Nutritional Quality of Winter-potato Progenies
-
摘要:
目的 培育适宜在冬作区种植且具有早熟、耐寒、高产、优质等综合性状的马铃薯新品种。 方法 采用田间随机区组试验设计,以耐寒、高产、优质的闽薯2号为母本,早熟、优质的中龙薯1号为父本,对其27份杂交后代品系进行研究,分析其维生素C、还原糖、干物质、蛋白质、矿质元素和氨基酸等主要营养品质的变异程度。 结果 27份杂交后代品系的营养品质性状的变异程度较大,其中:维生素C和还原糖含量的变异系数(CV)分别为22.4%和18.3%。干物质和蛋白质含量的变异程度较小,CV值分别为10.8%和14.9%。矿质元素中,镁和铁的变异程度较大,CV值分别为17.0%和24.2%;钾和锌的CV值分别为10.2%和12.1%。17种氨基酸组分的CV值范围在12.9%~38.0%,CV值超过25%的组分有天门冬氨酸、谷氨酸、胱氨酸、精氨酸和脯氨酸;总氨基酸的CV值为14.6%。通过主成分分析和聚类分析,对27份杂交后代品系进行营养品质评价,初步筛选出1320040、1320001、1320009等12份高营养品质材料。 结论 27份杂交后代品系的营养品质性状具有丰富的遗传多样性,试验筛选出的12份高营养品质材料可为进一步选育冬作马铃薯优良新品种奠定物质基础。 Abstract:Objective In preparation of breeding new early-mature, cold tolerant, high yield winter-potato varieties the nutritional quality of the hybrid candidates was evaluated. Method A randomized block experiment was conducted in the field to compare the contents of vitamin C, reducing sugar, dry matters, protein, mineral elements, and amino acids in 27 hybrid progenies of a cold tolerant, high yield, high quality Minshu 2 as the female parent and a very early-mature, high quality Zhonglongshu 1 as the male parent. Result Significant variations on contents of the nutrients were found among the 27 cultivars. The coefficient of variations (CV) on vitamin C and reducing sugar were 22.4% and 18.3%, respectively, and smaller CV on dry matters and protein 10.8% and 14.9%, respectively. On minerals, the greatest differentiations were shown on Mg and Fe contents with CVs at 17.0% on Mg and 24.2% on Fe, but lower at 10.2% on K, and 12.1% on Zn. The contents of 17 amino acids varied in the CV range from 12.9% to 38.0% with Asp, Glu, Cys, Agr, and Pro higher than 25%, and the total amino acids at 14.6%. It appeared that these progenies were highly diverse genetically resulting in significant variations on their nutritional quality. Hence, careful selection of the hybrids would be necessary to maximize the nutritional quality of the new breed. Using the principal component and cluster analyses, 12 high-quality candidates including 1320040, 1320001, and 1320009 were preliminarily selected. Conclusion The nutritional quality of the 27 hybrids with rich genetic diversity was compared. Accordingly, 12 were chosen as candidates for breeding experimentation. -
Key words:
- potato /
- progenies /
- nutritional quality /
- evaluate
-
表 1 本研究亲本来源及特征特性
Table 1. Origins and characteristics of Minshu 2 and Zhonglongshu 1
来源/性状
Origin/Traits闽薯2号(母本)
Minshu 2(Female)中龙薯1号(父本)
Zhonglongshu 1(Male)选育单位 Breeding institute 福建省农业科学院作物研究所
Crop research Institute, Fujian of Agricultural Science中国科学院微生物研究所和黑龙江省农业科学院作物育种研究所
