Effect of Temperature on Life Table Parameters of Ectropis grisescens Experimental Populations
-
摘要:
目的 探讨温度对灰茶尺蛾(Ectropis grisescens)实验种群生命表参数的影响。 方法 设置5种温度处理(19 ℃、22 ℃、25 ℃、28 ℃和31 ℃),构建灰茶尺蛾实验种群生命表。 结果 温度影响灰茶尺蛾的个体生长发育,卵-成虫的发育历期随温度升高而逐渐缩短,31 ℃下发育历期最短(27.6 d)。不同温度对灰茶尺蛾成活率有显著的影响,5种温度处理下,灰茶尺蛾成活率在22 ℃处理下最高(64.0%)。种群生命表结果表明,与其他4 种温度处理相比,25 ℃处理下灰茶尺蛾的种群净增殖率(R0)最高,达到90.88后代/个体,且内禀增长率(r)和周限增长率(λ)在25 ℃处理下也最高,分别为0.126 d−1和1.134 d−1。 结论 25 ℃是灰茶尺蛾个体生长和种群增长的最适温度,可为灰茶尺蛾的室内饲养、田间种群发生预测预报及综合防治提供数据参考。 Abstract:Objective The effect of temperature on life table parameters of Ectropis grisescens were measured. Method In this study, five temperatures (19 ℃, 22 ℃, 25 ℃, 28 ℃ and 31 ℃) treatments were set up to analysis the life table parameters of E.grisescens. Result The results showed that temperature can affect the growth and development of E. grisescens, and the developmental period from egg to adult decreased as temperature increasing, the shortest developmental period (27.6 d) of E. grisescenswas observed at 31 ℃. Different temperature had significant effect on survival rate of E. grisescens, the higher survival rate (64.0%) of E. grisescens was found at 22 ℃ compared with other temperature treatments. Temperature had a significant effect on the life table parameters of E. grisescens population. Significantly, higher net reproductive rate (R0) of E. grisescens population was found at 25 ℃ compare with other temperature treatments and R0 was up to 90.88 offsprings per individual. The intrinsic rate of increase (r) and the finite rate of increase (λ) were also the highest at 25 ℃, which was 0.126 d−1 and 1.134 d−1, respectively. Conclusion The results of this study indicated that 25 ℃ was the optimum temperature for the population growth of E. grisescens, which provided a scientific basis for indoor rearing, field population occurrence prediction and integrated control of this insect pest. -
Key words:
- Ectropis grisescens /
- temperature /
- population /
- life table /
- survival
-
表 1 不同温度下灰茶尺蛾卵、幼虫和蛹的发育时间和成虫寿命
Table 1. Days of immature development stages and adult lifespan of E. grisescens under different incubation temperatures
温度
Temp/℃发育时间 Developmental period/d 成虫寿命 Adult longevity/d 卵
Egg幼虫
Larva蛹
Pupa卵-成虫
Egg-adult雌
Female雄
Male19 9.5 ± 0.10 a 25.0 ± 0.39 a 15.3 ± 0.32 a 48.1 ± 0.53 a 6.9 ± 0.48 a 5.9 ± 0.58 a 22 8.1 ± 0.12 b 20.2 ± 0.20 b 12.4 ± 0.29 b 35.9 ± 0.23 b 7.6 ± 0.47 a 5.9 ± 0.48 a* 25 6.8 ± 0.04 c 16.2 ± 0.23 c 9.4 ± 0.23 c 32.0 ± 0.40 c 7.9 ± 0.36 a 5.9 ± 0.52 a* 28 6.2 ± 0.07 d 15.5 ± 0.23 cd 7.6 ± 0.13 d 29.4 ± 0.28 d 4.7 ± 0.37 b 4.3 ± 0.37 ab 31 3.5 ± 0.08 e 15.1 ± 0.18 d 8.9 ± 0.28 c 27.6 ± 0.53 e 4.3 ± 0.28 b 3.5 ± 0.23 b* 注:同列数据后不同字母表示差异显著(P<0.05);*雌雄成虫寿命之间存在显著性差异(P<0.05)。
