Physiology of Adonis amurensis as Affected by Drought
-
摘要:
目的 研究侧金盏花植株在干旱及复水条件下的生理特性,为其引种栽培及应用提供理论依据。 方法 采用盆栽控水方式,研究不同程度干旱胁迫对其生理特性的影响。 结果 随胁迫程度加重,侧金盏花生物量、株高、叶片相对含水量、叶绿素(Chl)总量、可溶性蛋白含量降低,可溶性糖、丙二醛(MDA)含量和叶片相对电导率增加,脯氨酸(Pro)含量、过氧化物酶(POD)和超氧化物歧化酶(SOD)活性先上升后下降;净光合速率(Pn )、气孔导度(Gs)、蒸腾速率(Tr)和胞间二氧化碳浓度(Ci)均下降,最大荧光(Fm)、光系统Ⅱ(PSⅡ)潜在活性、PSⅡ最大光化学量子产量、光化学猝灭系数(qp)、表观光合电子传递速率和PSⅡ实际光化学量子产量降低,初始荧光和非光化学猝灭逐渐增大;干旱前期(0~8 d)进行复水,土壤相对含水量不低于29.9%,各生理指标基本恢复至对照,干旱中期(8~12 d)复水后,各指标恢复速度较慢,干旱后期(12~16 d)复水后,各生理指标与对照相比差异显著。 结论 侧金盏花维持正常生长所能承受的持续干旱最长时间是8 d,其土壤相对含水量下限为29.9%;持续干旱8 d后,对侧金盏花造成不可逆伤害,因此对侧金盏花进行补水最晚不超过干旱发生的8 d。 Abstract:Objective Physiological characteristics of Adonis amurensis in response to varying degrees of drought stress and subsequent rewatering were studied prior to the introduction for commercial cultivation and applications of the cultivar. Method Potting with controlled watering was applied to study the effects of varied drought stress and subsequent rewatering on the physiological characteristics of A. amurensis. Result The depleting water supply to the A. amurensis plants decreased the biomass, plant height, relative moisture content in leaf, total chlorophyll, and soluble protein, increased the contents of soluble sugar and malondialdehyde as well as the relative electrical conductivity of the leaves, and rose but followed by a decline on the contents of proline, peroxidase, and superoxide dismutase activities of the plants. Meanwhile, the indicators such as Pn, Gs, Tr, and Ci decreased, Fm, Fv/Fo, Fv/Fm, qP, ETR, and ФPSⅡ gradually decreased, and Fo and NPQ gradually increased. Upon rewatering the soil to a moisture content no less than 29.9% in the early stage of drought treatment (0-8 d), the physiological indices fully returned to the control levels. However, the recovery slowed down when the rewatering took place in the mid stage (8-12 d), and the indices shifted significantly from control if the rewatering was implemented during 12-16 d after the draught stress began. Conclusion A. amurensis plants seemed to be capable of withstanding continuous water depletion up to 8 d and maintaining normal growth with a minimum 29.9% of soil relative moisture content. After the threshold points, prolonged drought stress with less than the minimum water requirement in the soil would irreversibly damage the plant physiology.Therefore, water supplement for A. amurensis should not exceed 8 days under drought condition. -
Key words:
- Adonis amurensis /
- drought stress /
- physiological characteristics
-
表 1 侧金盏花不同水分状况土壤相对含水量的变化
Table 1. Variation on relative moisture content of A. amurensis-growing soil under varied watering conditions
胁迫时间
Stress time/d土壤相对含水量
