• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干旱胁迫对侧金盏花生理特性的影响

陈翠红 周蕴薇 李家绮 杨丰瑞 白云 陈丽飞

陈翠红,周蕴薇,李家绮,等. 干旱胁迫对侧金盏花生理特性的影响 [J]. 福建农业学报,2021,36(5):532−541 doi: 10.19303/j.issn.1008-0384.2021.05.006
引用本文: 陈翠红,周蕴薇,李家绮,等. 干旱胁迫对侧金盏花生理特性的影响 [J]. 福建农业学报,2021,36(5):532−541 doi: 10.19303/j.issn.1008-0384.2021.05.006
CHEN C H, ZHOU Y W, LI J Q, et al. Physiology of Adonis amurensis as Affected by Drought [J]. Fujian Journal of Agricultural Sciences,2021,36(5):532−541 doi: 10.19303/j.issn.1008-0384.2021.05.006
Citation: CHEN C H, ZHOU Y W, LI J Q, et al. Physiology of Adonis amurensis as Affected by Drought [J]. Fujian Journal of Agricultural Sciences,2021,36(5):532−541 doi: 10.19303/j.issn.1008-0384.2021.05.006

干旱胁迫对侧金盏花生理特性的影响

doi: 10.19303/j.issn.1008-0384.2021.05.006
基金项目: 吉林省自然科学基金(JJKH20180668KJ);吉林农业大学科研启动项目(0214-202023298)
详细信息
    作者简介:

    陈翠红(1993−),女,硕士研究生,研究方向:观赏植物资源及生理研究(E-mail:876398702@qq.com

    通讯作者:

    陈丽飞(1979−),女,博士,副教授,研究方向:观赏植物资源及生理研究(E-mail:lfchen@jlau.edu.cn

  • 中图分类号: S 681

Physiology of Adonis amurensis as Affected by Drought

  • 摘要:   目的   研究侧金盏花植株在干旱及复水条件下的生理特性,为其引种栽培及应用提供理论依据。   方法   采用盆栽控水方式,研究不同程度干旱胁迫对其生理特性的影响。   结果   随胁迫程度加重,侧金盏花生物量、株高、叶片相对含水量、叶绿素(Chl)总量、可溶性蛋白含量降低,可溶性糖、丙二醛(MDA)含量和叶片相对电导率增加,脯氨酸(Pro)含量、过氧化物酶(POD)和超氧化物歧化酶(SOD)活性先上升后下降;净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和胞间二氧化碳浓度(Ci)均下降,最大荧光(Fm)、光系统Ⅱ(PSⅡ)潜在活性、PSⅡ最大光化学量子产量、光化学猝灭系数(qp)、表观光合电子传递速率和PSⅡ实际光化学量子产量降低,初始荧光和非光化学猝灭逐渐增大;干旱前期(0~8 d)进行复水,土壤相对含水量不低于29.9%,各生理指标基本恢复至对照,干旱中期(8~12 d)复水后,各指标恢复速度较慢,干旱后期(12~16 d)复水后,各生理指标与对照相比差异显著。   结论   侧金盏花维持正常生长所能承受的持续干旱最长时间是8 d,其土壤相对含水量下限为29.9%;持续干旱8 d后,对侧金盏花造成不可逆伤害,因此对侧金盏花进行补水最晚不超过干旱发生的8 d。
  • 图  1  侧金盏花不同水分状况光合参数的变化

    Figure  1.  Changes in photosynthetic parameters of A. amurensis grown under varied watering conditions

    图  2  侧金盏花不同水分状况叶绿素荧光参数的变化

    Figure  2.  Changes in chlorophyll fluorescence parameters of A. amurensis grown under varied watering conditions

    图  3  侧金盏花不同水分状况叶绿素荧光参数的变化

    Figure  3.  Changes in chlorophyll fluorescence parameters of A. amurensis grown under varied watering conditions

    表  1  侧金盏花不同水分状况土壤相对含水量的变化

    Table  1.   Variation on relative moisture content of A. amurensis-growing soil under varied watering conditions

