237.FU J, SUN H X, ZHANG M, et al. Heavy Metal's Concentrations Characteristics and Risk Assessment of Edible Mushrooms [J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(6): 230−237.(in Chinese) [16] 郑红艳, 郭雪勤, 朱志勋, 等. 土壤和沉积物重金属测定中不同前处理和分析方法的比较 [J]. 广东化工, 2017, 44(16):236, 242−244.ZHENG H Y, GUO X Q, ZHU Z X, et al. Comparison of Different Pretreatment and Analytical Methods of Heavy Metals in Soil and Sediment Samples [J]. Guangdong Chemical Industry, 2017, 44(16): 236, 242−244.(in Chinese) [17] 魏永生, 郑敏燕, 耿薇. 微波消解ICP-OES法测定旱芹与西芹中的21种矿物元素 [J]. 食品工业科技, 2014, 35(17):285−288.WEI Y S, ZHENG M Y, GENG W. Determination of 21 mineral elements in parsley and celery by ICP-OES with microwave digestion [J]. Science and Technology of Food Industry, 2014, 35(17): 285−288.(in Chinese) [18] 曹蕾, 顷秀红, 魏永生. 微波消解ICP-OES法测定岷县当归中的矿质元素 [J]. 应用化工, 2015, 44(11):161−163.CAO L, QING X H, WEI Y S. Determination of mineral elements of Angelica sinensis in Minxian by ICP-OES with microwave digestion [J]. Applied Chemical Industry, 2015, 44(11): 161−163.(in Chinese) [19] 李浪, 孙燕, 刘妮, 等. 不同前处理方式的ICP-OES法测定土壤等物质中元素含量比较 [J]. 农业科学, 2020, 10(1):75−84.LI L, SUN Y, LIU N, et al. ICP-OES Determination of Elements in Soil and Other Substances with Different Pretreatment Methods [J]. Agricultural Sciences, 2020, 10(1): 75−84.(in Chinese) [20] 李静, 谢正苗, 徐建明, 等. 杭州市郊蔬菜地土壤重金属环境质量评价 [J]. 生态环境, 2003, 12(3):277−280.LI J, XIE Z M, XU J M, et al. Evaluation on environmental quality of heavy metals in vegetable plantation soils in the suburb of Hangzhou [J]. Ecological Environment, 2003, 12(3): 277−280.(in Chinese) [21] 生态环境部. 土壤环境质量 农用地土壤污染风险管控标准(试行): GB 15618-2018 [S]. 北京: 中国环境出版社, 2018. [22] 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中污染物限量: GB 2762-2017 [S]. 北京: 中国标准出版社, 2017. [23] 刘康书, 罗天林, 周富强. 贵州山地特色农产品中铅与砷含量及污染评价 [J]. 食品工业科技, 2019, 40(23):189−192.LIU K S, LUO T L, ZHOU F Q. Lead and Arsenic Contents and Pollution Evaluation of Agricultural Products with Mountain Characteristics in Guizhou Province [J]. Science and Technology of Food Industry, 2019, 40(23): 189−192.(in Chinese) [24] 谷巍, 申修源, 周娟娟, 等. 不同产地泽泻及其根际土壤中无机元素分布特征和相关性研究 [J]. 中药材, 2012, 35(12):1893−1897.GU W, SHEN X Y, ZHOU J J, et al. Distribution Characteristics and Correlation Analysis of Inorganic Elements in Alismatis Rhizoma and Rhizospheric Soils in Different Habitats [J]. Journal of Chinese Medicinal Materials, 2012, 35(12): 1893−1897.(in Chinese) [25] 顾志荣, 王亚丽, 陈晖, 等. 当归药材与产地土壤中无机元素的相关分析研究 [J]. 土壤通报, 2014, 45(6):1410−1415.GU Z Y, WANG Y L, CHEN H, et al. Correlation Analysis of Inorganic Elements in Angelica Sinensis and the Inhabited Soil of its Producing Area [J]. Chinese Journal of Soil Science, 2014, 45(6): 1410−1415.(in Chinese)