Soil relative water content/%对照 CK 干旱 Drought 复水 Rewatering 0 71.60±2.34 a 71.85±1.16 a − 4 72.40±3.84 a 41.55±0.43 b 70.20±3.65 ab 8 71.57±1.43 a 29.90±1.35 c 72.67±2.52 a 12 69.93±1.37 a 23.88±2.14 d 67.37±1.26 b 16 68.83±5.08 a 20.40±2.58 e 72.10±0.85 a 注:表中数据为平均值±标准差,同列不同小写字母表明不同胁迫时间同一指标差异显著(P<0.05)。表2-3、5-13同。
Note: The data in the table are mean ± standard deviation, different lowercase letters in the same column indicate significant differences in the same index at different stress times (P<0.05). Same for Table 2-3 and Table 5-13.表 2 干旱胁迫下侧金盏花生物量的变化
Table 2. Variation on biomass of A. amurensis grown under drought stress
胁迫时间
Stresstime/d鲜质量 Fresh mass/g 干质量 Dry mass/g 地上部
Above ground根系
Root地上部
Above ground根系
Root0 2.3633±0.1025 a 9.3620±0.2114 a 0.4527±0.0029 a 3.4303±0.2112 a 4 1.8313±0.1517 b 7.5250±0.4040 b 0.4110±0.0035 a 2.5650±0.1758 b 8 1.5823±0.0609 c 7.3213±0.1550 b 0.2647±0.0040 b 2.3567±0.1503 b 12 1.4813±0.1183 c 5.4713±0.3208 c 0.2380±0.0030 b 1.4683±0.0336 c 16 1.2550±0.0960 d 5.2263±0.0970 c 0.2157±0.0095 b 1.3473±0.0481 c 表 3 侧金盏花不同水分状况株高的变化
Table 3. Variation on plant height of A. amurensis grown under varied watering conditions
胁迫时间
Stress time/d株高 plant height/cm 对照 CK 干旱 Drought 复水 Rewatering 0 9.17±0.76 e 9.37±0.65 a − 4 10.40±0.40 d 7.93±0.12 b 8.27±0.21 a 8 12.33±0.31 c 7.10±0.10 c 7.40±0.26 b 12 13.60±0.10 b 6.57±0.12 c 6.80±0.20 c 16 14.57±0.35 a 5.57±0.49 d 5.90±0.10 d 表 4 侧金盏花不同干旱胁迫时间复水后存活率
Table 4. Survival rate of Adonis amurensis after rehydration under different drought stress times
胁迫时间
Stress time/d存活率
Survival rate/%胁迫时间
Stress time/d存活率
Survival rate/%0 100 12 50.67 4 100 16 6.35 8 100 表 5 侧金盏花不同水分状况叶片相对含水量的变化
Table 5. Variation on leaf relative moisture content of A. amurensis grown under varied watering conditions
胁迫时间
Stress time/d叶片相对含水量 Leaf relative water content/% 对照 CK 干旱 Drought 复水 Rewatering 0 89.39±5.07a 86.28±3.61a − 4 86.37±4.61a 75.66±1.08b 79.58±3.51a 8 86.56±3.74a 65.04±4.50c 77.46±1.46a 12 90.35±5.45a 51.74±1.93d 63.76±0.92b 16 88.57±4.21a 44.62±2.87e 47.43±2.50c 表 6 侧金盏花不同水分状况叶绿素总量的变化
Table 6. Variation on chlorophyll in leaves of A. amurensis grown under varied watering conditions
胁迫时间
Stress time/d叶绿素总含量 Chl content/(mg·g−1) 对照 CK 干旱 Drought 复水 Rewatering 0 2.8348±0.0881 ab 2.7621±0.2360 a − 4 2.9203±0.1850 a 2.6263±0.1286 a 2.6423±0.0763 a 8 2.7347±0.1171 ab 2.3444±0.0331 b 2.5483±0.1659 a 12 2.6529±0.0455 b 1.9670±0.0992 c 2.0616±0.1215 b 16 2.6182±0.1058 b 1.7103±0.0827 d 1.7838±0.1070 c 表 7 侧金盏花不同水分状况脯氨酸含量的变化
Table 7. Variation of proline content in A. amurensis grown under varied watering conditions
胁迫时间
Stress time/d脯氨酸含量 Proline content/(μg·g−1) 对照 CK 干旱 Drought 复水 Rewatering 0 5.34±0.15 ab 4.34±0.13 e − 4 5.06±0.15 b 5.91±0.15 d 5.47±0.20 d 8 5.23±0.03 ab 16.93±0.99 c 14.21±0.34 b 12 5.79±0.26 a 19.72±0.11 a 15.93±0.95 a 16 5.64±0.70 ab 18.46±0.98 b 12.71±1.00 c 表 8 侧金盏花不同水分状况可溶性糖含量的变化
Table 8. Variation on soluble sugar content in A. amurensis grown under varied watering conditions