    胁迫时间
    Stress time/d
    土壤相对含水量
    Soil relative water content/%
    对照 CK干旱 Drought复水 Rewatering
    0 71.60±2.34 a 71.85±1.16 a    −
    472.40±3.84 a41.55±0.43 b70.20±3.65 ab
    871.57±1.43 a29.90±1.35 c72.67±2.52 a
    1269.93±1.37 a23.88±2.14 d67.37±1.26 b
    1668.83±5.08 a20.40±2.58 e72.10±0.85 a
    注:表中数据为平均值±标准差,同列不同小写字母表明不同胁迫时间同一指标差异显著(P<0.05)。表2-3、5-13同。
    Note: The data in the table are mean ± standard deviation, different lowercase letters in the same column indicate significant differences in the same index at different stress times (P<0.05). Same for Table 2-3 and Table 5-13.
    下载: 导出CSV

    表  2  干旱胁迫下侧金盏花生物量的变化

    Table  2.   Variation on biomass of A. amurensis grown under drought stress

    胁迫时间
    Stresstime/d
    鲜质量 Fresh mass/g 干质量 Dry mass/g
    地上部
    Above ground
    根系
    Root
    地上部
    Above ground
    根系
    Root
    0 2.3633±0.1025 a 9.3620±0.2114 a 0.4527±0.0029 a 3.4303±0.2112 a
    4 1.8313±0.1517 b 7.5250±0.4040 b 0.4110±0.0035 a 2.5650±0.1758 b
    8 1.5823±0.0609 c 7.3213±0.1550 b 0.2647±0.0040 b 2.3567±0.1503 b
    12 1.4813±0.1183 c 5.4713±0.3208 c 0.2380±0.0030 b 1.4683±0.0336 c
    16 1.2550±0.0960 d 5.2263±0.0970 c 0.2157±0.0095 b 1.3473±0.0481 c
    下载: 导出CSV

    表  3  侧金盏花不同水分状况株高的变化

    Table  3.   Variation on plant height of A. amurensis grown under varied watering conditions

    胁迫时间
    Stress time/d
    株高 plant height/cm
    对照 CK干旱 Drought复水 Rewatering
    0 9.17±0.76 e 9.37±0.65 a    −
    410.40±0.40 d7.93±0.12 b8.27±0.21 a
    812.33±0.31 c7.10±0.10 c7.40±0.26 b
    1213.60±0.10 b6.57±0.12 c6.80±0.20 c
    1614.57±0.35 a5.57±0.49 d5.90±0.10 d
    下载: 导出CSV

    表  4  侧金盏花不同干旱胁迫时间复水后存活率

    Table  4.   Survival rate of Adonis amurensis after rehydration under different drought stress times

    胁迫时间
    Stress time/d
    存活率
    Survival rate/%
    胁迫时间
    Stress time/d
    存活率
    Survival rate/%
    0 100 12 50.67
    4 100 16 6.35
    8 100
    下载: 导出CSV

    表  5  侧金盏花不同水分状况叶片相对含水量的变化

    Table  5.   Variation on leaf relative moisture content of A. amurensis grown under varied watering conditions

    胁迫时间
    Stress time/d
    叶片相对含水量 Leaf relative water content/%
    对照 CK干旱 Drought复水 Rewatering
    0 89.39±5.07a 86.28±3.61a    −
    486.37±4.61a75.66±1.08b79.58±3.51a
    886.56±3.74a65.04±4.50c77.46±1.46a
    1290.35±5.45a51.74±1.93d63.76±0.92b
    1688.57±4.21a44.62±2.87e47.43±2.50c
    下载: 导出CSV

    表  6  侧金盏花不同水分状况叶绿素总量的变化

    Table  6.   Variation on chlorophyll in leaves of A. amurensis grown under varied watering conditions

    胁迫时间
    Stress time/d
    叶绿素总含量 Chl content/(mg·g−1
    对照 CK干旱 Drought复水 Rewatering
    0 2.8348±0.0881 ab 2.7621±0.2360 a    −
    42.9203±0.1850 a2.6263±0.1286 a2.6423±0.0763 a
    8 2.7347±0.1171 ab2.3444±0.0331 b2.5483±0.1659 a
    122.6529±0.0455 b1.9670±0.0992 c2.0616±0.1215 b
    162.6182±0.1058 b1.7103±0.0827 d1.7838±0.1070 c
    下载: 导出CSV

    表  7  侧金盏花不同水分状况脯氨酸含量的变化

    Table  7.   Variation of proline content in A. amurensis grown under varied watering conditions

