Identification and Analysis of Avirulent Genotypes of Magnaporthe oryzae in Fujian Province from 2018 to 2020
-
摘要:
目的 分析福建省近年来稻瘟病菌的致病力情况、无毒基因型,了解无毒基因在不同地区的组成、年份间的动态变化等情况。 方法 于2018—2020年收集并分离福建省9个水稻主产区的中稻穗颈瘟菌株179份,接菌鉴定24份含单个抗病基因的近等基因系。 结果 179个稻瘟病菌株中的强、较强、中等、弱致病力菌株占比分别为26.81%、36.31%、27.37%、9.51%,较强致病力菌株占优势;抗病基因的抗性频率较高的有4个,其中Pi-z5和Pi-9(t)两个抗病基因的抗性频率最高,分别为91.49%和91.25%,Pi-kh和Pi-1两个抗病基因的抗性频率也较高,都高于80%;2018—2020年间无毒基因出现频率下滑20%以上的有9个,分别为Avr-kh、Avr-7(t)、Avr-5(t)、Avr-3、Avr-kp、Avr-19(t)、Avr-km、Avr-z、Avr-ks,出现频率上升20%的无毒基因有1个,为Avr-20(频率由16.67%上升至50.00%);无毒基因在组合数目上共出现了23种类型,含有6、7、8、9、11个无毒基因组合的病菌最多,在群体中的频率分别为10.06%、8.94%、8.94%、7.82%和8.38%。9个地区的稻瘟病菌株都分布有24个无毒基因,无毒基因分布数量和出现频率较高的地区为上杭(49.19%),光泽次之(48.18%),武夷山最低(41.23%)。 结论 福建省的大多数稻瘟病菌株对本试验的24个抗病基因表现较强的致病力;Pi-z5、Pi-9(t)、Pi-kh和Pi-1这4个抗病基因的抗性频率最高,尤其是Avr-z5、Avr-9(t)这两个无毒基因在年份间出现频率最高而且稳定,对应的抗病基因在今后的抗性育种中可以重点应用,出现频率低于20%的3个无毒基因为Avr-ks、Avr-b、Avr-ta,对应的抗病基因在应用中需注意观察,谨慎使用。 Abstract:Objective The pathogenicity and avirulent genotypes of Magnaporthe oryzae found in Fujian in recent years were analyzed to define their existence and year-to-year changes in different regions. Method For the study, 179 strains of rice ear neck blast were collected from 9 major rice-producing areas in the province from 2018 to 2020 and isolated to identify the near-isogenic lines (NILs) that contained only one resistance gene. Result Among the 179 rice blast strains, the proportion of strong, slightly strong, medium, and weak pathogenic classes were 26.81%, 36.31%, 27.37%, and 9.51%, respectively. Among the 4 high resistance genes, Pi-z5 and Pi-9(t) showed the greatest resistance frequencies of 91.49% and 91.25%, respectively, followed by Pi-kh and Pi-1 of more than 80%. During the sampling years, the 9 avirulent genes produced more than 20% on frequency decline were Avr-kh, Avr-7(t), Avr-5(t), Avr-3, Avr-kp, Avr-19(t), Avr-km, Avr-z, and Avr-ks. In the 23 types of avirulent genes, the pathogens with 6, 7, 8, 9, and 11 gene combinations had the highest appearance frequencies of 10.06%, 8.94%, 8.94%, 7.82%, and 8.38%, respectively. A total of 24 avirulent genes were identified in the rice blast strains found in the 9 regions that showed the highest frequencies of appearance at 49.19% in Shanghang, 48.18% in Guangze, and 41.23% in Wuyishan. Conclusion Most rice blast strains in Fujian were strongly pathogenic to the 24 resistance genes, as discovered by this study. Among all, Pi-z5, Pi-9(t), Pi-kh, and Pi-1 had the greatest frequencies of resistance, Avr-z5 and Avr-9(t) the most consistent over the years, and Avr-ks, Avr-b, and Avr-ta the lowest with a frequency less than 20%. The corresponding avirulent genes could be useful for breeding, but the selection must be done with due caution. -
