-
摘要:
目的 杉木赤枯病是杉木的重要病害之一,严重威胁杉木苗木生产及幼树成林。为了更好保护杉木,防治杉木赤枯病,从杉木叶片分离到内生细菌SM-1,探讨其对杉木赤枯病菌(Pestalotiopsis apiculatus)的拮抗作用。 方法 经形态观察、生理生化特性观察、16S rRNA及Biolog系统鉴定其种类;含毒平板及牛津杯法检测SM-1无菌发酵液对赤枯病菌的抑制率,并观察SM-1对赤枯病菌菌丝形态的影响;离体枝条的叶片接种试验检测SM-1无菌发酵液的防病效果。 结果 SM-1为萎缩芽孢杆菌(Bacillus atrophaeus),其无菌发酵液对赤枯病菌的抑制率可达58.80%;显微观察显示SM-1能够使赤枯病菌菌丝生长受到抑制,细胞膨大成球形;离体枝条的叶片接种试验揭示SM-1无菌发酵液对杉木赤枯病的抑制效率达95%,能够极显著减轻叶片发病程度(P<0.01)。 结论 杉木内生芽孢杆菌SM-1对杉木赤枯病具有良好的生物防治潜力。 Abstract:Objective Endophytic bacteria that could effectively control the copper blight, one of the most significant diseases that seriously infects the seedlings and saplings, of Chinese fir (Cunninghamia lanceolate) were investigated. Methods Candidate endophytic bacteria were cultured and isolated from leaves of Chinese fir followed by morphological, physiological, and biochemical analyses as well as 16S rRNA sequencing for identification. Pathogen inhibition against Pestalotiopsis apiculatus by the sterile fermentation filtrate of potential specimens was tested on toxic plate and Oxford cup and observed under a microscope. Effectiveness of the disease control by the selected bacteria was further verified in vitro on fir leaves. Results The endophytic bacterium coded SM-1 showed a significant antagonistic effect against P. apiculatus. It was isolated and identified as Bacillus atrophaeus. On the toxic plate and Oxford cup tests, the SM-1 fermentation filtrate yielded a P. apiculatus inhibition rate of 58.80%. Morphologically, the bacterium inhibited the mycelial growth and caused cellular swelling that changed the cells spherical in appearance of the pathogen. The efficacy of the SM-1 filtrate on copper blight on the fir leaves was 95% with significantly reduced disease severity (P<0.01). Conclusion The SM-1, identified as B. atrophaeus, appeared to be a potential biocontrol agent to deter copper blight on Chinese fir. -
表 1 生理生化鉴定结果
Table 1. Physiological and biochemical characteristics of SM-1
项目 Items 1 2 3 4 5 6 7 氧化酶活性 Oxidase activity − + − + − + + 糖原 Glycogen − Nd − − + + − 乳糖 Lactose − + − − + − − 蜜二糖 Melibiose − + − − − − + 甲基葡萄糖苷 Methyl α-d-glucoside − + − − + + + 杜-杜拉诺糖 d-Turanose − + − − − − + 注:① “+”表示阳性,“−”表示阴性; ②1. SM-1, 2. 解淀粉芽孢杆菌, 3.萎缩芽孢杆菌, 4.摩加夫芽孢杆菌, 5.暹罗芽胞杆菌, 6.贝莱斯芽孢杆菌, 7. B. subtilis subsp. Stercoris。
Note: ① ‘+’ means positive; ‘−’ means negative; ②1. SM-1, 2. B. amyloliquefaciens, 3. B. atrophaeus, 4. B. mojavensis, 5. B. siamensis, 6. B. velezensis, 7. B. subtilis subsp. Stercoris.表 2 与菌株SM-1最为相似的细菌种类
Table 2. Bacterial species with closest similarity to SM-1
种类 Species 菌株编号 Strain 16S 序列注册号 Accession number 相似性 Similarity/% 贝莱斯芽孢杆菌 Bacillus velezensis CR-502 AY603658 99.29 B. subtilis subsp. Stercoris D7XPN1 JHCA01000027 99.21 暹罗芽孢杆菌 B. siamensis KCTC 13613 AJVF01000043 98.97 枯草芽孢杆菌枯草亚种 B. subtilis subsp. Subtilis NCIB 3610 ABQL01000001 98.69 解淀粉芽孢杆菌 B. amyloliquefaciens DSM 7 FN597644 98.69 B. nakamurai NRRL B-41091 LSAZ01000028 98.69 B. subtilis subsp. inaquosorum KCTC 13429 AMXN01000021 98.49 耐盐短杆菌 B. halotolerans