    胁迫时间
    Stress time/d
    脯氨酸含量 Proline content/(μg·g−1
    对照 CK干旱 Drought复水 Rewatering
    0 5.34±0.15 ab 4.34±0.13 e    −
    45.06±0.15 b5.91±0.15 d5.47±0.20 d
    8 5.23±0.03 ab16.93±0.99 c14.21±0.34 b
    125.79±0.26 a19.72±0.11 a15.93±0.95 a
    16 5.64±0.70 ab18.46±0.98 b12.71±1.00 c
    下载: 导出CSV

    表  8  侧金盏花不同水分状况可溶性糖含量的变化

    Table  8.   Variation on soluble sugar content in A. amurensis grown under varied watering conditions

    胁迫时间
    Stress time/d
    可溶性糖含量 Soluble sugar content/%
    对照 CK干旱 Drought复水 Rewatering
    0 3.69±0.15 b 3.81±0.12 d    −
    44.02±0.13 ab5.44±0.16 c4.65±0.14 c
    83.87±0.17 ab7.26±0.19 b5.53±0.27 b
    124.13±0.33 a8.28±0.22 a7.61±0.30 a
    164.21±0.24 a8.55±0.14 a7.85±0.43 a
    下载: 导出CSV

    表  9  侧金盏花不同水分状况可溶性蛋白含量的变化

    Table  9.   Variation on soluble protein content in A. amurensis grown under varied watering conditions

    胁迫时间
    Stress time/d
    可溶性蛋白含量 Soluble protein content/(mg·g−1
    对照 CK干旱 Drought复水 Rewatering
    0 33.38±2.14 a 34.04±1.90 a    −
    426.49±1.31 c24.30±1.28 b28.33±1.94 a
    8 27.76±0.56 bc14.65±1.22 c19.37±2.06 b
    1229.55±2.18 b13.42±0.49 c17.78±1.70 b
    1630.53±0.35 b6.67±0.82 d11.56±0.97 c
    下载: 导出CSV

    表  10  侧金盏花不同水分状况丙二醛含量的变化

    Table  10.   Variation on malondialdehyde content in A. amurensis grown under varied watering conditions

    胁迫时间
    Stress time/d
    丙二醛含量 Malondialdehyde content/(μmol·g−1
    对照 CK干旱 Drought复水 Rewatering
    0 1.44±0.11 ab 1.60±0.10 e    −
    4 1.28±0.17 bc2.27±0.12 d1.68±0.14 c
    81.23±0.10 c3.33±0.25 c2.92±0.27 b
    121.22±0.07 c4.53±0.18 b3.11±0.07 b
    161.55±0.06 a5.57±0.31 a3.53±0.18 a
    下载: 导出CSV

    表  11  侧金盏花不同水分状况相对电导率的变化

    Table  11.   Variation on relative electric conductivity of A. amurensis grown under varied watering conditions

    胁迫时间
    Stress time/d
    相对电导率 Relative conductivity/%
    对照 CK干旱 Drought复水 Rewatering
    017.47±1.27 b17.30±0.76 e
    418.17±1.26 b22.33±0.59 d21.30±0.61 d
    819.40±0.78 ab29.30±1.11 c28.27±1.42 c
    1220.13±1.21 a40.67±1.53 b35.17±0.76 b
    1619.67±1.56 b55.23±1.20 a41.10±1.02 a
    下载: 导出CSV

    表  12  侧金盏花不同水分状况过氧化物酶活性的变化

    Table  12.   Variation on peroxidase activity of A. amurensis grown under varied watering conditions

    胁迫时间
    Stress time/d
    过氧化物酶活性 POD activity/(U·g−1min−1
    对照 CK干旱 Drought复水 Rewatering
    0 226.74±11.68 a 214.72±16.15 e   −
    4236.08±10.49 a258.73±16.68 d253.45±6.08 d
    8234.72±9.14 a773.43±30.40 a590.88±26.36 a
    12246.77±6.15 a546.76±22.93 b405.45±28.57 b
    16238.74±18.82 a373.43±23.33 c322.74±18.05 c
    下载: 导出CSV

    表  13  侧金盏花不同水分状况超氧化物歧化酶活性的变化

    Table  13.   Variation on superoxide dismutase activity of A. amurensis grown under varied watering conditions