Note: Data on same column followed by different letters are significantly different (P < 0.05);* significantly different lifespans between female and male adults (P < 0.05).表 2 不同温度下灰茶尺蛾的存活率和性比
Table 2. Survival rates and sex ratios of E. grisescens at different incubation temperatures
温度
Temp/℃数量 N* 存活率 Survival rate/% 总存活率
Survival to adulthood/%性比
Sex ratio**卵
Egg幼虫
Larva蛹
Pupa成虫
Adult卵
Egg幼虫
Larva蛹
Pupa19 300 264 123 104 88.0 46.6 84.6 34.7 0.74 22 200 163 144 128 81.5 88.3 88.9 64.0 0.70 25 350 330 217 173 94.3 65.8 79.7 49.4 0.69 28 350 300 131 100 85.7 43.7 76.3 28.6 0.58 31 400 346 182 114 86.5 52.6 62.6 28.5 0.75 注:*各发育阶段开始时的种群数量;**性比=雌成虫数目占成虫总数目的比值。
Note: *Number of survived individuals at beginning of development stage; **Sex ratio=number of females/number of females and males.表 3 不同恒温下灰茶尺蛾的种群生活史参数
Table 3. Life table parameters of E. grisescens at different incubation temperatures
温度 Temp/℃ R0(offspring) r/ d−1 GT/ d λ/ d−1 DT/ d GRR(offspring) 19 58.81 0.078 51.99 1.082 8.84 209.72 22 67.48 0.105 40.08 1.111 6.60 139.82 25 90.88 0.126 35.89 1.134 5.52 227.29 28 35.84 0.111 32.30 1.117 6.26 205.89 31 26.16 0.109 29.87 1.115 6.34 103.62 注:R0=净增殖率,r=内禀增长率,T=世代时间,λ=周限增长率,DT=种群加倍时间,GRR=总生殖率
Note: R0=net reproductive rate; r=intrinsic increase rate per day; T=mean generation time; λ=finite increase rate; DT=doubling time, days; GRR=gross reproductive rate. -
[1] 陈瑜, 马春森. 气候变暖对昆虫影响研究进展 [J]. 生态学报, 2010, 30(8):2159−2172.CHEN Y, MA C S. Effect of global warming on insect: A literature review [J]. Acta Ecologica Sinica, 2010, 30(8): 2159−2172.(in Chinese) [2] 王海鸿, 薛瑶, 雷仲仁. 恒温和波动温度下西花蓟马的实验种群生命表 [J]. 中国农业科学, 2014, 47(1):61−68.WANG H H, XUE Y, LEI Z R. Life tables for experimental populations of Frankliniella occidentalis (Thysanoptera: Thripidae) under constant and fluctuating temperature [J]. Scientia Agricultura Sinica, 2014, 47(1): 61−68.(in Chinese) [3] 徐盼, 徐志宏, 李绍进, 等. 不同温度下康氏粉蚧实验种群生命表 [J]. 昆虫学报, 2012, 55(12):1362−1367.XU P, XU Z H, LI S J, et al. Life table of the experimental population of Comstock mealybug, Pseudococcus comstocki (Hemiptera: Pseudococcidae), at different temperatures [J]. Acta Entomologica Sinica, 2012, 55(12): 1362−1367.(in Chinese) [4] 陈泽坦, 严珍, 陈希用, 等. 不同温度下丽草蛉实验种群生命表研究 [J]. 热带作物学报, 2017, 38(2):349−352. doi: 10.3969/j.issn.1000-2561.2017.02.025CHEN Z T, YAN Z, CHEN X Y, et al. Life table for experimental populations of Chrysopa formosa brauer at different temperatures [J]. Chinese Journal of Tropical Crops, 2017, 38(2): 349−352.(in Chinese) doi: 10.3969/j.issn.1000-2561.2017.02.025 [5] ZHANG G H, YUAN Z J, ZHANG C X, et al. Detecting deep divergence in seventeen populations of tea geometrid (Ectropis obliqua Prout) in china by COI mtDNA and cross-breeding [J]. PloS One, 2014, 9(6): e99373. [6] LI Z Q, CAI X M, LUO Z X, et al. Geographical distribution of Ectropis grisescens (Lepidoptera: Geometridae) and Ectropis obliqua in China and description of an efficient identification method [J]. Journal of Economic Entomology, 2019, 112(1): 277−283. doi: 10.1093/jee/toy358 [7] 葛超美, 殷坤山, 唐美君, 等. 