胁迫时间
Stress time/d可溶性糖含量 Soluble sugar content/% 对照 CK 干旱 Drought 复水 Rewatering 0 3.69±0.15 b 3.81±0.12 d − 4 4.02±0.13 ab 5.44±0.16 c 4.65±0.14 c 8 3.87±0.17 ab 7.26±0.19 b 5.53±0.27 b 12 4.13±0.33 a 8.28±0.22 a 7.61±0.30 a 16 4.21±0.24 a 8.55±0.14 a 7.85±0.43 a 表 9 侧金盏花不同水分状况可溶性蛋白含量的变化
Table 9. Variation on soluble protein content in A. amurensis grown under varied watering conditions
胁迫时间
Stress time/d可溶性蛋白含量 Soluble protein content/(mg·g−1) 对照 CK 干旱 Drought 复水 Rewatering 0 33.38±2.14 a 34.04±1.90 a − 4 26.49±1.31 c 24.30±1.28 b 28.33±1.94 a 8 27.76±0.56 bc 14.65±1.22 c 19.37±2.06 b 12 29.55±2.18 b 13.42±0.49 c 17.78±1.70 b 16 30.53±0.35 b 6.67±0.82 d 11.56±0.97 c 表 10 侧金盏花不同水分状况丙二醛含量的变化
Table 10. Variation on malondialdehyde content in A. amurensis grown under varied watering conditions
胁迫时间
Stress time/d丙二醛含量 Malondialdehyde content/(μmol·g−1) 对照 CK 干旱 Drought 复水 Rewatering 0 1.44±0.11 ab 1.60±0.10 e − 4 1.28±0.17 bc 2.27±0.12 d 1.68±0.14 c 8 1.23±0.10 c 3.33±0.25 c 2.92±0.27 b 12 1.22±0.07 c 4.53±0.18 b 3.11±0.07 b 16 1.55±0.06 a 5.57±0.31 a 3.53±0.18 a 表 11 侧金盏花不同水分状况相对电导率的变化
Table 11. Variation on relative electric conductivity of A. amurensis grown under varied watering conditions
胁迫时间
Stress time/d相对电导率 Relative conductivity/% 对照 CK 干旱 Drought 复水 Rewatering 0 17.47±1.27 b 17.30±0.76 e − 4 18.17±1.26 b 22.33±0.59 d 21.30±0.61 d 8 19.40±0.78 ab 29.30±1.11 c 28.27±1.42 c 12 20.13±1.21 a 40.67±1.53 b 35.17±0.76 b 16 19.67±1.56 b 55.23±1.20 a 41.10±1.02 a 表 12 侧金盏花不同水分状况过氧化物酶活性的变化
Table 12. Variation on peroxidase activity of A. amurensis grown under varied watering conditions
胁迫时间
Stress time/d过氧化物酶活性 POD activity/(U·g−1min−1) 对照 CK 干旱 Drought 复水 Rewatering 0 226.74±11.68 a 214.72±16.15 e − 4 236.08±10.49 a 258.73±16.68 d 253.45±6.08 d 8 234.72±9.14 a 773.43±30.40 a 590.88±26.36 a 12 246.77±6.15 a 546.76±22.93 b 405.45±28.57 b 16 238.74±18.82 a 373.43±23.33 c 322.74±18.05 c 表 13 侧金盏花不同水分状况超氧化物歧化酶活性的变化
Table 13. Variation on superoxide dismutase activity of A. amurensis grown under varied watering conditions
胁迫时间
Stress time/d超氧化物歧化酶活性 SOD activity/(U·g−1) 对照 CK 干旱 Drought 复水 Rewatering 0 315.98±10.21 c 322.23±19.77 d − 4 310.21±9.54 b 360.50±10.00 c 358.78±7.57 b 8 314.66±9.72 b 410.12±8.22 a 370.87±8.37 b 12 322.73±10.35 a 510.92±6.14 b 389.59±5.80 a 16 329.50±5.00 a 435.35±4.45 c 369.56±7.71 b -
[1] SALEHI S P, IZADPANAH M, FALAH H L, et al. Comparison of the effects of drought stress on pigments, peroxidase, osmotic adjustment and antioxidant enzymes in different accessions of anthemistinctoria and tripleurospermumservanes of natural resources gene bank of iran [J]. En Journals, 2015: 126−139. [2] 何淼, 陈士惠, 马翠青, 等. 野生及引种侧金盏花的开花物候与传粉特性 [J]. 