Physiological Responses of Two Varieties of Taxus Plants to Simulated Acid Rain Stress
-
摘要:
目的 筛选红豆杉属植物中对酸雨胁迫耐受性较强的物种,为酸雨灾害地区红豆杉属植物的资源保存及应用提供理论依据。 方法 以2年生红豆杉(Taxus chinensis)和云南红豆杉(Taxus yunnanensis)幼苗为试验材料,以pH值5.6为对照,设置4个模拟酸雨胁迫处理(pH值分别为4.5、4.0、3.5、3.0),探讨酸雨胁迫对2种植物幼苗叶片抗氧化酶活性、叶绿素含量、类胡萝卜素含量、丙二醛含量和有机渗透调节物质含量的影响。 结果 随着酸雨酸度的增加,2种植物叶片抗氧化酶(APX、PPO、SOD、POD和CAT)活性和有机渗透调节物质(可溶性蛋白和可溶性糖)含量整体呈先上升后下降的趋势,丙二醛(MDA)含量呈上升趋势,叶绿素(CHL) 含量和类胡萝卜素(CAR)含量呈下降趋势。 结论 红豆杉和云南红豆杉对轻度酸雨均具有一定的耐受性,但云南红豆杉对模拟酸雨的耐受性比红豆杉强,其中红豆杉对pH 4.5的模拟酸雨耐受性最好,云南红豆杉对pH 4.0的模拟酸雨耐受性最好,但pH 3.0的重度酸雨会严重影响2种植物的各项生理指标,抑制其生长。 Abstract:Objective Physiological responses to imposed simulated acid rain treatment were analyzed to determine the stress tolerance of two varieties of Taxus plants. Method Two-year-oldTaxus chinensis and T. yunnanensis, which are known to be resistant to acid rain, were treated by solutions of pH 4.5, 4.0, 3.5, and 3.0. Antioxidant enzyme activities and contents of chlorophyll (CHL), carotenoids (CAR), nutrients, malondialdehyde (MDA), and osmotic adjustment soluble proteins (SP) and sugars (SS) in leaves of the plants under treatments and control at pH 5.6 were measured. Result The activities of APX, PPO, SOD, POD, and CAT as well as the contents of SP and SS of the plants increased and followed by a decline, while MDA increased and CHL and CAR decreased as the treatment acidity increased. The stress tolerance of the two species differed, as T. chinensis peaked at pH 4.5 and T. yunnanensis at pH 4.0. However, neither of them could withstand pH 3.0 treatment without severe ill-effects physiologically. Conclusion In the simulated acid rain test, T. yunnanensis appeared to be more tolerant to the imposed stress than did T. chinensis. -
Key words:
-
Taxus
/ - Taxus chinensis /
- T. yunnanensis /
- acid rain stress /
- physiological response
-
Taxus
-
表 1 酸雨胁迫下红豆杉属植物叶片内各生理指标的隶属函数平均值
Table 1. Average physiological indices on membership function of leaves of T. chinensis and T. yunnanensis under acid rain stress
处理(pH)
Treatment红豆杉
T. chinensis云南红豆杉
T. yunnanensis平均值
Mean value排序
Ranking平均值
Mean value排序
Ranking3.0 0.006 5 0.020 5 3.5 0.254 4 0.216 4 4.0 0.490 3 0.768 1 4.5 0.706 1 0.681 2 0(CK) 0.622 2 0.615 3 表 2 酸雨胁迫对不同红豆杉属植物叶片中生理指标的综合评价
Table 2. Overall evaluation on physiological indices of leaves of T. chinensis and T. yunnanensis under acid rain stress
物种
Species隶属函数平均值
Mean value of
membership function综合排名
Ranking红豆杉 T. chinensis 0.416 2 云南红豆杉 T. yunnanensis 0.460 1 -
[1] 王子健, 朱欣, 高松. 酸雨、遮阴胁迫对加拿大一枝黄花光合生理特征的影响 [J]. 河南师范大学学报(自然科学版), 2015, 43(2):113−118, 125.WANG Z J, ZHU X, GAO S. Effects on photosynthetic physiological characteristics of Solidago canadensis under acid rain or shading stress [J]. Journal of Henan Normal University (Natural Science Edition), 2015, 43(2): 113−118, 125.(in Chinese) [2] 解淑艳, 王瑞斌, 郑皓皓. 2005—2011年全国酸雨状况分析 [J]. 环境监控与预警, 2012, 4(5):33−37. doi: 10.3969/j.issn.1674-6732.2012.05.010XIE S Y, WANG R B, ZHENG H H. Analysis on the acid rain from 2005 to 2011 in China [J]. Environmental Monitoring and Forewarning, 2012, 4(5): 33−37.(in Chinese) doi: 10.3969/j.issn.1674-6732.2012.05.010 [3] 金清, 江洪, 余树全, 等. 酸雨胁迫对苦槠幼苗气体交换与叶绿素荧光的影响 [J]. 植物生态学报, 2010, 34(9):1117−1124. doi: 10.3773/j.issn.1005-264x.2010.09.012JIN Q, JIANG H, YU S Q, et al. Effects of acid rain stress on gas exchange and chlorophyll fluorescence of Castanopsis sclerophylla seedlings [J]. Chinese Journal of Plant Ecology, 2010, 34(9): 1117−1124.