• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

禾谷炭疽菌CgRAB4的功能研究

齐尧尧 赵耀 石晓玲

齐尧尧,赵耀,石晓玲. 禾谷炭疽菌CgRAB4的功能研究 [J]. 福建农业学报,2021,36(6):679−686 doi: 10.19303/j.issn.1008-0384.2021.06.009
引用本文: 齐尧尧,赵耀,石晓玲. 禾谷炭疽菌CgRAB4的功能研究 [J]. 福建农业学报,2021,36(6):679−686 doi: 10.19303/j.issn.1008-0384.2021.06.009
QI Y Y, ZHAO Y, SHI X L. Functional Analysis on CgRAB4 of Colletotrichum graminicola [J]. Fujian Journal of Agricultural Sciences,2021,36(6):679−686 doi: 10.19303/j.issn.1008-0384.2021.06.009
Citation: QI Y Y, ZHAO Y, SHI X L. Functional Analysis on CgRAB4 of Colletotrichum graminicola [J]. Fujian Journal of Agricultural Sciences,2021,36(6):679−686 doi: 10.19303/j.issn.1008-0384.2021.06.009

禾谷炭疽菌CgRAB4的功能研究

doi: 10.19303/j.issn.1008-0384.2021.06.009
基金项目: 山东省自然科学基金项目(ZR2019PC001);福建农林大学生物农药与化学生物学教育部重点实验室开放课题(keylab2018-03);福建省高校重点实验室开放基金项目(PMI2018KF3)
详细信息
    作者简介:

    齐尧尧(1987−),女,博士,副教授,研究方向:植物与真菌的相互作用(E-mail:982440756@qq.com

  • 中图分类号: S 435.1

Functional Analysis on CgRAB4 of Colletotrichum graminicola

  • 摘要:   目的  阐明禾谷炭疽菌(Colletotrichum graminicola)中CgRAB4的功能,为探究Rab蛋白在禾谷炭疽病菌中的保守性和特殊功能奠定理论基础。  方法  通过同源重组的方法对CgRAB4进行基因敲除,经潮霉素抗性筛选和PCR验证后获得缺失突变体,进而分析其在禾谷炭疽菌生长发育和侵染致病过程中的作用。  结果  成功获得CgRAB4基因的3个缺失突变体和1个异位整合突变体,对其表型分析发现CgRAB4基因缺失后促进了菌丝的生长,但不影响菌丝的形态,且不参与调控外界胁迫的响应过程,产孢量、孢子形态、附着胞的产生以及对玉米的致病性都没有明显变化。  结论  通过对CgRAB4基因进行敲除,表型分析后发现该基因可能参与调控禾谷炭疽菌的生长过程,为揭示Rab蛋白在禾谷炭疽菌生长发育和侵染致病过程的作用奠定理论基础,为防治玉米炭疽病提供理论指导。
  • 图  1  同源重组的敲除策略(A)和SOE-PCR热循环体系(B)

    Figure  1.  Homologous recombination knockout (A) and SOC-PCR system (B)

    图  2  SOE-PCR扩增AH和HB

    注: M: DL2000 marker。

    Figure  2.  SOE-PCR amplifications of AH and HB

    Note: M: DL2000 marker.

    图  3  转化子的DNA提取与验证

    注:M: DL2000 marker M2: 野生型基因组DNA。

    Figure  3.  DNA extraction and verification on transformants

    Note: M: DL2000 marker; M2: DNA of wild type genome.

    图  4  禾谷炭疽菌CgRAB4缺失突变体的生长发育

    注:①A:菌落形态 ;B:菌丝生长速率; C:菌丝形态。②不同小写字母表示差异达显著水平( P <0.05),下同。

    Figure  4.  Development of CgRAB4-deleted mutants

    Note: ①A: colony morphology; B: growth rate; C: mycelial morphology.② Data with different lowercase letters indicate significant difference at 0.05 level, the same as below.

    图  5  CgRAB4缺失突变体胁迫响应试验

    注:A:含有不同添加物的CMII培养基上CgRAB4缺失突变的菌落形态;B:CMII培养基上的抑制率 ;C:含有不同添加物的PDA培养基上CgRAB4缺失突变的菌落形态;D:PDA培养基上的抑制率。

    Figure  5.  Stress responses of CgRAB4-deleted mutants

    Note: A: colony morphology of CgRAB4-deleted mutants obtained on CMII media containing varied supplements; B: inhibition rate on CMII media; C: colony morphology of CgRAB4-deleted mutants obtained on PDA media containing varied supplements; D: inhibition rate on PDA media.

    图  6  CgRAB4缺失突变体产孢量和孢子形态

    注:A:产孢量统计;B:孢子形态观察。

    Figure  6.  Conidiations and spore morphology of CgRAB4-deleted mutants

    Note: A: conidiation; B: spore morphology.