草业科学, 2014, 31(3):431−437. doi: 10.11829/j.issn.1001-0629.2013-0209HE M, CHEN S H, MA C Q, et al. Flowering phenology and pollination charateristic of Adonis amurensis [J]. Pratacultural Science, 2014, 31(3): 431−437.(in Chinese) doi: 10.11829/j.issn.1001-0629.2013-0209 [3] 宁波. RACE法获取顶冰花CBF1基因及其抗冻性质研究[D]. 长春: 吉林大学, 2008.NING B. Research of Adonis CBF1by SMART RACE and Realtime PCR[D]. ChangChun: Jilin University, 2008. [4] 王乐忠, 刘鸣远. 东北侧金盏花属的研究 [J]. 植物研究, 1988, 8(2):49−53.WANG Y Z, LIU M Y. Studies on the genus Adonis in northeast China [J]. Bulletin of Botanical Research, 1988, 8(2): 49−53.(in Chinese) [5] 张治安, 陈展宇. 植物生理学实验技术[M]. 长春: 吉林大学出版社, 2008. [6] 王骞春, 陆爱君, 冯健, 等. 干旱胁迫对日本落叶松生理指标的影响 [J]. 东北林业大学学报, 2016, 44(8):13−17, 40. doi: 10.3969/j.issn.1000-5382.2016.08.003WANG Q C, LU A J, FENG J, et al. Effects of drought stress on physiological indices of Japanese larch [J]. Journal of Northeast Forestry University, 2016, 44(8): 13−17, 40.(in Chinese) doi: 10.3969/j.issn.1000-5382.2016.08.003 [7] LI H. Principles and techniques of plant physiological and biochemical experiments[M]. Beijing: Higher Education Press, 2003: 191-205. [8] HAO Z. Plant physiological experiments[M]. Harbin: Harbin Institute of Technology Press, 2004. [9] BATES L S, WALDREN R D, TEARE I D. Rapid determination of free proline for drought studies [J]. Plant Soil, 1973, 39: 205−207. doi: 10.1007/BF00018060 [10] GAO J. Instruction for plant physiology experiments[M]. Beijing: Higher Education Press, 2006: 211-214. [11] BILGER W, BJÖRKMAN O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis [J]. Photosynthesis Research, 1990, 25(3): 173−185. doi: 10.1007/BF00033159 [12] 黄有总, 张国平. 叶绿素荧光测定技术在麦类作物耐盐性鉴定中的应用 [J]. 麦类作物学报, 2004, 24(3):114−116. doi: 10.3969/j.issn.1009-1041.2004.03.029HUANG Y Z, ZHANG G P. Application of measuring chlorophyll fluorescence in identification of salinity tolerance in triticeae crops [J]. Journal of Triticeae Crops, 2004, 24(3): 114−116.(in Chinese) doi: 10.3969/j.issn.1009-1041.2004.03.029 [13] 谢志玉, 张文辉. 干旱和复水对文冠果生长及生理生态特性的影响 [J]. 应用生态学报, 2018, 29(6):1759−1767.XIE Z Y, ZHANG W H. Effects of drought and rewatering on growth and photosynthetic physioecological characteristics of Xanthoceras sorbifolia [J]. Chinese Journal of Applied Ecology, 2018, 29(6): 1759−1767.(in Chinese) [14] 徐苏男. 水分胁迫及复水对结缕草生长生理和光合荧光特性的影响[D]. 沈阳: 辽宁大学, 2012.XUE S N. Effects of water stress and rewatering on physiological and photosynthetic chlorophyll fluorescence characteristics of Zoysiajaponica[D]. Shenyang: Liaoning University, 2012. [15] 雷蕾. 黄连花开花生物学和抗旱、抗盐碱研究[D]. 哈尔滨: 东北林业大学, 2017.LEI L. The study on flowering biology and drought and salt resistance of Lysimachiadavurica[D]. Harbin: Northeast Forestry University, 2017. [16] ANJUM S A, XIE X Y, WANG L C, et al. Morphological, physiological and biochemical responses of plants to drought stress [J]. Afr. J. Agric. Res, 2011, 6(9): 2026−2032. [17] 毛伟, 李玉霖, 赵学勇, 等. 3种藜科植物叶特性因子对土壤养分、水分及种群密度的响应 [J]. 