Key words:
- Magnaporthe oryzae /
- avirulent gene /
- occurrence frequency /
- pathogenicity
-
表 1 2018—2020年福建省稻瘟病菌供试菌株
Table 1. M. oryzae sample collection, 2018-2020
序号
Serial number采集点
Collection point分离菌株数 Number of isolated strains 2018 2019 2020 1 南平市武夷山市五夫镇 NanpingWuyishanWufu 1 2 2 2 南平松溪茶平村 NanpingSongxiChaping 2 3 南平松溪官路村 NanpingSongxiGuanglu 1 4 南平松溪花桥村 NanpingSongxiHuaqiao 2 2 2 5 南平松溪祖墩村 NanpingSongxiZudun 2 2 6 南平邵武外南源镇 NanpingShaowuWaiNanyuan 3 8 南平邵武大布干乡 NanpingShaowuDabugan 3 9 南平浦城高阳村 NanpingPuchengGaoyang 2 10 南平浦城山桥村 NanpingPuchengShanqiao 2 2 11 南平浦城水北乡 NanpingPuchengshuibei 2 13 南平光泽良种场 NanpingGuangzeLiangzhongchang 3 3 3 14 南平光泽寨里镇桥亭村 NanpingGuangzeZailiQiaoting 2 15 南平光泽紫马镇虎谭村 NanpingGuangzeZimaHutang 2 16 南平建阳梗头水尾村 NanpingJianyangGengtouShuiwei 1 2 17 南平建阳童游庵山 NanpingJianyangTongyouAnshan 1 2 18 南平建阳麻沙镇石宇村(区试点)NanpingJianyangMashaShiyu(Regional test site) 10 12 13 19 南平建阳莒口马伏村 NanpingJianyangJukouMafu 1 1 20 南平建阳将口镇东田村 NanpingJianyangJiangkouDongtian 2 21 三明宁化水茜镇下洋村(区试点)SanmingNinghuaShuiqianXiayang(Regional test site) 5 6 10 22 三明宁化中沙乡楼家村 SanmingNinghuaZhongshaLoujia 3 23 三明将乐黄潭村(区试点)SanmingJiangleHuangtan(Regional test site) 6 10 11 24 三明将乐县白莲镇 SanmingJiangleBailian 2 25 三明将乐县南口镇南胜村 SanmingJiangleNankouNansheng 1 26 龙岩市上杭县茶地村(区试点)LongyanShanghangChadi(Regional test site) 8 12 15 合计 Total 49 65 65 表 2 抗稻瘟病基因对福建省稻瘟病菌的抗性频率
Table 2. Effect of blast resistant genes on frequency of resistance to M. oryzae isolated in Fujain
原编号
No.品系
Line基因位点
Gene locus抗性频率
Resistance frequency/%原编号
No.品系
Line基因位点
Gene locus抗性频率
Resistance frequency/%K10 IRBLz5-CA Pi-z5 91.49 K3 IRBLi-F5* Pi-i 41.57 K22 IRBL9-W Pi-9(t) 91.25 K25 IRBLkm-Ts Pi-km 40.93 K8 IRBLkh-K3 Pi-kh 80.87 K11 IRBLzt-T Pi-zt 40.21 K18 IRBL1-CL Pi-1 80.52 K24 IRBL19-M Pi-19(t) 40.13 K21 IRBL7-M Pi-7(t) 73.52 K16 IRBLsh-S Pi-sh 38.76 K20 IRBL5-M Pi-5(t) 72.75 IR65482-4-136 Pi40 35.97 K6 IRBLk-Ka Pi-k 71.9 K30 IRBL11-Zh Pi-11 35.7 K23 IRBL12-M Pi-12(t) 71.07 K26 IRBL20-IR24 Pi-20 34.95 K19 IRBL3-CP4* Pi-3 59.87 K15 IRBLt-K59* Pi-t 32.93 K7 IRBLkp-K60 Pi-kp 55.94 K4 IRBLks-F5 Pi-ks 25.29 K9 IRBLz-Fu Pi-z 51.35 K12 IRBLta-K1 Pi-ta 19.33 K1 IRBLa-A Pi-a 47.33 K14 IRBLb-B Pi-b 19.32 表 3 福建省稻瘟病菌无毒基因在2018-2020年间的分布
Table 3. Distribution of avirulent genes of M. oryzae in Fujian, 2018-2020
无毒基因
Avirulence gene出现频率 Occurrence friquency/% 无毒基因