    胁迫时间
    Stress time/d
    超氧化物歧化酶活性 SOD activity/(U·g−1
    对照 CK干旱 Drought复水 Rewatering
    0 315.98±10.21 c 322.23±19.77 d    −
    4310.21±9.54 b360.50±10.00 c358.78±7.57 b
    8314.66±9.72 b410.12±8.22 a370.87±8.37 b
    12322.73±10.35 a510.92±6.14 b389.59±5.80 a
    16329.50±5.00 a435.35±4.45 c369.56±7.71 b
    下载: 导出CSV
  • [1] SALEHI S P, IZADPANAH M, FALAH H L, et al. Comparison of the effects of drought stress on pigments, peroxidase, osmotic adjustment and antioxidant enzymes in different accessions of anthemistinctoria and tripleurospermumservanes of natural resources gene bank of iran [J]. En Journals, 2015: 126−139.
    [2] 何淼, 陈士惠, 马翠青, 等. 野生及引种侧金盏花的开花物候与传粉特性 [J]. 草业科学, 2014, 31(3):431−437. doi: 10.11829/j.issn.1001-0629.2013-0209

    HE M, CHEN S H, MA C Q, et al. Flowering phenology and pollination charateristic of Adonis amurensis [J]. Pratacultural Science, 2014, 31(3): 431−437.(in Chinese) doi: 10.11829/j.issn.1001-0629.2013-0209
    [3] 宁波. RACE法获取顶冰花CBF1基因及其抗冻性质研究[D]. 长春: 吉林大学, 2008.

    NING B. Research of Adonis CBF1by SMART RACE and Realtime PCR[D]. ChangChun: Jilin University, 2008.
    [4] 王乐忠, 刘鸣远. 东北侧金盏花属的研究 [J]. 植物研究, 1988, 8(2):49−53.

    WANG Y Z, LIU M Y. Studies on the genus Adonis in northeast China [J]. Bulletin of Botanical Research, 1988, 8(2): 49−53.(in Chinese)
    [5] 张治安, 陈展宇. 植物生理学实验技术[M]. 长春: 吉林大学出版社, 2008.
    [6] 王骞春, 陆爱君, 冯健, 等. 干旱胁迫对日本落叶松生理指标的影响 [J]. 东北林业大学学报, 2016, 44(8):13−17, 40. doi: 10.3969/j.issn.1000-5382.2016.08.003

    WANG Q C, LU A J, FENG J, et al. Effects of drought stress on physiological indices of Japanese larch [J]. Journal of Northeast Forestry University, 2016, 44(8): 13−17, 40.(in Chinese) doi: 10.3969/j.issn.1000-5382.2016.08.003
    [7] LI H. Principles and techniques of plant physiological and biochemical experiments[M]. Beijing: Higher Education Press, 2003: 191-205.
    [8] HAO Z. Plant physiological experiments[M]. Harbin: Harbin Institute of Technology Press, 2004.
    [9] BATES L S, WALDREN R D, TEARE I D. Rapid determination of free proline for drought studies [J]. Plant Soil, 1973, 39: 205−207. doi: 10.1007/BF00018060
    [10] GAO J. Instruction for plant physiology experiments[M]. Beijing: Higher Education Press, 2006: 211-214.
    [11] BILGER W, BJÖRKMAN O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis [J]. Photosynthesis Research, 1990, 25(3): 173−185. doi: 10.1007/BF00033159
    [12] 黄有总, 张国平. 叶绿素荧光测定技术在麦类作物耐盐性鉴定中的应用 [J]. 麦类作物学报, 2004, 24(3):114−116. doi: 10.3969/j.issn.1009-1041.2004.03.029

    HUANG Y Z, ZHANG G P. Application of measuring chlorophyll fluorescence in identification of salinity tolerance in triticeae crops [J]. Journal of Triticeae Crops, 2004, 24(3): 114−116.(in Chinese) doi: 10.3969/j.issn.1009-1041.2004.03.029
    [13] 谢志玉, 张文辉. 干旱和复水对文冠果生长及生理生态特性的影响 [J]. 应用生态学报, 2018, 29(6):1759−1767.

    XIE Z Y, ZHANG W H. Effects of drought and rewatering on growth and photosynthetic physioecological characteristics of Xanthoceras sorbifolia [J]. Chinese Journal of Applied Ecology, 2018, 29(6): 1759−1767.(in Chinese)
    [14] 徐苏男. 水分胁迫及复水对结缕草生长生理和光合荧光特性的影响[D]. 沈阳: 辽宁大学, 2012.

    XUE S N. Effects of water stress and rewatering on physiological and photosynthetic chlorophyll fluorescence characteristics of Zoysiajaponica[D]. Shenyang: Liaoning University, 2012.
    [15] 雷蕾. 黄连花开花生物学和抗旱、抗盐碱研究[D]. 哈尔滨: 东北林业大学, 2017.