中国沙漠, 2009, 29(3):468−473.MAO W, LI Y L, ZHAO X Y, et al. Respondence of leaf traits of three Chenopodiaceae plants to soil nutrients, water content and plant density [J]. Journal of Desert Research, 2009, 29(3): 468−473.(in Chinese) [18] 李芳兰, 包维楷, 吴宁. 白刺花幼苗对不同强度干旱胁迫的形态与生理响应 [J]. 生态学报, 2009, 29(10):5406−5416. doi: 10.3321/j.issn:1000-0933.2009.10.027LI F L, BAO W K, WU N. Morphological and physiological responses of current Sophora davidii seedlings to drought stress [J]. Acta Ecologica Sinica, 2009, 29(10): 5406−5416.(in Chinese) doi: 10.3321/j.issn:1000-0933.2009.10.027 [19] WU S W, HU C X, TAN Q L, et al. Effects of molybdenum on water utilization, antioxidative defense system and osmotic-adjustment ability in winter wheat (Triticum aestivum) under drought stress [J]. Plant Physiology and Biochemistry, 2014, 83: 365−374. doi: 10.1016/j.plaphy.2014.08.022 [20] GAO S S, et al. Effects of drought stress on growth, physiology and secondary metabolites of Two Adonis species in Northeast China [J]. Scientia Horticulturae, 2020: 259. [21] 季杨, 张新全, 彭燕, 等. 干旱胁迫对鸭茅根、叶保护酶活性、渗透物质含量及膜质过氧化作用的影响 [J]. 草业学报, 2014, 23(3):144−151. doi: 10.11686/cyxb20140316JI Y, ZHANG X Q, PENG Y, et al. Effects of drought stress on lipid peroxidation, osmotic adjustment and activities of protective enzymes in the roots and leaves of orchardgrass [J]. Acta Prataculturae Sinica, 2014, 23(3): 144−151.(in Chinese) doi: 10.11686/cyxb20140316 [22] 王洪瑞, 敖红. 干旱胁迫对红皮云杉和嫩江云杉渗透调节及抗氧化系统的影响 [J]. 东北林业大学学报, 2020, 48(8):16−21, 32. doi: 10.3969/j.issn.1000-5382.2020.08.004WANG H R, AO H. Response of osmotic regulation and antioxidant system to drought stress in Korean spruce and Nenjiang spruce [J]. Journal of Northeast Forestry University, 2020, 48(8): 16−21, 32.(in Chinese) doi: 10.3969/j.issn.1000-5382.2020.08.004 [23] 周静, 汪天, 崔键, 等. 红壤水分条件对柑橘叶片质膜透性以及活性氧代谢和保护酶活性的影响 [J]. 土壤, 2009, 41(2):236−242. doi: 10.3321/j.issn:0253-9829.2009.02.015ZHOU J, WANG T, CUI J, et al. Effects of red soil moisture on content of reactive oxygen species and activities of protective enzymes of Citrus (Citrus unshiu Marc.)leaves [J]. Soils, 2009, 41(2): 236−242.(in Chinese) doi: 10.3321/j.issn:0253-9829.2009.02.015 [24] 李文鹤. 干旱胁迫对野菊生理特性的影响[D]. 哈尔滨: 东北林业大学, 2011.LI W H. Effects on physiological characteristics of Dendrathema indicum L. under drought stress[D]. Harbin: Northeast Forestry University, 2011. [25] 李博. 水分胁迫对大花飞燕草种子萌发及幼苗生理特性的影响[D]. 哈尔滨: 东北林业大学, 2011.LI B. Effects on seed germination and physiological reaction of Delphinium grandiflorum seedlings under water stress[D]. Harbin: Northeast Forestry University, 2011. [26] PENG M, KUC J. Peroxidase generated hydrogen peroxide as asource of antifungal activity in vitro and on tobacco leaf disks [J]. Physiology and Biochemistry, 1992, 82: 696−699. [27] 崔颖, 李芊夏, 刘彬, 等. 