Avirulence gene出现频率 Occurrence friquency/% 2018 2019 2020 平均 2018 2019 2020 平均Average Avr-Z5 92.16 84.44 90.24 88.95 Avr-11 32.76 24.00 46.67 34.48 Avr-9(t) 88.52 83.33 90.24 87.37 Avr-i 37.68 37.50 27.03 34.07 Avr-1 70.15 73.68 76.92 73.59 Avr-19(t) 42.62 37.04 21.05 33.57 Avr-kh 83.33 64.29 61.90 69.84 Avr-km 37.50 44.64 14.71 32.28 Avr-k 69.64 74.07 53.85 65.85 Avr-20 16.67 20.00 50.00 28.89 Avr-12(t) 65.38 65.38 63.56 64.78 Avr-sh 31.34 32.76 21.62 28.57 Avr-7(t) 73.68 69.57 50.00 64.42 Avr-40 34.55 26.00 20.00 26.85 Avr-5(t) 70.91 73.47 42.50 62.29 Avr-t 34.85 24.14 18.92 25.97 Avr-3 66.07 52.00 33.33 50.47 Avr-z 35.71 32.14 0.00 22.62 Avr-kp 60.32 44.23 29.63 44.73 Avr-ks 29.82 16.67 6.67 17.72 Avr-a 42.86 33.33 37.50 37.90 Avr-b 24.24 7.69 18.75 16.89 Avr-zt 44.68 33.33 29.27 35.76 Avr-ta 4.29 5.26 7.89 5.81 平均 49.57 44.12 38.01 43.90 表 4 2018—2020年福建省稻瘟病菌的不同数量无毒基因出现频率
Table 4. Occurrence frequency of avirulent gene combinations of M. oryzae in Fujian, 2018-2020
无毒基因数目
No.of avirulence
gene combination菌株出现数
No.of isolates频率
Frequyency of
gene combination/%无毒基因数目
No.of avirulence
gene combination菌株出现数
No.of isolates频率
Frequyency of
gene combination/%22 3 1.68 10 7 3.91 21 6 3.35 9 14 7.82 20 4 2.23 8 16 8.94 19 4 2.23 7 16 8.94 18 3 1.68 6 18 10.06 17 5 2.79 5 8 4.47 16 7 3.91 4 10 5.59 15 6 3.35 3 5 2.79 14 4 2.23 2 9 5.03 13 2 1.12 1 3 1.68 12 8 4.47 0 6 3.35 11 15 8.38 合计 179 100.00 表 5 稻瘟病菌无毒基因在福建省9个地区的分布
Table 5. Distribution of M. oryzae avirulent genes in 9 regions in Fujian
无毒基因
Avirulence gene出现频率Occurrence friquency/% 武夷山
Wuyishan松溪
Songxi邵武
Shaowu浦城
Pucheng光泽
Guangze建阳
Jianyang宁化
Ninghua将乐
Jiangle上杭
ShanghanAvr-1 75.00 57.69 75.00 80.00 63.64 72.00 94.74 80.00 64.71 Avr-3 52.94 58.33 75.00 33.33 66.67 40.00 44.44 40.00 63.33 Avr-5 25.00 73.91 50.00 95.66 50.00 52.17 52.94 57.14 70.00 Avr-Z5 97.50 95.83 96.77 77.78 91.67 90.91 95.00 76.92 77.42 Avr-7 63.64 54.55 98.50 87.50 62.50 69.57 64.71 76.92 58.06 Avr-9 96.77 88.46 96.77 88.89 88.89 76.00 84.21 87.50 90.32 Avr-11 23.53 38.89 9.09 13.04 25.00 23.53 25.00 40.00 40.74 Avr-12 47.83 42.86 56.35 60.00 75.00 80.00 71.43 75.00 50.00 Avr-20 66.67 42.86 22.22 23.53 20.00 63.64 66.67 16.67 9.09 Avr-19 31.25 33.33 30.43 44.44 50.00 33.33 23.53 25.00 41.94 Avr-40 26.09 25.00 50.00 22.73 22.22 30.43 21.43 25.00 44.44 Avr-a 39.39 38.89 33.33 28.57 35.00 21.05 33.33 50.00 46.67 Avr-b 9.09 14.29 5.26 10.00 14.29 22.22 8.33 20.00 21.88 Avr-i 35.29 38.46 25.00 40.00 47.83 28.00 23.53 31.25 39.39 Avr-k 25.00 68.18 25.00 75.00 72.22 56.00 63.16 80.00 76.67 Avr-kp 43.75 38.10 50.00 62.50 57.14 26.09 56.25 64.29 54.84 Avr-ks 13.33 20.00 23.53 11.76 35.00 13.04 14.29 6.67 31.03 Avr-km 