    图  7  CgRAB4缺失突变体的孢子萌发和附着胞形态

    注:A:24 h孢子萌发产生附着胞;B:48 h 附着胞形态。

    Figure  7.  Spore germination and appressorium morphology of CgRAB4-deleted mutants

    Note: A:the spores germinate to produce appressorium on 24 h; B: morphology of appressorium on 48 h.

    图  8  CgRAB4缺失突变体对玉米的致病性

    注:A:造伤接种;B:喷雾接种。

    Figure  8.  Pathogenesis of CgRAB4-deleted mutants on corn

    Note: A: injury inoculation; B: spray inoculation.

    表  1  供试培养基

    Table  1.   Culture media applied

    名称
    Name
    配方
    Ingredient
    添加物
    Supplement
    用途
    Application
    MK 40 g米糠 不含添加物的固体培养基用于禾谷炭疽菌野生型以及缺失突变体的生长速率的测定
    20 g琼脂粉
    CMII 50 mL N源 氯化钠 NaCl 含添加物的固体培养基用于禾谷炭疽菌野生型以及缺失突变体胁迫敏感性测定
    1 mL 微量元素
    Trace elements
    氯化钾 KCl
    1 mL维生素
    Vitamin solution
    山梨醇 Sorbitol
    10 g D-葡萄糖 十二烷基硫酸钠 SDS
    2 g 蛋白胨 Peptone 荧光增白剂 CFW
    1 g 酵母提取物
    Yeast extraction
    刚果红 CR
    1 g(酸水解酪蛋白) Casamino acids
    pH6.5
    PDA 氯化钠 NaCl 液体培养基用于禾谷炭疽菌野生型以及缺失突变体生物量测定
    46 g·L−1 马铃薯葡萄糖
    Potato dextrose
    氯化钾 KCl
    15 g·L−1 琼脂粉 Agar 山梨醇 Sorbitol
    十二烷基硫酸钠 SDS
    荧光增白剂 CFW
    刚果红 CR
    TB3 200 g·L−1 蔗糖 Sucrose 用于原生质体再生
    6 g·L−1 酸水解酪蛋白
    Casamino acids
    6 g·L−1 酵母提取物
    Yeast extract
    15 g·L−1 琼脂粉 Agar
    下载: 导出CSV

    表  2  供试引物序列

    Table  2.   Sequence of primer employed

    引物名称
    Primer
    引物序列
    Sequence
    引物用途
    Application
    CgRAB4 AF CGAATGGGAGTTAGGGTG 扩增A片段
    Applification of A fragment
    CgRAB4 AR TTGACCTCCACTAGCTCCAGCCAA
    GCCACAGCAGTCGGTTGGTT
    CgRAB4 BF GAATAGAGTAGATGCCGACCGCGG
    GTTTTTGGTTTACCTGACGAT
    扩增B片段
    Applification of B fragment
    CgRAB4 BR CTTCACCTCTTGCTCCTG
    CgRAB4 OF CTCCCAACTTGTCTTGCCTTCT 敲除突变体的验证
    Verification of knockout mutants
    CgRAB4 OR TCGCCTGCCCTTTCGTCT
    CgRAB4 UAF CGCAGAGTCAGCGTCAAT
    H853 GACAGACGTCGCGGTGAGTT
    YG/F GATGTAGGAGGGCGTGGATATGTCCT 扩增潮霉素基因全长
    Amplification of full length of hygromycin gene
    HY/R GTATTGACCGATTCCTTGCGGTCCGAA
    HYG/F GGCTTGGCTGGAGCTAGTGGAGGTCAA
    HYG/R AACCCGCGGTCGGCATCTACTCTATTC
    下载: 导出CSV
  • [1] DEAN R, KAN J, PRETORIUS Z A, et al. The Top 10 fungal pathogens in molecular plant pathology [J]. Molecular Plant Pathology, 2012, 13(7): 414−430.
    [2] MUELLER D S, WISE K A, SISSON A J, et al. Corn yield loss estimates due to diseases in the United States and Ontario, Canada from 2012 to 2015 [J]. Plant Health Progress, 2016, 17(3): 211−222. doi: 10.1094/PHP-RS-16-0030
    [3] WU F, GUCLU H. Global maize trade and food security: implications from a social network model [J]. Risk analysis: an official publication of the Society for Risk Analysis, 2013, 33(12): 2168−2178. doi: 10.1111/risa.12064
    [4] VARGAS W A, MARTÍN J M S, RECH G E, et al. Plant defense mechanisms are activated during biotrophic and necrotrophic development of colletotricum Graminicola in maize [J]. Plant Physiology, 2012, 158(3): 1342−1358. doi: 10.1104/pp.111.190397
    [5] MIMS C W, VAILLANCOURT L J. Ultrastructural characterization of infection and colonization of maize leaves by Colletotrichum graminicola and by a C. graminicola pathogenicity mutant [J]. Phytopathology, 2002, 92(7): 803−812. doi: 10.1094/PHYTO.2002.92.7.803
    [6] SEGEV N. Ypt and Rab GTPases: Insight into functions through novel interactions [J]. Current Opinion in Cell Biology, 2001, 13(4): 500−511. doi: 10.1016/S0955-0674(00)00242-8
    [7] LIU X H, CHEN S M, GAO H M, et al. The small GTPase MoYpt7 is required for membrane fusion in autophagy and pathogenicity of Magnaporthe oryzae [J]. Environmental Microbiology, 2015, 17(11): 4495−4510. doi: 10.1111/1462-2920.12903
    [8] ZHENG H W, ZHENG W H, WU C X, et al. Rab GTPases are essential for membrane trafficking-dependent growth and pathogenicity in Fusarium graminearum [J]. Environmental Microbiology, 2015, 17(11): 4580−4599. doi: 10.1111/1462-2920.12982
    [9] RAINS A, BRYANT Y, DORSETT K A, et al. Ypt4 and lvs1 regulate vacuolar size and function in Schizosaccharomyces pombe [J]. Cellular Logistics, 2017, 7(3): e1335270. doi: 10.1080/21592799.2017.1335270
    [10] FUCHS U, STEINBERG G. Endocytosis in the plant-pathogenic fungus Ustilago maydis [J]. Protoplasma, 2005, 226(1/2): 75−80.
    [11] 李源, 步伟洋, 鲁国东, 等. 利用生物信息学方法鉴定和分析禾谷炭疽菌Rab蛋白家族 [J]. 热带作物学报, 2018, 39(7):1416−1422. doi: 10.3969/j.issn.1000-2561.2018.07.023