干旱胁迫对地果幼苗形态与生理特性的影响 [J]. 西北林学院学报, 2020, 35(6):82−88, 227. doi: 10.3969/j.issn.1001-7461.2020.06.11CUI Y, LI Q X, LIU B, et al. Effects of drought stress on morphology and physiological characteristics of Ficus tikoua seedlings [J]. Journal of Northwest Forestry University, 2020, 35(6): 82−88, 227.(in Chinese) doi: 10.3969/j.issn.1001-7461.2020.06.11 [28] FARQUHAR G D, EHLERINGER J R, HUBICK K T. Carbon isotope discrimination and photosynthesis [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 503−537. doi: 10.1146/annurev.pp.40.060189.002443 [29] 张林春, 郝扬, 张仁和, 等. 干旱及复水对不同抗旱性玉米光合特性的影响 [J]. 西北农业学报, 2010, 19(5):76−80. doi: 10.3969/j.issn.1004-1389.2010.05.017ZHANG L C, HAO Y, ZHANG R H, et al. Response of drought and rewatering to leaf photosynthetic characteristics in different maize varieties [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(5): 76−80.(in Chinese) doi: 10.3969/j.issn.1004-1389.2010.05.017 [30] STEDUTO P, KATERJI N, PUERTOS M H, et al. Water use efficiency of sweet sorghum under water stress conditions: gas exchange investigations at leaf and canopy scales [J]. Field Crops Research, 1997, 54(2): 221−234. [31] 李敏敏, 袁军伟, 韩斌, 等. 干旱和复水对两种葡萄砧木叶片光合和叶绿素荧光特性的影响 [J]. 干旱地区农业研究, 2019, 37(1):221−226. doi: 10.7606/j.issn.1000-7601.2019.01.31LI M M, YUAN J W, HAN B, et al. Effect of drought and rewatering on the photosynthesis and chlorophyll fluorescence of two grape rootstock leaves [J]. Agricultural Research in the Arid Areas, 2019, 37(1): 221−226.(in Chinese) doi: 10.7606/j.issn.1000-7601.2019.01.31 [32] LI X, FENG W, ZENG X C. Advances in chlorophyll fluorescence analysis and its uses [J]. Acta Botanica Boreali Occidentalia Sinica, 2006, 26(10): 2186−2196. [33] MATHOBO R, MARAIS D, STEYN J M. The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans(Phaseolus vulgaris) [J]. Agricultural Water Management, 2017, 18: 118−125. [34] 康红梅, 刘琛彬, 薄伟, 等. 干旱胁迫对4种地被植物水分生理和叶绿素荧光参数的影响 [J]. 山西农业科学, 2020, 48(11):1767−1771. doi: 10.3969/j.issn.1002-2481.2020.11.15KANG H M, LIU C B, BO W, et al. Effect of drought stress on the leaf water physiology and chlorophyll fluorescence of four ground cover plants [J]. Journal of Shanxi Agricultural Sciences, 2020, 48(11): 1767−1771.(in Chinese) doi: 10.3969/j.issn.1002-2481.2020.11.15 [35] FERNANDEZ R T, PERRY R L, FLORE J A. Drought response of young apple trees on three rootstocks. II. Gas exchange, chlorophyll fluorescence, water relations, and leaf abscisic acid [J]. Journal of the American Society for Horticultural Science, 1997, 122: 841−848. doi: 10.21273/JASHS.122.6.841 [36] SUN J K, ZHANG W H, LU Z H, et al. Chlorophyll fluorescence characteristics of Elaeagnusangustifolia L. and Grewia biloba G. Don var. parviflora(Bge.)Hand. Mazz. Seedlings under drought stress [J]. Bulletin of Botanical Research, 2009, 29(2): 216−223.