22.73 20.00 33.33 20.00 45.45 33.33 18.75 43.75 50.00 Avr-kh 66.67 70.00 62.50 71.43 78.57 70.59 63.64 90.91 76.00 Avr-t 28.00 38.46 26.09 10.00 26.09 26.92 29.41 13.33 35.29 Avr-zt 33.33 36.36 25.00 37.50 44.44 45.00 31.25 18.18 42.31 Avr-sh 25.00 28.00 31.25 30.00 27.27 34.62 23.53 11.76 45.45 Avr-z 29.41 25.00 34.62 33.33 40.00 42.86 50.00 25.00 47.37 Avr-ta 12.25 7.69 7.69 8.82 17.39 7.69 5.26 9.09 3.70 平均 41.23 43.96 43.45 44.41 48.18 44.12 44.37 44.35 49.19 -
[1] 刘翔, 任佐华, 陈娟芳, 等. 湖南省稻瘟病菌无毒基因鉴定 [J]. 南方农业学报, 2016, 47(9):1500−1505. doi: 10.3969/jissn.2095-1191.2016.09.1500LIU X, REN Z H, CHEN J F, et al. Identification of avirulent genes in Magnaporthe oryzae in Hunan Province [J]. Journal of Southern Agriculture, 2016, 47(9): 1500−1505.(in Chinese) doi: 10.3969/jissn.2095-1191.2016.09.1500 [2] 肖宇龙, 李湘民, 余传元, 等. 江西省稻瘟病生理小种致病力测定及1组水稻优质新种质的稻瘟病抗性表现及应用评估 [J]. 江西农业学报, 2018, 30(4):9−13.XIAO Y L, LI X M, YU C Y, et al. Pathogenicity of physiological races of rice blast disease in Jiangxi Province, blast-resistant performance and application evaluation of A set of new high-quality rice germplasms [J]. Acta Agriculturae Jiangxi, 2018, 30(4): 9−13.(in Chinese) [3] 阮宏椿, 石妞妞, 杜宜新, 等. 水稻抗性基因Pi对福建省稻瘟病菌优势菌群的抗性分析 [J]. 中国水稻科学, 2017, 31(1):105−110.RUAN H C, SHI N N, DU Y X, et al. Analysis on resistance of pi genes to predominant races of mangnaporthe oryzae in Fujian Province, China [J]. Chinese Journal of Rice Science, 2017, 31(1): 105−110.(in Chinese) [4] OU S H. Pathogen variability and host resistancein Magnaporthe grisea disease [J]. Ann Rev Phytopathol, 1980, 18: 167−187. doi: 10.1146/annurev.py.18.090180.001123 [5] 辛威, 王敬国, 孙健, 等. 黑龙江省稻瘟病生理小种及品种资源抗性鉴定 [J]. 华北农学报, 2016, 31(4):130−137. doi: 10.7668/hbnxb.2016.04.022XIN W, WANG J G, SUN J, et al. Physiological races of rice blast in Heilongjiang Province and species identification of resistance to resource [J]. Acta Agriculturae Boreali-Sinica, 2016, 31(4): 130−137.(in Chinese) doi: 10.7668/hbnxb.2016.04.022 [6] 钟宝玉, 黄德超, 朱小源, 等. 近十年广东稻瘟病菌生理小种变化分析 [J]. 仲恺农业工程学院学报, 2018, 31(1):24−29. doi: 10.3969/j.issn.1674-5663.2018.01.005ZHONG B Y, HUANG D C, ZHU X Y, et al. Analysis of physiological races of Magnaporthe oryzae in Guangdong during recent decade [J]. Journal of ZhongKai University of Agriculture and Technology, 2018, 31(1): 24−29.(in Chinese) doi: 10.3969/j.issn.1674-5663.2018.01.005 [7] 李杨, 王耀雯, 王育荣, 等. 水稻稻瘟病菌研究进展 [J]. 广西农业科学, 2010, 41(8):789−792.LI Y, WANG Y W, WANG Y R, et al. Research progress on rice blast fungus [J]. Guangxi Agricultural Sciences, 2010, 41(8): 789−792.