    LI Y, BU W Y, LU G D, et al. Identification and analysis of rab proteins in Colletotrichum graminicola by bioinformatic approach [J]. Chinese Journal of Tropical Crops, 2018, 39(7): 1416−1422.(in Chinese) doi: 10.3969/j.issn.1000-2561.2018.07.023
    [12] NAG S, RANI S, MAHANTY S, et al. Rab4A organizes endosomal domains for sorting cargo to lysosome-related organelles [J]. Journal of Cell Science, 2018, 131(18): jcs216226.
    [13] HOU L, CAI M J, LIU W, et al. Small GTPase Rab4b participates in the gene transcription of 20-hydroxyecdysone and insulin pathways to regulate glycogen level and metamorphosis [J]. Developmental Biology, 2012, 371(1): 13−22. doi: 10.1016/j.ydbio.2012.06.015
    [14] PREUSS M L, SCHMITZ A J, THOLE J M, et al. A role for the RabA4b effector protein PI-4Kβ1 in polarized expansion of root hair cells in Arabidopsis thaliana [J]. The Journal of Cell Biology, 2006, 172(7): 991−998. doi: 10.1083/jcb.200508116
    [15] CHEN H J, LIU X G, CHEN W C. Rab4: a significant factor in regulating vesicle cycle and transportation [J]. Progress in Biochemistry & Biophysics, 2016, 43(12): 1163−1172.
    [16] YUDOWSKI G A, PUTHENVEEDU M A, HENRY A G, et al. Cargo-mediated regulation of a rapid Rab4-dependent recycling pathway [J]. Molecular Biology of the Cell, 2009, 20(11): 2774−2784. doi: 10.1091/mbc.e08-08-0892
    [17] DE RENZIS S, SÖNNICHSEN B, ZERIAL M. Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes [J]. Nature Cell Biology, 2002, 4(2): 124−133. doi: 10.1038/ncb744
    [18] FALK J, KONOPACKI F A, ZIVRAJ K H, et al. Rab5 and Rab4 regulate axon elongation in the Xenopus visual system [J]. The Journal of Neuroscience, 2014, 34(2): 373−391. doi: 10.1523/JNEUROSCI.0876-13.2014
    [19] PREUSS M L, SERNA J, Falbel T G, et al. The Arabidopsis Rab GTPase RabA4b localizes to the tips of growing root hair cells [J]. Plant Cell, 2004, 16(6): 1589−1603. doi: 10.1105/tpc.021634
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  939
  • HTML全文浏览量:  191
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-26
  • 修回日期:  2020-04-26
  • 网络出版日期:  2021-06-06
  • 刊出日期:  2021-06-28

目录

    /

    返回文章
    返回