ATCC 25096 LPVF01000003 98.49 特基拉芽孢杆菌 B. tequilensis KCTC 13622 AYTO01000043 98.49 萎缩芽孢杆菌 B. atrophaeus JCM 9070 AB021181 98.49 莫海威芽孢杆菌 B. mojavensis RO-H-1 JH600280 98.42 死亡谷芽孢杆菌 B. vallismortis DV1-F-3 JH600273 98.42 枯草芽孢杆菌斯氏亚种 B. subtilis subsp. Spizizenii NRRL B-23049 CP002905 98.35 B. glycinifermentans GO-13 LECW01000063 97.45 副地衣芽孢杆菌 B. paralicheniformis KJ-16 KY694465 97.38 B. licheniformis 地衣芽孢杆菌 ATCC 14580 AE017333 97.18 B. haynesii NRRL B-41327 MRBL01000076 97.11 表 3 Biolog系统对细菌菌株SM-1的鉴定
Table 3. Identification of bacterial strain SM-1 by Biolog system
排序 Rank 相似性 Similarity 位距 Distance 种类 Species 1 0.631 5.311 萎缩芽孢杆菌 Bacillus atrophaeus 2 0.163 5.752 解淀粉芽孢杆菌 B. amyloliquefaciens 3 0.062 6.336 摩加夫芽孢杆菌 B. mojavensis 4 0.046 6.511 简单芽胞杆菌 B. simplex -
[1] 陈苏英, 马祥庆, 吴鹏飞, 等. 1.5代杉木种子园不同无性系生长和结实性状的评价 [J]. 热带亚热带植物学报, 2014, 22(3):281−291. doi: 10.3969/j.issn.1005-3395.2014.03.010CHEN S Y, MA X Q, WU P F, et al. Evaluation on growth and seed characters of different clones in 1.5-generation seed orchard of Chinese fir [J]. Journal of Tropical and Subtropical Botany, 2014, 22(3): 281−291.(in Chinese) doi: 10.3969/j.issn.1005-3395.2014.03.010 [2] 詹振亮. 福建省杉木赤枯病病原菌鉴定及防治药剂筛选[D]. 福州: 福建农林大学, 2017.ZHAN Z L. Identification and Fungicides Screening of the Copper Blight pathogen of Cunninghamia Lanceolate in Fujian[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. (in Chinese) [3] 杜静, 胡超魁, 解怀君, 等. 辽宁典型海域表层海水中在用化学农药浓度水平与潜在生态风险[J]. 环境科学, 2020-10-19. doi: 10.13227/j.hjkx.202008125.DU J, HU C K, XIE H J, et, al. Concentration Levels and Potential Ecological Risks of Current Use Pesticides in the Surface Seawater of Liaoning Typical Sea Areas[J]. Environmental Science, 2020-10-19. doi: 10.13227/j.hjkx.202008125. (in Chinese) [4] EILENBERG J, HAJEK A, LOMER C. Suggestions for unifying the terminology in biological control [J]. BioControl, 2001, 46(4): 387−400. doi: 10.1023/A:1014193329979 [5] ALABOUVETTE C, OLIVAIN C, MIGHELI Q, et al. Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum [J]. New Phytologist, 2009, 184(3): 529−544. doi: 10.1111/j.1469-8137.2009.03014.x [6] HARDOIM P R, VAN OVERBEEK LS, BERG G, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes [J]. Microbiology and Molecular Biology Reviews, 2015, 79: 293−320. doi: 10.1128/MMBR.00050-14 [7] BROOKS D S, GONZALEZ C F, APPEL D N. Evaluation of endophytic bacteria as potential biological control agents for oak wilt [J]. Biological control, 1994(4): 373−381. [8] GUTIÉRREZ-ZAMORA M L, MARTÍNEZ-ROMERO E. Natural endophytic association between Rhizobium etli and maize (Zea mays L.) [J]. Journal of Biotechnology, 2001, 91(2/3): 117−126. [9] MCINROY J A, KLOEPPER J W. Survey of indigenous bacterial endophytes from cotton and sweet corn [J]. Plant and Soil, 1995, 173(2): 337−342. doi: 10.1007/BF00011472 [10] 王森胜, 何熙璞, 刘鸿杰, 等. 具抑菌活性杉木内生菌的分离、鉴定及培养条件优化 [J]. 基因组学与应用生物学, 2014, 33(6):1275−1280.WANG S S, HE X P, LIU H J, et al. Identification of an endophytic bacterium having antagonistic activity isolated from Cunninghamia lanceolata and optimization of fermentation condition [J]. Genomics and Applied Biology, 2014, 33(6): 1275−1280.