(in Chinese) [8] 王伟舵, 于俊杰, 聂亚锋, 等. 2011—2014年江苏省稻瘟病菌种群动态及毒力变化 [J]. 江苏农业学报, 2015, 31(2):285−289. doi: 10.3969/j.issn.1000-4440.2015.02.010WANG W D, YU J J, NIE Y F, et al. Changes of Magnaporthe oryzae population and virulence in Jiangsu Province from 2011 to 2014 [J]. Jiangsu Journal of Agricultural Sciences, 2015, 31(2): 285−289.(in Chinese) doi: 10.3969/j.issn.1000-4440.2015.02.010 [9] FLOR H H. Current status of the genes for gene concept [J]. Ann Rev Phytopat, 1971(9): 275−296. [10] SUN G C, DU X F, TAO R X, et al. Control tactics and prospect of Magnaporthe grisea research in 21 Century [J]. Acta Phytopathol Sin, 1998, 28(4): 289−292. [11] 李宏宇, 鲁国东, 王宗华. 稻瘟菌无毒基因研究进展 [J]. 中国生物工程杂志, 2003, 23(6):27−30, 35.LI H Y, LU G D, WANG Z H. Avirulence genes in Magnaporthe grisea [J]. Journal of Chinese Biotechnology, 2003, 23(6): 27−30, 35.(in Chinese) [12] 杜宜兴, 阮宏椿, 石妞妞, 等. 福建省稻瘟病菌对主效基因和主要水稻品种的致病性分析 [J]. 植物保护学报, 2016, 43(3):442−451.DU Y X, RUAN H C, SHI N N, et al. Pathogenicity of Magnaporthe grisea to Major Genes and Major Rice Varieties in Fujian Province [J]. Acta Botanica Sinica, 2016, 43(3): 442−451.(in Chinese) [13] 刘文德, 阮志平, 郑士琴, 等. 水稻主要抗瘟基因对福建稻瘟菌群体的抗性分析 [J]. 植物病理学报, 2005, 35(6):526−531. doi: 10.3321/j.issn:0412-0914.2005.06.008LIU W D, RUAN Z P, ZHENG S Q, et al. Resistance of rice major Pi-genes to the Magnaporthe grisea population in Fujian, China [J]. Acta Phytopathologica Sinica, 2005, 35(6): 526−531.(in Chinese) doi: 10.3321/j.issn:0412-0914.2005.06.008 [14] 张学博. 福建省稻瘟病菌生理小种研究进展 [J]. 福建农学院学报, 1988, I7(4):361−367.ZHANG X B. Progress in the research of the physioligieal race of rice blast fungus in Fujian [J]. Fujian Agric College, 1988, I7(4): 361−367.(in Chinese) [15] 张学博. 1986—1987年福建省的稻瘟病菌生理小种 [J]. 福建农业科技, 1990(6):6−7.ZHANG X B. Physiological race of the rice blast fungus in Fujian, China from 1986 to1987 [J]. Fujian Agricultural Science and Technology, 1990(6): 6−7.(in Chinese) [16] 黄志鹏, 张学博. 福建不同稻作类型稻瘟病菌生理小种研究 [J]. 福建农业大学学报, 1995(1):39−44.HUANG Z P, ZHANG X B. Studies on the physiological race of rice blast fungus in different cropping take from Fujian [J]. Journal of Fujian Agricultural University, 1995(1): 39−44.(in Chinese) [17] 郑武, 阮志平, 鲁国东, 等. 1995—2000年福建省稻瘟病菌生理小种组成与分布动态 [J]. 福建农林大学学报(自然科学版), 2003, 32(1):46−49.ZHENG W, RUAN Z P, LU G D, et al. Physiological race dynamics of the rice blast fungus in Fujian, China from 1995 to 2000 [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2003, 32(1): 46−49.(in Chinese) [18] 杨秀娟, 朱春雨, 阮宏椿, 等. 福建省稻瘟病菌毒性类型及部分水稻品种(组合)抗病性 [J]. 