(in Chinese) doi: 10.3773/j.issn.1005-264x.2010.09.012 [4] 袁远爽, 肖娟, 胡艳. 模拟酸雨对白簕叶片抗氧化酶活性及叶绿素荧光参数的影响 [J]. 植物生理学报, 2014, 50(6):758−764.YUAN Y S, XIAO J, HU Y. Effects of simulated acid rain on antioxidant enzyme activities and chlorophyll fluorescence paramenters in leaves of Acanthopanax trifoliatus [J]. Plant Physiology Journal, 2014, 50(6): 758−764.(in Chinese) [5] 黄俊文, 黄真池, 曾彩萍, 等. 酸雨胁迫对两种桉树光合生理及保护酶活性的影响 [J]. 分子植物育种, 2017, 15(8):3272−3277.HUANG J W, HUANG Z C, ZENG C P, et al. Effects of acid rain stress on photosynthetic physiology and protective enzyme activities of two Eucalyptus species [J]. Molecular Plant Breeding, 2017, 15(8): 3272−3277.(in Chinese) [6] 潘瑞, 瞿显友, 蒋成英, 等. 红豆杉资源保护与利用的研究进展 [J]. 《重庆中草药研究》, 2019(1):48−50.PAN R, QU X Y, JIANG C Y, et al. Research progress on the protection and utilization of Taxus resources [J]. Chongqing Journal of Research on Chinese Drugs and Herbs, 2019(1): 48−50.(in Chinese) [7] 龙婷, 陈杰, 杨蓝, 等. 极小种群东北红豆杉所在群落特征及其环境解释 [J]. 植物科学学报, 2020, 38(1):77−87. doi: 10.11913/PSJ.2095-0837.2020.10077LONG T, CHEN J, YANG L, et al. Characteristics and environmental interpretation of communities of Taxus cuspidata Sieb. et Zucc., a plant species with extremely small populations [J]. Plant Science Journal, 2020, 38(1): 77−87.(in Chinese) doi: 10.11913/PSJ.2095-0837.2020.10077 [8] 高润梅, 石晓东, 樊兰英, 等. 山西省南方红豆杉自然分布与群落生态学特征 [J]. 应用生态学报, 2016, 27(6):1820−1828.GAO R M, SHI X D, FAN L Y, et al. Natural distribution and community ecological characteristics of Taxus chinensis var. mairei in Shanxi Province, China [J]. Chinese Journal of Applied Ecology, 2016, 27(6): 1820−1828.(in Chinese) [9] MAJEED A, SINGH A, SHARMA R K, et al. Comprehensive temporal reprogramming ensures dynamicity of transcriptomic profile for adaptive response in Taxus contorta [J]. Molecular Genetics and Genomics, 2020, 295(6): 1401−1414. doi: 10.1007/s00438-020-01709-2 [10] HU X L, ZHANG L S, WILSON I, et al. The R2R3-MYB transcription factor family in Taxus chinensis: Identification, characterization, expression profiling and posttranscriptional regulation analysis [J]. PeerJ, 2020, 8: e8473. doi: 10.7717/peerj.8473 [11] GENG Y F, LI Y Q, YUAN X L, et al. The complete chloroplast genome sequence of Taxus yunnanensis [J]. Mitochondrial DNA Part B, 2020, 5(3): 2756−2757. doi: 10.1080/23802359.2020.1788442 [12] SOLIMAN S S M, RAIZADA M N. Sites of biosynthesis and storage of Taxol in Taxus media (Rehder) plants: Mechanism of accumulation [J]. Phytochemistry, 2020, 175: 112369. doi: 10.1016/j.phytochem.2020.112369 [13] 徐刚标, 肖玉菲, 刘雄盛, 等. 濒危植物南方红豆杉大孢子发生和雌配子体发育 [J]. 植物科学学报, 2015, 33(3):271−280. doi: 10.11913/PSJ.2095-0837.2015.30271XU G B, XIAO Y F, LIU X S, et al. Studies on megasporogenesis and development of megagametophytes in Taxus chinensis var. mairei [J]. Plant Science Journal, 2015, 33(3): 271−280.(in Chinese) doi: 10.11913/PSJ.2095-0837.2015.30271 [14] 张银, 李文杰, 李玲丽, 等. 模拟酸雨对3种红豆杉幼苗生理指标的影响 [J]. 西部林业科学, 2020, 49(1):120−127.ZHANG Y, LI W J, LI L L, et al. Effects of simulated acid rain on physiological indexes of three species of Taxus seedlings [J]. Journal of West China Forestry Science, 2020, 49(1): 120−127.(in Chinese) [15] 孙兵, 李金玲, 李文杰, 等. 外源NO对模拟酸雨胁迫下曼地亚红豆杉抗氧化系统的影响 [J]. 