灰茶尺蠖的生物学特性 [J]. 浙江农业学报, 2016, 28(3):464−468. doi: 10.3969/j.issn.1004-1524.2016.03.17GE C M, YIN K S, TANG M J, et al. Biological characteristics of Ectropis grisescens Warren [J]. Acta Agriculturae Zhejiangensis, 2016, 28(3): 464−468.(in Chinese) doi: 10.3969/j.issn.1004-1524.2016.03.17 [8] 葛超美, 殷坤山, 唐美君, 等. 灰茶尺蠖发育起点温度和有效积温的研究 [J]. 植物保护, 2016, 42(6):110−112.GE C M, YIN K S, TANG M J, et al. Developmental threshold temperature and effective accumulated temperature of Ectropis grisescens. [J]. Plant Protection, 2016, 42(6): 110−112.(in Chinese) [9] MA T, XIAO Q, YU Y G, et al. Analysis of tea geometrid (Ectropis grisescens) pheromone gland extracts using GC-EAD and GC × GC/TOFMS [J]. Journal of Agricultural and Food Chemistry, 2016, 64(16): 3161−3166. doi: 10.1021/acs.jafc.6b00339 [10] 陈俊华, 尹健, 尹新明, 等. 信阳地区灰茶尺蠖生物学特性研究 [J]. 农业科学, 2018, 8(8):995−999.CHEN J H, YIN J, YIN X M, et al. Study on the Biological Characteristics of Ectropis grisescens Warren in Xinyang Area [J]. Agricultural Science, 2018, 8(8): 995−999.(in Chinese) [11] WANG H F, MA T, XIAO Q, et al. Pupation behaviors and emergence successes of Ectropis grisescens (Lepidoptera: Geometridae) in response to different substrate types and moisture contents [J]. Environmental Entomology, 2017, 46(6): 1365−1373. doi: 10.1093/ee/nvx168 [12] WANG Z B, MA T, MAO T F, et al. Application technology of the sex pheromone of the tea geometrid Ectropis grisescens (Lepidoptera: Geometridae) [J]. International Journal of Pest Management, 2018, 64(4): 372−378. doi: 10.1080/09670874.2018.1447170 [13] WANG H, LIANG S, MA T, et al. No-substrate and low-moisture conditions during pupating adversely affect Ectropis grisescens (Lepidoptera: Geometridae) adults [J]. Journal of Asia-Pacific Entomology, 2018, 21(2): 657−662. doi: 10.1016/j.aspen.2018.04.007 [14] MA T, WANG H, LIANG S, et al. Effects of soil-treatment with fungal biopesticides on pupation behaviors, emergence success and fitness of tea geometrid, Ectropis grisescens (Lepidoptera: Geometridae) [J]. Journal of Asia-Pacific Entomology, 2019, 22(1): 208−214. doi: 10.1016/j.aspen.2018.12.026 [15] 袁争, 张家侠, 曹士先. 恒温下灰茶尺蛾种群两性生命表的研究 [J]. 安徽农业大学学报, 2020, 47(1):7−11.YUAN Z, ZHANG J X, CAO S X. Study on age-stage two-sex life table of Ectropis grisescens at constant temperature [J]. Journal of Anhui Agricultural University, 2020, 47(1): 7−11.(in Chinese) [16] 洪子华, 殷坤山, 周孝贵, 等. 几种茶树害虫雌雄的识别 [J]. 中国茶叶, 2016, 38(9):22−23. doi: 10.3969/j.issn.1000-3150.2016.09.009HONG Z H, YIN K S, ZHOU X G, et al. Identification of male and female pests of several kinds of tea trees [J]. China Tea, 2016, 38(9): 22−23.