(in Chinese) [11] 汤智德, 徐彩瑶, 吴承祯, 等. 内生真菌对低磷胁迫下杉木幼苗生长及光合作用的影响 [J]. 江西农业大学学报, 2019, 41(2):281−288, 307.TANG Z D, XU C Y, WU C Z, et al. The effect of endophytic fungus on the growth and photosynthesis of Cunninghamia lanceolate under low phosphorous stress [J]. Acta Agriculturae Universitis Jiangxiensis, 2019, 41(2): 281−288, 307.(in Chinese) [12] GOSZCZYNSKA T, SERFONTEIN J J, SERFONTEIN S. Introduction to Practical Phytobacteriology (First edition)[M]. Pretoria: ARC-Plant Protection Research Institute, 2000. [13] BERGEY D H, JOHN G H, NOEL R K, et al. Bergey's Manual of Determinative Bacteriology[M]. (9th ed.). Lippincott Williams & Wilkins, 1994. [14] 卢彩鸽, 张殿朋, 刘伟成, 等. 一株甘蓝枯萎病拮抗细菌的筛选、鉴定及其抑菌活性测定 [J]. 华北农学报, 2014, 29(1):195−202. doi: 10.7668/hbnxb.2014.01.035LU C G, ZHANG D P, LIU W C, et al. Screening, identification and activity analysis of antagonistic bacteria against cabbage wilt disease [J]. Acta Agriculturae Boreali-Sinica, 2014, 29(1): 195−202.(in Chinese) doi: 10.7668/hbnxb.2014.01.035 [15] IDZIK D, WOJTYCZKA R, KEPA M, et al. Evaluation of methicillin-resistance in Staphylococcus aureus by the agar disk diffusion method and PCR [J]. Medycyna Doswiadczalna i Mikrobiologia, 2000, 52(4): 327−332. [16] 杨雷鹏. 鲜姜汁对不同酵母菌抑制作用的研究 [J]. 中国果菜, 2020, 40(2):35−38.YANG L P. Study on the inhibitory effect of fresh ginger juice on different yeasts [J]. China Fruit & Vegetable, 2020, 40(2): 35−38.(in Chinese) [17] 吕昂. 链霉菌3-10抗真菌代谢产物鉴定及防病潜力评估[D]. 武汉: 华中农业大学, 2017.LYU A. Identification of the Antifungl Metabolites from Streptomyces sp. 3-10 and Evaluation of Their Efficacy ahainst Plant Fungal Diseases[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese) [18] 沙月霞, 王琦, 李燕. 稻瘟病生防芽胞杆菌的筛选及防治效果 [J]. 中国生物防治学报, 2016, 32(4):474−484.SHA Y X, WANG Q, LI Y. Screening and prevention of Bacillus biocontrol against rice blast [J]. Chinese Journal of Biological Control, 2016, 32(4): 474−484.(in Chinese) [19] ARORA N K, KIM M J, KANG S C, et al. Role of chitinase and beta-1, 3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani [J]. Canadian Journal of Microbiology, 2007, 53(2): 207−212. doi: 10.1139/w06-119 [20] PICARD K, TIRILLY Y, BENHAMOU N. Cytological effects of cellulases in the parasitism of Phytophthora parasitica by Pythium oligandrum [J]. Applied and Environmental Microbiology, 2000, 66(10): 4305−4314. doi: 10.1128/AEM.66.10.4305-4314.2000 [21] 张涛, 李雪艳, 杨红梅, 等. 新疆棉花黄萎病菌拮抗细菌的分离、筛选与鉴定 [J]. 微生物学通报, 2018, 45(11):2418−2428.ZHANG T, LI X Y, YANG H M, et al. Isolation, screening and identification of antagonistic bacteria against Verticillium dahliae Kleb. in Xinjiang [J]. Microbiology, 2018, 45(11): 2418−2428.(in Chinese) [22] 刘伟, 何彩, 金娜, 等. 枸杞叶枯病拮抗芽孢杆菌的筛选、鉴定及防效 [J]. 北方园艺, 2019(15):23−29.LIU W, HE C, JIN N, et al. Screening, identification and control of antagonistic bacterialon leaf blight of Lycium barbarum [J]. Northern Horticulture, 2019(15): 23−29.(in Chinese)