Institute of Microbiology, Chinese Academy of Sciences and Institute of Crop breeding, Heilongjiang Academy of Agricultural Sciences生育期 Growth period /d 89 67 产量 Yield/(kg·hm−2) 30019 27963 干物质 Dry matter/% 17.78 — 淀粉 Starch /% — 13.22~15.21 蛋白质 Protein/% 10.6 2.07~2.73 还原糖 Reducing sugar /% 5.6 0.21~0.22 维生素C Vitamin C/(mg·hg−1) 28.0 16.20~18.77 食味品质 Eating quality 较好 Moderately good 好 Good 抗病性 Disease resistance 中抗马铃薯X病毒(PVX)、马铃薯Y病毒(PVY)和早疫病,中感晚疫病
Moderately resistant to PVX, PVY and early blight, moderate susceptible to late blight抗晚疫病、马铃薯X病毒、马铃薯Y病毒
Resistant to late blight, PVX and PVY耐寒性 Cold tolerance 较耐寒 Moderately resistant to cold stress — 注:(1)“—”表示没有测定数据;(2)表中数据来源于文献[19~20]。
Note: (1) "—” indicate no data detected; (2) The data was from Reference [19-20].表 2 马铃薯杂交后代干物率、蛋白质、维生素C和还原糖的差异
Table 2. Contents of dry matters, protein, vitamin C and reducing sugar in hybrid progenies
性状 Trait 亲本 Parent 杂交后代 Hybrid progeny 母本 Female 父本 Male 均值 Average 均值 Average 变异幅度 Variation range 变异系数 CV/% 干物率 DMC/% 17.2 15.9 16.6 15.84 11.7~18.0 10.8 蛋白质 Pro/(g·kg−1) 14.7 18.9 16.8 20.8 15.0~28.0 14.9 维生素C VC /(g·kg−1) 0.39 0.18 0.29 0.29 0.18~0.45 22.4 还原糖 RS/(g·kg−1) 7.8 6.6 7.2 6.0 4.8~8.9 18.3 表 3 马铃薯杂交后代矿质元素的差异
Table 3. Mineral elements in hybrid progenies
项目 Item 钾K/
(g·kg−1)镁Mg/
(mg·kg−1)锌Zn/
(mg·kg−1)铁Fe/
(mg·kg−1)亲本
Parent母本
Female5.9 246 2.8 5.6 父本
Male7.0 234 3.2 5.6 均值
Average6.4 240 3.0 5.6 杂交后代
Hybrid progeny均值
Average5.8 209 3.2 5.9 变异幅度
Variation range4.3~6.8 147~310 2.0~3.9 3.4~9.4 变异系数
CV/%10.2 17.0 12.1 24.2 表 4 马铃薯杂交后代氨基酸含量的差异
Table 4. Amino acids content in hybrid progenies
氨基酸 Amino acids 亲本 Parent/(g·kg−1) 杂交后代 Hybrid progeny 母本 Female 父本 Male 均值 Average 均值 Average/(g·kg−1) 变异幅度 Variation range/(g·kg−1) 变异系数 CV/% 天门冬氨酸 Asp 24.0 29.5 26.8 39.6 26.6~75.1 29.3 苏氨酸 Thr 5.5 6.5 6.0 6.6 4.6~8.8 16.7 丝氨酸 Ser 5.1 6.1 5.6 6.2 4.4~8.1 18.8 谷氨酸 Glu 41.4 38.0 39.7 63.6 35.9~97.9 25.7 甘氨酸 Gly 4.2 5.1 4.7 4.9 3.4~6.7 20.5 丙氨酸 Ala 4.4 5.9 5.2 5.8 3.9~10.2 20.6 胱氨酸 Cys 0.8 0.9 0.8 1.0 0.5~2.2 36.4 缬草氨酸Val 7.5 9.2 8.3 9.5 6.5~11.6 12.9 蛋氨酸 Met 1.3 0.98 1.1 1.4 1.0~2.0 16.0 异亮氨酸 Ile 4.0 5.1 4.5 5.2 3.5~6.4 17.0 亮氨酸 Leu 7.6 8.6 8.1 8.6 5.9~11.9 21.3 酪氨酸 Tyr 3.4 3.5 3.5 4.4 2.9~5.9 17.0 苯丙氨酸 Phe 5.8 6.7 6.2 7.1 5.1~8.5 14.0 赖氨酸 Lys 7.9 9.1 8.5 9.3 7.2~11.9 14.7 组氨酸 His 2.2 2.6 2.4 2.9 2.0~3.9 18.1 精氨酸 Agr 6.2 7.9 7.1 9.3 5.5~15.8 29.1 脯氨酸 Pro 4.4 5.5 4.9 5.1 2.4~12.4 38.0 合计 Total 135.7 151.2 143.5 190.4 138.4~237.1 14.6 表 5 马铃薯杂交后代品质性状的相关系数
Table 5. Correlation coefficients among quality properties of hybrid progenies
DMC Pro VC RS K Mg Zn Fe TAC DMC 1 Pro −0.247 1 VC −0.071 −0.301 1 RS −0.215 −0.345 0.001 1 K 0.659** 0.022 −0.335 −0.173 1 Mg 0.611** −0.202 −0.058 −0.116 0.467* 1 Zn 0.554** −0.011 −0.274 0.163 0.441* 0.197 1 Fe 0.057 −0.173 −0.258 −0.019 0.030 0.017 0.326 1 TAC −0.283 0.927** −0.203 −0.316 −0.059 −0.187 0.018 −0.096 1 注:(1)*和**分别表示在0.05和0.01水平上显著相关;(2)TAC表示总氨基酸含量。