福建农林大学学报(自然科学版), 2008, 37(3):243−247.YANG X J, ZHU C Y, RUAN H C, et al. Pathogenic types of Magnaporthe grisea Barr. and the resistance of some rice cultivars to the pathogens in Fujian Province [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2008, 37(3): 243−247.(in Chinese) [19] 杜宜新, 李科, 石妞妞, 等. 2007—2009年福建省稻瘟病菌的生理小种变化研究 [J]. 福建农业学报, 2011, 26(2):275−279. doi: 10.3969/j.issn.1008-0384.2011.02.026DU Y X, LI K, SHI N N, et al. Physiological race of Magnaporthe grisea in Fujian from 2007 to 2009 [J]. Fujian Journal of Agricultural Sciences, 2011, 26(2): 275−279.(in Chinese) doi: 10.3969/j.issn.1008-0384.2011.02.026 [20] 陈福如, 阮宏椿, 杨秀娟, 等. 稻瘟病苗瘟叶瘟和穗颈瘟的相关性分析 [J]. 中国农学通报, 2006, 22(7):440−443. doi: 10.3969/j.issn.1000-6850.2006.07.112CHEN F R, RUAN H C, YANG X J, et al. Correlation analysis between rice blast seedling blast and ear neck blast [J]. Chinese Agricultural Science Bulletin, 2006, 22(7): 440−443.(in Chinese) doi: 10.3969/j.issn.1000-6850.2006.07.112 [21] 杨秀娟, 阮宏椿, 杜宜新, 等. 福建省稻瘟病菌致病性及其无毒基因分析 [J]. 植物保护学报, 2007, 34(4):337−342. doi: 10.3321/j.issn:0577-7518.2007.04.001YANG X J, RUAN H C, DU Y X, et al. Pathogenicity and avirulence genes analysis of Magnaporthe grisea Barr. from rice in Fujian Province of China [J]. Acta Phytophylacica Sinica, 2007, 34(4): 337−342.(in Chinese) doi: 10.3321/j.issn:0577-7518.2007.04.001 [22] 王世维, 郑文静, 赵家铭, 等. 辽宁省稻瘟病菌无毒基因型鉴定及分析 [J]. 中国农业科学, 2014, 47(3):462−472. doi: 10.3864/j.issn.0578-1752.2014.03.006WANG S W, ZHENG W J, ZHAO J M, et al. Identification and analysis of Magnaporthe oryzae avirulence genes in Liaoning Province [J]. Scientia Agricultura Sinica, 2014, 47(3): 462−472.(in Chinese) doi: 10.3864/j.issn.0578-1752.2014.03.006 [23] 兰波, 李湘民, 何烈干. 江西省稻瘟病菌的无毒基因分析 [J]. 江西农业大学学报, 2010, 32(2):271−275. doi: 10.3969/j.issn.1000-2286.2010.02.015LAN B, LI X M, HE L G. Analysis on avirulence genes of Magnaporthe oryzae barr. in rice from Jiangxi Province [J]. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition), 2010, 32(2): 271−275.(in Chinese) doi: 10.3969/j.issn.1000-2286.2010.02.015 [24] 白珍安. 水稻抗瘟基因型和病菌无毒基因鉴定及病圃稻瘟菌遗传多样性[D]. 长沙: 湖南农业大学, 2011.BAI Z A. Identification of Rice Blast Resistance Genotypes and Virus-free Genes and Genetic Diversity of Magnaporthe grisea in Disease Nursery[D]. Changsha: Hunan Agricultural University, 2011. (in Chinese). [25] 童建新. 湖南稻瘟病菌无毒基因鉴定及病菌遗传多样性的SSR分析[D]. 长沙: 湖南农业大学, 2012.TONG J X. Identification of avirulent genes and SSR analysis of genetic diversity of Magnaporthe grisea in Hunan[D]. Changsha: Hunan Agricultural University, 2012. [26] 虞选杰. 湖南稻瘟病菌遗传多样性及病菌无毒基因与主栽水稻品种抗瘟基因型鉴定[D]. 