(in Chinese) doi: 10.3969/j.issn.1000-3150.2016.09.009 [17] AMIRI A, TALEBI A A, ZAMANI A A, et al. Effect of temperature on demographic parameters of the hawthorn red midget moth, Phyllonorycter corylifoliella, on apple [J]. Journal of Insect Science, 2010, 10(1): 134. [18] GENG S, JUNG C. Effect of temperature on the demographic parameters of Asiatic apple leafminer, Phyllonorycter ringoniella Matsumura (Lepidoptera: Gracillariidae) [J]. Journal of Asia-Pacific Entomology, 2017, 20(3): 886−892. doi: 10.1016/j.aspen.2017.06.009 [19] SAS Institute. SAS/STAT User’s Guide: Statistics, Version 9.3[M]. Cary, N. C. USA. SAS Institute, 2013. [20] SUMMERS C G, COVIELLO R L, GUTIERREZ A P. Influence of constant temperatures on the development and reproduction of Acyrthosiphon kondoi (Homoptera: Aphididae) [J]. Environmental Entomology, 1984, 13(1): 236−242. doi: 10.1093/ee/13.1.236 [21] MILONAS P G, SAVOPOULOU-SOULTANI M. Development, survivorship, and reproduction of Adoxophyes orana (Lepidoptera: Tortricidae) at constant temperatures [J]. Annals of the Entomological Society of America, 2000, 93(1): 96−102. [22] LEGASPI J C. Life history of Podisus maculiventris (Heteroptera: Pentatomidae) adult females under different constant temperatures [J]. Environmental Entomology, 2004, 33(5): 1200−1206. doi: 10.1603/0046-225X-33.5.1200 [23] AKSIT T, CAKMAK I, OZER G. Effect of temperature and photoperiod on development and fecundity of an acarophagous ladybird beetle, Stethorus gilvifrons [J]. Phytoparasitica, 2007, 35(4): 357−366. doi: 10.1007/BF02980698 [24] AYSAL T, KIVAN M. Development and population growth of Stephanitispyri (F.) (Heteroptera: Tingidae) at five temperatures [J]. Journal of Pest Science, 2008, 81(3): 135. doi: 10.1007/s10340-008-0198-9 [25] KIM H, BAEK S, KIM S, et al. Temperature-dependent development and oviposition models of Riptortusclavatus (Thunberg)(Hemiptera: Alydidae) [J]. Applied Entomology and Zoology, 2009, 44(4): 515−523. [26] 姚洁, 戴仁怀, 代传勇, 等. 温度对菜豆象发育和繁殖的影响 [J]. 昆虫学报, 2016, 59(7):739−746.YAO J, DAI R H, DAI C Y, et al. Effects of temperature on the development and reproduction of Acanthoscelides obtectus [J]. Acta Entomologica sinica, 2016, 59(7): 739−746.(in Chinese) [27] 武德功, 陈青, 詹秋文, 等. 不同温度对高粱蚜的生长发育的影响 [J]. 草业科学, 2018, 35(6):1548−1555.WU D G, CHEN Q, ZHAN Q W, et al. Effect of different temperatures on the growth and development of sorghum aphid (Melanaphis sacchari) [J]. Pratacultural Science, 2018, 35(6): 1548−1555.(in Chinese) [28] 史彩华, 胡静荣, 张友军. 高温对昆虫生殖生理的影响及其在农业害虫防治中的展望 [J]. 中国植保导刊, 2017, 37(3):24−32.SHI C H, HU J R, ZHANG Y J. Effects of heat stress on insect reproduction-physiology and outlook in agricultural insect pests control [J]. China Plant Protection, 2017, 37(3): 24−32.(in Chinese)