    LEI L. The study on flowering biology and drought and salt resistance of Lysimachiadavurica[D]. Harbin: Northeast Forestry University, 2017.
    [16] ANJUM S A, XIE X Y, WANG L C, et al. Morphological, physiological and biochemical responses of plants to drought stress [J]. Afr. J. Agric. Res, 2011, 6(9): 2026−2032.
    [17] 毛伟, 李玉霖, 赵学勇, 等. 3种藜科植物叶特性因子对土壤养分、水分及种群密度的响应 [J]. 中国沙漠, 2009, 29(3):468−473.

    MAO W, LI Y L, ZHAO X Y, et al. Respondence of leaf traits of three Chenopodiaceae plants to soil nutrients, water content and plant density [J]. Journal of Desert Research, 2009, 29(3): 468−473.(in Chinese)
    [18] 李芳兰, 包维楷, 吴宁. 白刺花幼苗对不同强度干旱胁迫的形态与生理响应 [J]. 生态学报, 2009, 29(10):5406−5416. doi: 10.3321/j.issn:1000-0933.2009.10.027

    LI F L, BAO W K, WU N. Morphological and physiological responses of current Sophora davidii seedlings to drought stress [J]. Acta Ecologica Sinica, 2009, 29(10): 5406−5416.(in Chinese) doi: 10.3321/j.issn:1000-0933.2009.10.027
    [19] WU S W, HU C X, TAN Q L, et al. Effects of molybdenum on water utilization, antioxidative defense system and osmotic-adjustment ability in winter wheat (Triticum aestivum) under drought stress [J]. Plant Physiology and Biochemistry, 2014, 83: 365−374. doi: 10.1016/j.plaphy.2014.08.022
    [20] GAO S S, et al. Effects of drought stress on growth, physiology and secondary metabolites of Two Adonis species in Northeast China [J]. Scientia Horticulturae, 2020: 259.
    [21] 季杨, 张新全, 彭燕, 等. 干旱胁迫对鸭茅根、叶保护酶活性、渗透物质含量及膜质过氧化作用的影响 [J]. 草业学报, 2014, 23(3):144−151. doi: 10.11686/cyxb20140316

    JI Y, ZHANG X Q, PENG Y, et al. Effects of drought stress on lipid peroxidation, osmotic adjustment and activities of protective enzymes in the roots and leaves of orchardgrass [J]. Acta Prataculturae Sinica, 2014, 23(3): 144−151.(in Chinese) doi: 10.11686/cyxb20140316
    [22] 王洪瑞, 敖红. 干旱胁迫对红皮云杉和嫩江云杉渗透调节及抗氧化系统的影响 [J]. 东北林业大学学报, 2020, 48(8):16−21, 32. doi: 10.3969/j.issn.1000-5382.2020.08.004

    WANG H R, AO H. Response of osmotic regulation and antioxidant system to drought stress in Korean spruce and Nenjiang spruce [J]. Journal of Northeast Forestry University, 2020, 48(8): 16−21, 32.(in Chinese) doi: 10.3969/j.issn.1000-5382.2020.08.004
    [23] 周静, 汪天, 崔键, 等. 红壤水分条件对柑橘叶片质膜透性以及活性氧代谢和保护酶活性的影响 [J]. 土壤, 2009, 41(2):236−242. doi: 10.3321/j.issn:0253-9829.2009.02.015

    ZHOU J, WANG T, CUI J, et al. Effects of red soil moisture on content of reactive oxygen species and activities of protective enzymes of Citrus (Citrus unshiu Marc.)leaves [J]. Soils, 2009, 41(2): 236−242.(in Chinese) doi: 10.3321/j.issn:0253-9829.2009.02.015
    [24] 李文鹤. 干旱胁迫对野菊生理特性的影响[D]. 哈尔滨: 东北林业大学, 2011.

    LI W H. Effects on physiological characteristics of Dendrathema indicum L. under drought stress[D]. Harbin: Northeast Forestry University, 2011.
    [25] 李博. 水分胁迫对大花飞燕草种子萌发及幼苗生理特性的影响[D]. 哈尔滨: 东北林业大学, 2011.