长沙: 湖南农业大学, 2014.YU X J. Genetic Diversity of Magnaporthe grisea in Hunan Province, Identification of Virus-free Genes and Genotype of Blast Resistance of Main Rice Varieties[D]. Changsha: Hunan Agricultural University, 2014. [27] HAMMONE-KOSACK K E, JONE J D. Resisitance gene-dependent plant defense response [J]. Plant Cell, 1996(8): 1773−1791. [28] CHISHOLM S T, COAKER G, DAY B, et al. Host-microbe interactions: Shaping the evolution of the plant immune response [J]. Cell, 2006, 124(4): 803−814. doi: 10.1016/j.cell.2006.02.008 [29] QU S H, LIU G F, ZHOU B, et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice [J]. Genetics, 2006, 172(3): 1901−1914. doi: 10.1534/genetics.105.044891 [30] YU Z H, MACKILL D J, BONMAN J M, et al. Tagging genes for blast resistance in rice via linkage to RFLP markers [J]. Theoretical and Applied Genetics, 1991, 81(4): 471−476. [31] MEW T V, PARCO A S, HITTALMANI S. Fine mapping of major genes for blast resistance in rice [J]. Rice Genet Newsl, 1994(11): 126−128. [32] 吴金红, 蒋江松, 陈惠兰, 等. 水稻稻瘟病抗性基因Pi-2(t)的精细定位 [J]. 作物学报, 2002, 28(4):505−509. doi: 10.3321/j.issn:0496-3490.2002.04.013WU J H, JIANG J S, CHEN H L, et al. Fine mapping of rice blast resistance gene pi-2(t) [J]. Acta Agronomica Sinica, 2002, 28(4): 505−509.(in Chinese) doi: 10.3321/j.issn:0496-3490.2002.04.013 [33] ZHOU B, QU S H, LIU G F, et al. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea [J]. Molecular Plant-Microbe Interactions, 2006, 19(11): 1216−1228. doi: 10.1094/MPMI-19-1216 [34] 刘士平, 李信, 汪朝阳, 等. 利用分子标记辅助选择改良珍汕97的稻瘟病抗性 [J]. 植物学报, 2003, 45(11):1346−1350.LIU S P, LI X, WANG (C /Z)Y, et al. Improvement of resistance to rice blast in Zhenshan 97 by molecular marker-aided selection [J]. Acta Botanica Sinica, 2003, 45(11): 1346−1350.(in Chinese) [35] 柳武革, 王丰, 金素娟, 等. 利用分子标记辅助选择聚合Pi-1和Pi-2基因改良两系不育系稻瘟病抗性 [J]. 作物学报, 2008, 34(7):1128−1136. doi: 10.3724/SP.J.1006.2008.01128LIU W G, WANG F, JIN S J, et al. Improvement of rice blast resistance in TGMS line by pyramiding of pi-1 and pi-2 through molecular marker-assisted selection [J]. Acta Agronomica Sinica, 2008, 34(7): 1128−1136.(in Chinese) doi: 10.3724/SP.J.1006.2008.01128 [36] JIANG H C, FENG Y T, BAO L, et al. Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding [J]. Molecular Breeding, 2012, 30(4): 1679−1688. doi: 10.1007/s11032-012-9751-6 [37] 张国民, 马军韬, 肖佳雷, 等. 24个单基因系对黑龙江省优势菌群的抗性及联合抗病性分析 [J]. 中国农学通报, 2010, 26(12):233−237.ZHANG G M, MA J T, XIAO J L, et al. The blast resistance of 24 monogenic rice lines to prevalence physiologic races of Heilongjiang and analysis of pathogenicity association [J]. Chinese Agricultural Science Bulletin, 2010, 26(12): 233−237.(in Chinese)