Effect of Long-term Biogas Slurry Fertilization on Distribution of Tetracycline and Sulfonamide Resistance Genes in Soil
-
摘要:
目的 探讨长期施用猪粪沼液对土壤环境中抗生素抗性基因(Antibiotic resistance genes, ARGs)分布的影响及其季节变化。 方法 分别在春、夏、秋、冬4个季节采集养猪场周边长期用沼液作为肥料的土壤,同时采集当地未施用过沼液的土壤作为对照,采用荧光定量PCR方法,对土壤中四环素类和磺胺类ARGs进行检测和定量分析。 结果 在施用沼液的土壤中能检测到11~13种ARGs,沼液的长期施用提高了土壤中ARGs的多样性,显著增加了土壤中tetG、sul1和sul2等基因的相对丰度,使四环素类和磺胺类ARGs在土壤中的存在水平升高。上述2类ARGs在土壤中的分布具有明显的季节性,均在春季具有更高的相对丰度。在长期施用沼液的土壤中存在大量的tetG、tetZ、tetM、tetO、tetW、sul1和sul2基因,这些基因在不同季节里都是优势ARGs。 结论 沼液农用会增加土壤中ARGs的存在水平,因此需要加强优化畜禽废弃物发酵工艺,以减少ARGs在沼液肥中的残留。 Abstract:Objective Effect of long-term application of pig manure biogas slurry on the abundance and seasonal variations of antibiotic resistance genes (ARGs) presented in the soil was studied. Method Soil specimens at the fields using biogas slurry of pig manure for fertilization for many years were collected in four seasons to compare with those at a nearby location without such practice. The presence and abundance of tetracycline and sulfonamide ARGs in the soils were determined by quantitative PCR. Result There were 11 to 13 classes of ARGs detected in the biogas slurry fertilized soils. The ARG diversity was significantly greater in them than control with a relative abundance of tetG, sul1 and sul2 genes. The increased levels of tetracycline and sulfonamide ARGs also showed significant seasonal variations with the highest relative abundance in spring. Long application of biogas slurry on land resulted in abundant tetG, tetZ, tetM, tetO, tetW, sul1, and sul2 genes, which were the dominant ARGs year-round, in the soil. Conclusion Long-term biogas slurry application could elevate the ARG level in the soil. Therefore, it was highly recommended the waste material utilization be optimized by a fermentation process prior to fertilization for antibiotic contamination mitigation on farmland. -
Key words:
- soil /
- biogas slurry /
- resistance gene /
- Real time PCR /
- seasonal characteristics
-
图 1 不同季节土壤中四环素类ARGs相对丰度总和
注:sum tet,四环素类ARGs总和;BS+,长期施用沼液土壤;BS−,未施用沼液土壤;SP、SU、AU和WI分别代表春季、夏季、秋季和冬季;条形图上不同字母表示处理间存在显著性差异(P<0.05),下同。
Figure 1. Sum of relative abundance of tetracycline ARGs in soil specimens collected in different seasons
Note: sum tet: sum of tetracycline ARGs; BS+: soil with long-term biogas slurry fertilization; BS−: soil with no biogas slurry application; SP, SU, AU and WI: spring, summer, autumn, and winter, respectively; data with different letters on bars mean significant difference among treatments (P<0.05). Same for below.
表 1 不同季节土壤中检测到的抗性基因(n=3)
Table 1. Resistance genes detected in the soils in different seasons
抗性基因
ARGs长期施用沼液土壤
Soil with long-term of
biogas fertilization未施用沼液土壤
Soil with no biogas
fertilization春季
Spring夏季
Summer秋季
Autumn冬季
Winter春季
Spring夏季
Summer秋季
Autumn冬季
WintertetA − − − − − − − − tetB + − − − + + − + tetC − − − − − − − − tetG + + + + + + + + tetH + − − + − − − − tetK − − − − − − − − tetM + + + + − − − − tetO + + + + − − − − tetQ + + + + − − − − tetS − − − + − − − − tetT + + + − − − − − tetW + + + + − − − − tetY + + + + + + + + tetZ + + + + + + + + sul1 + + + + + + + + sul2 + + + + + + + + sul3 + + + + + + + + 注:+,阳性;−,阴性。Note: +, positive; −, negative. -
[1] 张志芳, 豁泽春, 侯江涛. 沼液在绿色蔬菜中的应用现状 [J]. 长江蔬菜, 2016(8):91−92. doi: 10.3865/j.issn.1001-3547.2016.08.036ZHANG Z F, HUO Z C, HOU J T. Application status of biogas slurry on green vegetables [J]. Journal of Changjiang Vegetables, 2016(8): 91−92.(in Chinese) doi: 10.3865/j.issn.1001-3547.2016.08.036 [2] 唐鹏. 沼液施用对橡胶人工林土壤理化性质及抗生素残留的影响[D]. 海口: 海南大学, 2019.TANG P. Effects of biogas slurry application on soil physical and chemical properties and antibiotic residues of rubber plantation[D]. Haikou: Hainan University, 2019. [3] UDIKOVIC-KOLIC N, WICHMANN F, BRODERICK N A, et al. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(42): 15202−15207. doi: 10.1073/pnas.1409836111 [4] PRUDEN A, PEI R T, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado [J]. Environmental Science & Technology, 2006, 40(23): 7445−7450. [5] PENG S, FENG Y Z, WANG Y M, et al. Prevalence of antibiotic resistance genes in soils after continually applied with different manure for 30 years [J]. Journal of Hazardous Materials, 2017, 340: 16−25. doi: 10.1016/j.jhazmat.2017.06.059 [6] LI J J, XIN Z H, ZHANG Y Z, et al. Long-term manure application increased the levels of antibiotics and antibiotic resistance genes in a greenhouse soil [J]. Applied Soil Ecology, 2017, 121: 193−200. doi: 10.1016/j.apsoil.2017.10.007 [7] ZHAO X, WANG J H, ZHU L S, et al. Environmental analysis of typical antibiotic-resistant bacteria and ARGs in farmland soil chronically fertilized with chicken manure [J]. Science of the Total Environment, 2017, 593/594: 10−17. doi: 10.1016/j.scitotenv.2017.03.062 [8] MCKINNEY C W, DUNGAN R S, MOORE A, et al. Occurrence and abundance of antibiotic resistance genes in agricultural soil receiving dairy manure [J]. FEMS Microbiology Ecology, 2018, 94(3): fiy010. [9] ZHU Y G, JOHNSON T A, SU J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3435−3440. doi: 10.1073/pnas.1222743110 [10] LU Z H, NA G S, GAO H, et al. Fate of sulfonamide resistance genes in estuary environment and effect of anthropogenic activities [J]. Science of the Total Environment, 2015, 527: 429−438. [11] XIONG W G, SUN Y X, ZHANG T, et al. Antibiotics, antibiotic resistance genes, and bacterial community composition in fresh water aquaculture environment in China [J]. Microbial Ecology, 2015, 70(2): 425−432. doi: 10.1007/s00248-015-0583-x [12] PU C J, LIU H, DING G C, et al. Impact of direct application of biogas slurry and residue in fields: In situ analysis of antibiotic resistance genes from pig manure to fields [J]. Journal of Hazardous Materials, 2018, 344: 441−449. doi: 10.1016/j.jhazmat.2017.10.031 [13] KNAPP C W, MCCLUSKEY S M, SINGH B K, et al. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils [J]. Plos One, 2011, 6(11): e27300. doi: 10.1371/journal.pone.0027300 [14] DUFFY B, HOLLIGER E, WALSH F. Streptomycin use in apple orchards did not increase abundance of mobile resistance genes [J]. FEMS Microbiology Letters, 2014, 350(2): 180−189. doi: 10.1111/1574-6968.12313 [15] TANG X J, LOU C L, WANG S X, et al. Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: evidence from four field experiments in south of China [J]. Soil Biology and Biochemistry, 2015, 90: 179−187. doi: 10.1016/j.soilbio.2015.07.027 [16] MARTÍNEZ J L. Antibiotics and antibiotic resistance genes in natural environments [J]. Science, 2008, 321(5887): 365−367. doi: 10.1126/science.1159483 [17] PENG S, WANG Y M, ZHOU B B, et al. Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of eastern China [J]. Science of the Total Environment, 2015, 506/507: 279−286. doi: 10.1016/j.scitotenv.2014.11.010 [18] WANG N, GUO X Y, YAN Z, et al. A comprehensive analysis on spread and distribution characteristic of antibiotic resistance genes in livestock farms of southeastern China [J]. Plos One, 2016, 11(7): e0156889. doi: 10.1371/journal.pone.0156889 [19] HAN X M, HU H W, CHEN Q L, et al. Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures [J]. Soil Biology and Biochemistry, 2018, 126: S0038-0717(18)30295-5−5. [20] JOY S R, BARTELT-HUNT S L, SNOW D D, et al. Fate and transport of antimicrobials and antimicrobial resistance genes in soil and runoff following land application of swine manure slurry [J]. Environmental Science & Technology, 2013, 47(21): 12081−12088. [21] URRA J, ALKORTA I, LANZÉN A, et al. The application of fresh and composted horse and chicken manure affects soil quality, microbial composition and antibiotic resistance [J]. Applied Soil Ecology, 2019, 135: 73−84. doi: 10.1016/j.apsoil.2018.11.005 [22] 彭双, 王一明, 林先贵. 连续施用发酵猪粪对土壤中四环素抗性基因数量的影响 [J]. 中国环境科学, 2015, 35(4):1173−1180.PENG S, WANG Y M, LIN X G. Abundance of the tetracycline resistance genes in a paddy soil after continuous application of composted swine manure for 6 years [J]. China Environmental Science, 2015, 35(4): 1173−1180.(in Chinese) [23] 张俊, 杨晓洪, 葛峰, 等. 长期施用四环素残留猪粪对土壤中耐药菌及抗性基因形成的影响 [J]. 环境科学, 2014, 35(6):2374−2380.ZHANG J, YANG X H, GE F, et al. Effects of long-term application of pig manure containing residual tetracycline on the formation of drug-resistant bacteria and resistance genes [J]. Environmental Science, 2014, 35(6): 2374−2380.(in Chinese) [24] 楼晨露. 长期定量施用猪粪稻田土壤中典型抗生素及其抗性基因污染研究[D]. 杭州: 浙江大学, 2016.LOU C L. The occurrence of typical antibiotics and antibiotic resistance genes in paddy soils with long-term and quantitative manure application[D]. Hangzhou: Zhejiang University, 2016. [25] WU N, QIAO M, ZHANG B, et al. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China [J]. Environmental Science & Technology, 2010, 44(18): 6933−6939.