Note: (1) * and ** indicate significant correlation at 0.05 and 0.01 level, respectively. (2) TAC indicates total amino acid content.表 6 马铃薯杂交后代品质性状主成分分析的因子载荷、特征值与贡献率
Table 6. Factor loading, eigenvalue and contribution rate on quality parameters of hybrid progenies for principal component analysis
项目
Items指标
Parameters主成分
Principal componentPC1 PC2 PC3 因子载荷
Factor loading干物率 DMC 0.884 0.133 −0.256 蛋白质 Pro −0.439 0.862 −0.039 维生素C VC −0.211 −0.538 −0.510 还原糖 RS −0.002 −0.506 0.520 钾 K 0.740 0.396 −0.130 镁 Mg 0.694 0.070 −0.373 锌 Zn 0.632 0.280 0.439 铁 Fe 0.269 0.026 0.656 总氨基酸
TAC−0.463 0.819 −0.007 特征值
Eigenvalue2.733 2.218 1.377 贡献率
Contribution rate/%30.362 24.642 15.303 累计贡献率
Cumulative contribution rate/%30.362 55.004 70.307 表 7 马铃薯杂交后代品质性状综合评价结果
Table 7. Comprehensive evaluation on quality parameters of hybrid progenies
编号 Code 主成分分值 Principal component values Q PC1 PC2 PC3 1320040 1.18 0.55 0.24 0.53 1320001 0.83 0.42 1.03 0.51 1320013 0.81 0.83 −0.07 0.44 1320007 0.67 −0.26 1.69 0.40 1320053 0.32 0.83 0.63 0.40 1320020 1.40 −1.06 1.48 0.39 ZLS1 1.04 −0.02 0.29 0.36 1320047 0.02 1.71 −0.51 0.35 1320006 −0.14 1.18 0.37 0.31 1320043 0.64 1.15 −1.18 0.29 1320038 −0.73 0.79 1.87 0.26 1320009 0.47 0.07 0.36 0.22 1320068 −0.87 1.70 0.07 0.17 1320026 0.33 0.66 −0.89 0.13 1320076 0.38 −0.68 1.11 0.12 1320063 1.42 −0.64 −1.58 0.03 1320066 −0.10 −0.18 0.19 −0.05 1320015 −0.16 −0.21 0.29 −0.06 1320046 −0.28 −0.12 0.21 −0.08 1320059 0.07 −0.50 −0.31 −0.15 1320079 −1.07 0.13 0.85 −0.16 1320011 −1.24 1.37 −1.67 −0.29 1320045 0.52 −0.95 −1.54 −0.31 1320069 0.64 −1.22 −1.38 −0.32 1320041 −1.04 0.45 −1.06 −0.37 MS2 0.71 −2.10 −0.78 −0.42 1320071 −1.71 −1.53 1.12 −0.73 1320062 −1.35 −1.43 −0.58 −0.85 1320003 −2.77 −0.93 −0.23 −1.11 注:(1)Q表示品质综合评价指数;(2)ZLS1 和 MS2 分别表示中龙薯1号和闽薯2号。
Note: (1) Q indicates quality comprehensive evaluation index. (2) ZLS 1 and MS 2 indicate Zhonglongshu 1 and Minshu 2, respectively. -
[1] 徐建飞, 金黎平. 马铃薯遗传育种研究: 现状与展望 [J]. 中国农业科学, 2017, 50(6):990−1015. doi: 10.3864/j.issn.0578-1752.2017.06.003XU J F, JIN L P. Advances and perspectives in research of potato genetics and breeding [J]. Scientia Agricultura Sinica, 2017, 50(6): 990−1015.(in Chinese) doi: 10.3864/j.issn.0578-1752.2017.06.003 [2] 曾凡逵, 许丹, 刘刚. 马铃薯营养综述 [J]. 中国马铃薯, 2015, 29(4):233−243. doi: 10.3969/j.issn.1672-3635.2015.04.013ZENG F K, XU D, LIU G. Potato nutrition: A critical review [J]. Chinese Potato Journal, 2015, 29(4): 233−243.(in Chinese) doi: 10.3969/j.issn.1672-3635.2015.04.013 [3] TRUE R H, HOGAN J M, AUGUSTIN J, et al. Mineral composition of freshly harvested potatoes [J]. American Potato Journal, 1978, 55(9): 511−519. doi: 10.1007/BF02852157 [4] 屈冬玉, 谢开云, 金黎平, 等. 