    LI B. Effects on seed germination and physiological reaction of Delphinium grandiflorum seedlings under water stress[D]. Harbin: Northeast Forestry University, 2011.
    [26] PENG M, KUC J. Peroxidase generated hydrogen peroxide as asource of antifungal activity in vitro and on tobacco leaf disks [J]. Physiology and Biochemistry, 1992, 82: 696−699.
    [27] 崔颖, 李芊夏, 刘彬, 等. 干旱胁迫对地果幼苗形态与生理特性的影响 [J]. 西北林学院学报, 2020, 35(6):82−88, 227. doi: 10.3969/j.issn.1001-7461.2020.06.11

    CUI Y, LI Q X, LIU B, et al. Effects of drought stress on morphology and physiological characteristics of Ficus tikoua seedlings [J]. Journal of Northwest Forestry University, 2020, 35(6): 82−88, 227.(in Chinese) doi: 10.3969/j.issn.1001-7461.2020.06.11
    [28] FARQUHAR G D, EHLERINGER J R, HUBICK K T. Carbon isotope discrimination and photosynthesis [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 503−537. doi: 10.1146/annurev.pp.40.060189.002443
    [29] 张林春, 郝扬, 张仁和, 等. 干旱及复水对不同抗旱性玉米光合特性的影响 [J]. 西北农业学报, 2010, 19(5):76−80. doi: 10.3969/j.issn.1004-1389.2010.05.017

    ZHANG L C, HAO Y, ZHANG R H, et al. Response of drought and rewatering to leaf photosynthetic characteristics in different maize varieties [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(5): 76−80.(in Chinese) doi: 10.3969/j.issn.1004-1389.2010.05.017
    [30] STEDUTO P, KATERJI N, PUERTOS M H, et al. Water use efficiency of sweet sorghum under water stress conditions: gas exchange investigations at leaf and canopy scales [J]. Field Crops Research, 1997, 54(2): 221−234.
    [31] 李敏敏, 袁军伟, 韩斌, 等. 干旱和复水对两种葡萄砧木叶片光合和叶绿素荧光特性的影响 [J]. 干旱地区农业研究, 2019, 37(1):221−226. doi: 10.7606/j.issn.1000-7601.2019.01.31

    LI M M, YUAN J W, HAN B, et al. Effect of drought and rewatering on the photosynthesis and chlorophyll fluorescence of two grape rootstock leaves [J]. Agricultural Research in the Arid Areas, 2019, 37(1): 221−226.(in Chinese) doi: 10.7606/j.issn.1000-7601.2019.01.31
    [32] LI X, FENG W, ZENG X C. Advances in chlorophyll fluorescence analysis and its uses [J]. Acta Botanica Boreali Occidentalia Sinica, 2006, 26(10): 2186−2196.
    [33] MATHOBO R, MARAIS D, STEYN J M. The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans(Phaseolus vulgaris) [J]. Agricultural Water Management, 2017, 18: 118−125.
    [34] 康红梅, 刘琛彬, 薄伟, 等. 干旱胁迫对4种地被植物水分生理和叶绿素荧光参数的影响 [J]. 山西农业科学, 2020, 48(11):1767−1771. doi: 10.3969/j.issn.1002-2481.2020.11.15

    KANG H M, LIU C B, BO W, et al. Effect of drought stress on the leaf water physiology and chlorophyll fluorescence of four ground cover plants [J]. Journal of Shanxi Agricultural Sciences, 2020, 48(11): 1767−1771.(in Chinese) doi: 10.3969/j.issn.1002-2481.2020.11.15
    [35] FERNANDEZ R T, PERRY R L, FLORE J A. Drought response of young apple trees on three rootstocks. II. Gas exchange, chlorophyll fluorescence, water relations, and leaf abscisic acid [J]. Journal of the American Society for Horticultural Science, 1997, 122: 841−848. doi: 10.21273/JASHS.122.6.841
    [36] SUN J K, ZHANG W H, LU Z H, et al. Chlorophyll fluorescence characteristics of Elaeagnusangustifolia L. and Grewia biloba G. Don var. parviflora(Bge.)Hand. Mazz. Seedlings under drought stress [J]. Bulletin of Botanical Research, 2009, 29(2): 216−223.
  • 加载中
图(3) / 表(13)
计量
  • 文章访问数:  877
  • HTML全文浏览量:  337
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-15
  • 修回日期:  2021-04-18
  • 网络出版日期:  2021-05-17
  • 刊出日期:  2021-05-31

目录

    /

    返回文章
    返回