北方园艺, 2018(2):83−90.SUN B, LI J L, LI W J, et al. Effect of exogenous NO on antioxidant system of Taxus media seedlings under simulated acid rain stress [J]. Northern Horticulture, 2018(2): 83−90.(in Chinese) [16] 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000. [17] NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant and Cell Physiology, 1981, 22(5): 867−880. [18] ANDERSON J V, MORRIS C F. An improved whole-seed assay for screening wheat germplasm for polyphenol oxidase activity [J]. Crop Science, 2001, 41(6): 1697−1705. doi: 10.2135/cropsci2001.1697 [19] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. [20] 许凤, 张颢, 杨春梅, 等. 利用隶属函数值法评价月季耐寒性 [J]. 西南农业学报, 2012, 25(5):1870−1873. doi: 10.3969/j.issn.1001-4829.2012.05.067XU F, ZHANG H, YANG C M, et al. Evaluation of cold-resistance of rose species using membership function [J]. Southwest China Journal of Agricultural Sciences, 2012, 25(5): 1870−1873.(in Chinese) doi: 10.3969/j.issn.1001-4829.2012.05.067 [21] FU L K, LI N, MILL R R. Flora of China[M]. Beijing: Science Press and St. Louis: Missouri Botanical Garden Press, 1999. [22] 赵栋, 潘远智, 邓仕槐, 等. 模拟酸雨对山茶生理特性的影响 [J]. 南京林业大学学报(自然科学版), 2010, 34(5):39−42.ZHAO D, PAN Y Z, DENG S H, et al. Effects of simulated acid rain on physiological characteristics of Camellia japonica [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2010, 34(5): 39−42.(in Chinese) [23] 赵英, 吴敏, 周兴文. 模拟酸雨胁迫对罗汉果幼苗生理特性的影响 [J]. 中国南方果树, 2020, 49(3):62−66.ZHAO Y, WU M, ZHOU X W. Effects of simulated acid rain stress on the physiological characteristics of Siraitia grosvenorii seedlings [J]. South China Fruits, 2020, 49(3): 62−66.(in Chinese) [24] 王金龙, 赵念席, 徐华, 等. 不同地理种群大针茅生理生化特征的研究 [J]. 草业学报, 2011, 20(5):42−48. doi: 10.11686/cyxb20110506WANG J L, ZHAO N X, XU H, et al. A study on the physiological and biochemical characters of different Stipa grandis geographical populations [J]. Acta Prataculturae Sinica, 2011, 20(5): 42−48.(in Chinese) doi: 10.11686/cyxb20110506 [25] 陶秀花, 罗惠文, 罗永松, 等. 模拟酸雨胁迫对彩叶桂花新品种紫嫣公主和虔南桂妃生长的影响 [J]. 江西农业学报, 2019, 31(11):34−38.TAO X H, LUO H W, LUO Y S, et al. Effects of simulated acid rain stress on growth of new varieties of colorful Osmanthus fragrans ziyanongzhu and Qiannanguifei [J]. Acta Agriculturae Jiangxi, 2019, 31(11): 34−38.(in Chinese) [26] 周原也, 易晓芹, 周跃斌, 等. 模拟酸雨对茶树叶片光合色素含量及光合作用CO2响应的影响 [J]. 分子植物育种, 2019, 17(21):7201−7206.ZHOU Y Y, YI X Q, ZHOU Y B, et al. Effects of simulated acid rain on photosynthetic pigment content and photosynthetic CO2 response of tea leaves [J]. Molecular Plant Breeding, 2019, 17(21): 7201−7206.(in Chinese) [27] 郭慧媛, 马元丹, 王丹, 等. 模拟酸雨对毛竹叶片抗氧化酶活性及释放绿叶挥发物的影响 [J]. 植物生态学报, 2014, 38(8):896−903.GUO H Y, MA Y D, WANG D, et al. Effects of simulated acid rain on the activity of antioxidant enzyme and the emission of induced green leaf volatiles in Phyllostachys pubescens [J]. Chinese Journal of Plant Ecology, 2014, 38(8): 896−903.(in Chinese) [28] 马兰. 不同类型酸胁迫对云杉和多花黑麦草抗性生理的影响[D]. 兰州: 甘肃农业大学, 2010.MA L. Influences of different types of acid stress on the resistant physiology in Picea asperata and Lolium multifolorum[D]. Lanzhou: Gansu Agricultural University, 2010. (in Chinese) [29] 廖源林, 蔡仕珍, 叶充, 等. 模拟酸雨对苦楝生理生态特性的影响 [J]. 生态学杂志, 2015, 34(10):2764−2770.LIAO Y L, CAI S Z, YE C, et al. Effects of simulated acid rain on ecophysiological characteristics of Melia azedarach [J]. Chinese Journal of Ecology, 2015, 34(10): 2764−2770.(in Chinese)