中国马铃薯产业发展与食物安全 [J]. 中国农业科学, 2005, 38(2):358−362. doi: 10.3321/j.issn:0578-1752.2005.02.022QU D Y, XIE K Y, JIN L P, et al. Development of potato industry and food security in China [J]. Scientia Agricultura Sinica, 2005, 38(2): 358−362.(in Chinese) doi: 10.3321/j.issn:0578-1752.2005.02.022 [5] 汤浩. 福建省马铃薯产业优势及发展对策 [J]. 中国马铃薯, 2010, 24(6):376−378. doi: 10.3969/j.issn.1672-3635.2010.06.016TANG H. Potato industrial actuality and development countermeasures in Fujian Province [J]. Chinese Potato Journal, 2010, 24(6): 376−378.(in Chinese) doi: 10.3969/j.issn.1672-3635.2010.06.016 [6] 汤浩, 罗文彬, 纪荣昌, 等. 2015年福建省马铃薯产业发展现状、存在问题及建议[C]//2016年中国马铃薯大会论文集. 张家口, 2016: 48-50. [7] 丁红映, 熊兴耀, 王万兴, 等. 103份马铃薯种质资源的耐寒性评价 [J]. 中国蔬菜, 2019(12):46−55.DING H Y, XIONG X Y, WANG W X, et al. Evaluation of freezing tolerance of 103 potato germplasm resources [J]. China Vegetables, 2019(12): 46−55.(in Chinese) [8] 李华伟, 林志坚, 许泳清, 等. 电导率法及Logistic方程鉴定马铃薯材料的耐寒性 [J]. 福建农业学报, 2016, 31(8):810−815.LI H W, LIN Z J, XU Y Q, et al. Predicting cold tolerance of potato plants by electric conductivity measurements on leaves under low-temperature stress [J]. Fujian Journal of Agricultural Sciences, 2016, 31(8): 810−815.(in Chinese) [9] 何虎翼, 何新民, 谭冠宁, 等. 广西冬种马铃薯霜冻为害特点及防霜冻技术 [J]. 中国马铃薯, 2018, 32(1):19−23. doi: 10.3969/j.issn.1672-3635.2018.01.004HE H Y, HE X M, TAN G N, et al. Damage characteristics and prevention technology of frost in Guangxi winter-planting potato [J]. Chinese Potato Journal, 2018, 32(1): 19−23.(in Chinese) doi: 10.3969/j.issn.1672-3635.2018.01.004 [10] 李华伟, 罗文彬, 纪荣昌, 等. 不同药剂组合对马铃薯晚疫病防治效果及产量的影响 [J]. 福建农业学报, 2013, 28(8):812−816. doi: 10.3969/j.issn.1008-0384.2013.08.017LI H W, LUO W B, JI R C, et al. Effects of different fungicide combinations on the control of potato late blight and yield of potato [J]. Fujian Journal of Agricultural Sciences, 2013, 28(8): 812−816.(in Chinese) doi: 10.3969/j.issn.1008-0384.2013.08.017 [11] 高玉林, 徐进, 刘宁, 等. 我国马铃薯病虫害发生现状与防控策略 [J]. 植物保护, 2019, 45(5):106−111.GAO Y L, XU J, LIU N, et al. Current status and management strategies for potato insect pests and diseases in China [J]. Plant Protection, 2019, 45(5): 106−111.(in Chinese) [12] 叶建春, 王慧芹, 施春婷. 9个杀菌剂或药剂组合防治冬种马铃薯晚疫病的田间效果 [J]. 农业科技通讯, 2017, 9(9):58−61. doi: 10.3969/j.issn.1000-6400.2017.09.025YE J C, WANG H Q, SHI C T. Field effect of 9 fungicides or medicaments for preventing and controlling late blight of winter potato [J]. Agricultural Technology Newsletter, 2017, 9(9): 58−61.(in Chinese) doi: 10.3969/j.issn.1000-6400.2017.09.025 [13] 王虹, 师尚礼, 刘正璟. 优质、速生、抗虫紫花苜蓿多元杂交后代优良株系的性状分离与评价筛选 [J]. 