Functional Analysis on CgRAB4 of Colletotrichum graminicola
-
摘要:
目的 阐明禾谷炭疽菌(Colletotrichum graminicola)中CgRAB4的功能,为探究Rab蛋白在禾谷炭疽病菌中的保守性和特殊功能奠定理论基础。 方法 通过同源重组的方法对CgRAB4 进行基因敲除,经潮霉素抗性筛选和PCR验证后获得缺失突变体,进而分析其在禾谷炭疽菌生长发育和侵染致病过程中的作用。 结果 成功获得CgRAB4基因的3个缺失突变体和1个异位整合突变体,对其表型分析发现CgRAB4基因缺失后促进了菌丝的生长,但不影响菌丝的形态,且不参与调控外界胁迫的响应过程,产孢量、孢子形态、附着胞的产生以及对玉米的致病性都没有明显变化。 结论 通过对CgRAB4基因进行敲除,表型分析后发现该基因可能参与调控禾谷炭疽菌的生长过程,为揭示Rab蛋白在禾谷炭疽菌生长发育和侵染致病过程的作用奠定理论基础,为防治玉米炭疽病提供理论指导。 Abstract:Objective Conserve and special functions of Rab4 protein of Colletotrichum graminicola (Cg) were studied. Method Based upon the principle of homologous recombination, CgRAB4 was knocked out from the DNA of Cg to obtain mutants with the target gene deleted. A hygromycin-resistance screening and PCR verification were performed on the mutants prior to a functional analysis on Cg development and pathogenesis. Result Three CgRAB4-deleted and one ectopic mutants were secured by the designed process. The phenotypic analysis revealed that the deletion promoted the hypha growth but did not affect the mycelial morphology, nor regulate the response to external stress or significant change in the spore production and morphology, appressorium germination or the pathogenicity on the mutants. Conclusion CgRAB4 was successfully removed from Cg to unveil the involvement of the gene in regulating the mycelial growth. Understanding on the roles of Rab proteins played in the development and pathogenesis of Cg provided a guiding direction for further research on the prevention and treatment of corn anthrax. -
Key words:
- Colletotrichum graminicola /
- CgRAB4 /
- knock out /
- phenotypic analysis
-
图 4 禾谷炭疽菌CgRAB4缺失突变体的生长发育
注:①A:菌落形态 ;B:菌丝生长速率; C:菌丝形态。②不同小写字母表示差异达显著水平( P <0.05),下同。
Figure 4. Development of CgRAB4-deleted mutants
Note: ①A: colony morphology; B: growth rate; C: mycelial morphology.② Data with different lowercase letters indicate significant difference at 0.05 level, the same as below.
图 5 CgRAB4缺失突变体胁迫响应试验
注:A:含有不同添加物的CMII培养基上CgRAB4缺失突变的菌落形态;B:CMII培养基上的抑制率 ;C:含有不同添加物的PDA培养基上CgRAB4缺失突变的菌落形态;D:PDA培养基上的抑制率。
Figure 5. Stress responses of CgRAB4-deleted mutants
Note: A: colony morphology of CgRAB4-deleted mutants obtained on CMII media containing varied supplements; B: inhibition rate on CMII media; C: colony morphology of CgRAB4-deleted mutants obtained on PDA media containing varied supplements; D: inhibition rate on PDA media.
表 1 供试培养基
Table 1. Culture media applied
名称
Name配方
Ingredient添加物
Supplement用途
ApplicationMK 40 g米糠 不含添加物的固体培养基用于禾谷炭疽菌野生型以及缺失突变体的生长速率的测定 20 g琼脂粉 CMII 50 mL N源 氯化钠 NaCl 含添加物的固体培养基用于禾谷炭疽菌野生型以及缺失突变体胁迫敏感性测定 1 mL 微量元素
Trace elements氯化钾 KCl 1 mL维生素
Vitamin solution山梨醇 Sorbitol 10 g D-葡萄糖 十二烷基硫酸钠 SDS 2 g 蛋白胨 Peptone 荧光增白剂 CFW 1 g 酵母提取物
Yeast extraction刚果红 CR 1 g(酸水解酪蛋白) Casamino acids pH6.5 PDA 氯化钠 NaCl 液体培养基用于禾谷炭疽菌野生型以及缺失突变体生物量测定 46 g·L−1 马铃薯葡萄糖
Potato dextrose氯化钾 KCl 15 g·L−1 琼脂粉 Agar 山梨醇 Sorbitol 十二烷基硫酸钠 SDS 荧光增白剂 CFW 刚果红 CR TB3 200 g·L−1 蔗糖 Sucrose 用于原生质体再生 6 g·L−1 酸水解酪蛋白
Casamino acids6 g·L−1 酵母提取物
Yeast extract15 g·L−1 琼脂粉 Agar 表 2 供试引物序列
Table 2. Sequence of primer employed
引物名称
Primer引物序列
Sequence引物用途
ApplicationCgRAB4 AF CGAATGGGAGTTAGGGTG 扩增A片段
Applification of A fragmentCgRAB4 AR TTGACCTCCACTAGCTCCAGCCAA
GCCACAGCAGTCGGTTGGTTCgRAB4 BF GAATAGAGTAGATGCCGACCGCGG
GTTTTTGGTTTACCTGACGAT扩增B片段
Applification of B fragment
CgRAB4 BR CTTCACCTCTTGCTCCTG CgRAB4 OF CTCCCAACTTGTCTTGCCTTCT 敲除突变体的验证
Verification of knockout mutantsCgRAB4 OR TCGCCTGCCCTTTCGTCT CgRAB4 UAF CGCAGAGTCAGCGTCAAT H853 GACAGACGTCGCGGTGAGTT YG/F GATGTAGGAGGGCGTGGATATGTCCT 扩增潮霉素基因全长
Amplification of full length of hygromycin geneHY/R GTATTGACCGATTCCTTGCGGTCCGAA HYG/F GGCTTGGCTGGAGCTAGTGGAGGTCAA HYG/R AACCCGCGGTCGGCATCTACTCTATTC -