植物遗传资源学报, 2015, 16(6):1330−1337.WANG H, SHI S L, LIU Z J. Differentiation and selection of excellent germplasm resources of multiple cross hybrid progeny of good quality, fast-growing and insect-resistant alfalfa parents [J]. Journal of Plant Genetic Resources, 2015, 16(6): 1330−1337.(in Chinese) [14] 平阿敏, 曹晶晶, 侯雷平, 等. 不同品种胡萝卜后代分离研究 [J]. 山西农业科学, 2016, 44(9):1259−1262. doi: 10.3969/j.issn.1002-2481.2016.09.07PING A M, CAO J J, HOU L P, et al. Study on offspring segregation of different varieties of carrot [J]. Journal of Shanxi Agricultural Sciences,, 2016, 44(9): 1259−1262.(in Chinese) doi: 10.3969/j.issn.1002-2481.2016.09.07 [15] 王爱凡, 康雷, 李鹏飞, 等. 我国甘蓝型油菜远缘杂交和种质创新研究进展 [J]. 中国油料作物学报, 2016, 38(5):691−698. doi: 10.7505/j.issn.1007-9084.2016.05.021WANG A F, KANG L, LI P F, et al. Review on new germplasm development in Brassica napus through wide hybridizations in China [J]. Chinese Journal of Oil Crop Sciences, 2016, 38(5): 691−698.(in Chinese) doi: 10.7505/j.issn.1007-9084.2016.05.021 [16] 卢道宽, 孙娟, 翟桂玉, 等. 野生大豆与栽培大豆杂交后代秸秆营养品质研究 [J]. 草业科学, 2012, 29(6):950−954.LU D K, SUN J, ZHAI G Y, et al. Nutritive value comparison among straw from different generations of hybrid offspring [J]. Pratacultural Science, 2012, 29(6): 950−954.(in Chinese) [17] XIAO J, LI J, YUAN L, et al. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers [J]. Theoretical and Applied Genetics, 1996, 92(6): 637−643. doi: 10.1007/BF00226083 [18] 蔡兴奎, 谢从华. 中国马铃薯发展历史、育种现状及发展建议 [J]. 长江蔬菜, 2016(12):30−33.CAI X K, XIE C H. Development history, current breeding situation and development suggestions of Chinese potato [J]. Journal of Changjiang vegetable, 2016(12): 30−33.(in Chinese) [19] 罗文彬, 李华伟, 许泳清, 等. 南方冬作区马铃薯新品种‘闽薯2号’ [J]. 园艺学报, 2019, 46(10):2067−2068.LUO W B, LI H W, XU Y Q, et al. A new potato cultivar ‘Minshu 2' in winter planting area [J]. Acta Horticulturae Sinica, 2019, 46(10): 2067−2068.(in Chinese) [20] 牛志敏, 仲乃琴, 张丽娟, 等. 早熟鲜食加工兼用型马铃薯新品种-‘中龙薯1号’ [J]. 中国马铃薯, 2017, 31(2):125−126. doi: 10.3969/j.issn.1672-3635.2017.02.011NIU Z M, ZHONG N Q, ZHANG L J, et al. A new early maturing table and chip-processing dual purposed potato variety-' zhonglongshu 1' [J]. Chinese Potato Journal, 2017, 31(2): 125−126.(in Chinese) doi: 10.3969/j.issn.1672-3635.2017.02.011 [21] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品中钾、纳测定: GB 5009.91—2017[S]. 北京: 中国标准出版社, 2017. [22] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准食品中镁的测定: GB 5009.241—2017[S]. 北京: 中国标准出版社, 2017. [23] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准食品中铁的测定: GB 5009.90—2016[S]. 北京: 中国标准出版社, 2016. [24] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准食品中锌的测定: GB 5009.14—2017[S]. 北京: 中国标准出版社, 2017. [25] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准食品中氨基酸的测定: GB 5009.124—2016[S]. 