[1] DEAN R, KAN J, PRETORIUS Z A, et al. The Top 10 fungal pathogens in molecular plant pathology [J]. Molecular Plant Pathology, 2012, 13(7): 414−430. [2] MUELLER D S, WISE K A, SISSON A J, et al. Corn yield loss estimates due to diseases in the United States and Ontario, Canada from 2012 to 2015 [J]. Plant Health Progress, 2016, 17(3): 211−222. doi: 10.1094/PHP-RS-16-0030 [3] WU F, GUCLU H. Global maize trade and food security: implications from a social network model [J]. Risk analysis: an official publication of the Society for Risk Analysis, 2013, 33(12): 2168−2178. doi: 10.1111/risa.12064 [4] VARGAS W A, MARTÍN J M S, RECH G E, et al. Plant defense mechanisms are activated during biotrophic and necrotrophic development of colletotricum Graminicola in maize [J]. Plant Physiology, 2012, 158(3): 1342−1358. doi: 10.1104/pp.111.190397 [5] MIMS C W, VAILLANCOURT L J. Ultrastructural characterization of infection and colonization of maize leaves by Colletotrichum graminicola and by a C. graminicola pathogenicity mutant [J]. Phytopathology, 2002, 92(7): 803−812. doi: 10.1094/PHYTO.2002.92.7.803 [6] SEGEV N. Ypt and Rab GTPases: Insight into functions through novel interactions [J]. Current Opinion in Cell Biology, 2001, 13(4): 500−511. doi: 10.1016/S0955-0674(00)00242-8 [7] LIU X H, CHEN S M, GAO H M, et al. The small GTPase MoYpt7 is required for membrane fusion in autophagy and pathogenicity of Magnaporthe oryzae [J]. Environmental Microbiology, 2015, 17(11): 4495−4510. doi: 10.1111/1462-2920.12903 [8] ZHENG H W, ZHENG W H, WU C X, et al. Rab GTPases are essential for membrane trafficking-dependent growth and pathogenicity in Fusarium graminearum [J]. Environmental Microbiology, 2015, 17(11): 4580−4599. doi: 10.1111/1462-2920.12982 [9] RAINS A, BRYANT Y, DORSETT K A, et al. Ypt4 and lvs1 regulate vacuolar size and function in Schizosaccharomyces pombe [J]. Cellular Logistics, 2017, 7(3): e1335270. doi: 10.1080/21592799.2017.1335270 [10] FUCHS U, STEINBERG G. Endocytosis in the plant-pathogenic fungus Ustilago maydis [J]. Protoplasma, 2005, 226(1/2): 75−80. [11] 李源, 步伟洋, 鲁国东, 等. 利用生物信息学方法鉴定和分析禾谷炭疽菌Rab蛋白家族 [J]. 热带作物学报, 2018, 39(7):1416−1422. doi: 10.3969/j.issn.1000-2561.2018.07.023LI Y, BU W Y, LU G D, et al. Identification and analysis of rab proteins in Colletotrichum graminicola by bioinformatic approach [J]. Chinese Journal of Tropical Crops, 2018, 39(7): 1416−1422.(in Chinese) doi: 10.3969/j.issn.1000-2561.2018.07.023 [12] NAG S, RANI S, MAHANTY S, et al. Rab4A organizes endosomal domains for sorting cargo to lysosome-related organelles [J]. Journal of Cell Science, 2018, 131(18): jcs216226. [13] HOU L, CAI M J, LIU W, et al. Small GTPase Rab4b participates in the gene transcription of 20-hydroxyecdysone and insulin pathways to regulate glycogen level and metamorphosis [J]. Developmental Biology, 2012, 371(1): 13−22. doi: 10.1016/j.ydbio.2012.06.015 [14] PREUSS M L, SCHMITZ A J, THOLE J M, et al. A role for the RabA4b effector protein PI-4Kβ1 in polarized expansion of root hair cells in Arabidopsis thaliana [J]. The Journal of Cell Biology, 2006, 172(7): 991−998. doi: 10.1083/jcb.200508116 [15] CHEN H J, LIU X G, CHEN W C. Rab4: a significant factor in regulating vesicle cycle and transportation [J]. Progress in Biochemistry & Biophysics, 2016, 43(12): 1163−1172. [16] YUDOWSKI G A, PUTHENVEEDU M A, HENRY A G, et al. Cargo-mediated regulation of a rapid Rab4-dependent recycling pathway [J]. Molecular Biology of the Cell, 2009, 20(11): 2774−2784. doi: 10.1091/mbc.e08-08-0892 [17] DE RENZIS S, SÖNNICHSEN B, ZERIAL M. Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes [J]. Nature Cell Biology, 2002, 4(2): 124−133. doi: 10.1038/ncb744 [18] FALK J, KONOPACKI F A, ZIVRAJ K H, et al. Rab5 and Rab4 regulate axon elongation in the Xenopus visual system [J]. The Journal of Neuroscience, 2014, 34(2): 373−391. doi: 10.1523/JNEUROSCI.0876-13.2014 [19] PREUSS M L, SERNA J, Falbel T G, et al. The Arabidopsis Rab GTPase RabA4b localizes to the tips of growing root hair cells [J]. Plant Cell, 2004, 16(6): 1589−1603. doi: 10.1105/tpc.021634