北京: 中国标准出版社, 2016. [26] 汪明华, 李佳佳, 陆少奇, 等. 大豆品种耐高温特性的评价方法及耐高温种质筛选与鉴定 [J]. 植物遗传资源学报, 2019, 20(4):891−902.WANG M H, LI J J, LU S Q, et al. Construction of evaluation standard for tolerance to high-temperature and screening of heat-tolerant germplasm resources in soybean [J]. Journal of Plant Genetic Resources, 2019, 20(4): 891−902.(in Chinese) [27] 李辉, 白雅梅, 宋志军, 等. 马铃薯高世代无性系锌的稳定性及广义遗传力估算 [J]. 西南农业学报, 2019, 32(8):1701−1707.LI H, BAI Y M, SONG Z J, et al. Stability and broad-sense heritability of zinc in advanced generation clones of potato [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(8): 1701−1707.(in Chinese) [28] MULEMA J M K, ADIPALA E, OLANYA O M, et al. Yield stability analysis of late blight resistant potato selections [J]. Experimental Agriculture, 2008, 44(2): 145−155. doi: 10.1017/S0014479708006133 [29] 段绍光, 金黎平, 李广存, 等. 马铃薯品种遗传多样性分析 [J]. 作物学报, 2017, 43(5):718−729. doi: 10.3724/SP.J.1006.2017.00718DUAN S G, JIN L P, LI G C, et al. Genetic diversity analysis of potato varieties [J]. Acta Agronomica Sinica, 2017, 43(5): 718−729.(in Chinese) doi: 10.3724/SP.J.1006.2017.00718 [30] 王玉萍, 隋景航, 梁延超, 等. 甘肃省两个生态区马铃薯加工品质差异和加工品系筛选 [J]. 甘肃农业大学学报, 2016, 51(5):39−45.WANG Y P, SUI J H, LIANG Y C, et al. Screening for potato processing lines with Tuber quality index from two ecoregions [J]. Journal of Gansu Agricultural University, 2016, 51(5): 39−45.(in Chinese) [31] 杨春, 齐海英. 马铃薯种质资源表型性状的遗传多样性分析 [J]. 农学学报, 2020, 10(1):13−21. doi: 10.11923/j.issn.2095-4050.cjas20190500054YANG C, QI H Y. Phenotypic traits of potato germplasm resource: Genetic diversity analysis [J]. Journal of Agriculture, 2020, 10(1): 13−21.(in Chinese) doi: 10.11923/j.issn.2095-4050.cjas20190500054 [32] 张忠信, 王庆东, 赵婧伊, 等. 不同花生品种秸秆与籽仁营养成分综合分析 [J]. 植物遗传资源学报, 2020, 21(1):215−223.ZHANG Z X, WANG Q D, ZHAO J Y, et al. Nutritional components comprehensive analysis of stalk and kernels in different peanut varieties [J]. Journal of Plant Genetic Resources, 2020, 21(1): 215−223.(in Chinese) [33] 马恢, 尹江, 张希近, 等. 冀西北盐碱地马铃薯无性系农艺性状主成分及聚类分析 [J]. 中国马铃薯, 2004, 18(3):136−139. doi: 10.3969/j.issn.1672-3635.2004.03.003MA H, YIN J, ZHANG X J, et al. The prlncipal componet analysis and cluster of agronomlc characters of potato clones planted in alkaline land of northwestern Hebei [J]. Chinese Potato, 2004, 18(3): 136−139.(in Chinese) doi: 10.3969/j.issn.1672-3635.2004.03.003 [34] 何虎翼, 谭冠宁, 何新民, 等. 63份马铃薯品种(系)资源农艺性状的主成分与聚类分析 [J]. 江苏农业学报, 2017, 33(1):27−33. doi: 10.3969/j.issn.1000-4440.2017.01.005HE H Y, TAN G N, HE X M, et al. Principal component and cluster analysis for agronomic traits of 63 potato varieties or clones [J]. Jiangsu Journal of Agricultural Sciences, 2017, 33(1): 27−33.(in Chinese) doi: 10.3969/j.issn.1000-4440.2017.01.005