Effects of Waterlogging on Physiology and Yield of Wheat Plants at Booting Stage
-
摘要:
目的 小麦渍害是长江中下游小麦生产中的主要非生物胁迫因素,研究孕穗期不同渍害时长对小麦生理特性及产量的影响,为小麦孕穗期的耐渍性机理研究和生产提供理论依据。 方法 以小麦品种扬麦16和中麦895为供试材料,采用盆栽控水方法,研究孕穗期渍害时长对小麦生长及产量的影响。 结果 (1)孕穗期发生渍害,小麦叶片的叶绿素含量显著降低,渍害时长越久,叶片SPAD值下降程度越大;受害越重的叶片SPAD值下降幅度越大,倒二叶较同期的旗叶受害严重。(2)小麦的CAT、SOD和POD等抗氧化物酶的酶活性在渍害期间呈现“ ∧ ”型变化趋势,活性氧(ROS)含量在渍害前期有降低或缓慢增加现象,而在渍害后期呈急剧升高趋势。(3)孕穗期短期内渍害有效穗数、穗粒数和千粒重等产量要素有小幅度增加现象,这可能是小麦的应激反应所致。(4)孕穗期渍害对小麦株高无显著影响,长期渍害导致小麦产量显著下降,有效穗数、穗粒数和千粒重的降低是引起小麦减产的主要因子;在渍害15 d后,中麦895和扬麦16的单株产量分别较CK降低了51.47%和43.99%。 结论 孕穗期渍害显著降低了小麦叶片叶绿素含量,破坏了植株体内活性氧代谢和抗氧化酶系统之间的平衡,过量积累的活性氧致使细胞脂膜过氧化,导致细胞结构和功能受损,进而影响植株光合作用和营养物质的传输和积累,使小麦生物量大幅降低,从而导致籽粒灌浆不足,造成空粒、瘪粒和无效穗数显著增多,最终造成小麦减产。此外,在整个渍害胁迫过程中,供试的2个小麦品种的耐渍性强弱表现为:扬麦16 > 中麦895。 Abstract:Objective Effects of waterlogging, a major abiotic stress ill-affecting the wheat production in the middle and lower reaches of the Yangtze River, at booting stage on the physiology and yield of wheat were studied. Method The growth and yield of Yangmai 16 and Zhongmai 895 wheat plants subjected to flooding at booting stage by controlled water supply in pots were analyzed. Result (1) Waterlogging significantly reduced the chlorophyll content in wheat leaves. The longer the stress lasted, the greater the decline on SPAD and the more severe the injury, the greater SPAD reduction on the leaves. More serious damage was observed on the top second leaf than on the top first flag leaf of a plant. (2) The activities of antioxidant enzymes, such as CAT, SOD, and POD, changed in an inverted V pattern as the waterlogging prolonged. The content of reactive oxygen species (ROS) either decreased or increased slowly in the early stage of waterlogging but increased sharply in the late stage. (3) At booting stage, the wheat plants might respond to the waterlogging stress to increased slightly on the effective number of ears per plant, grain number per ear, 1000-grain weight, and other yield factors. (4) Waterlogging at wheat heading stage exerted no significant effect on the plant height. On the other hand, lasting waterlogging significantly decreased the grain yield with declined effective panicle number, grain number per panicle, and 1000-grain weight. After 15 d of continued flooding, the yields per plant of Zhongmai 895 and Yangmai 16 decreased by 51.47% and 43.99%, respectively, over CK. Conclusion Waterlogging imposed on wheat plants at booting stage significantly reduced the leaf chlorophyll content, disrupted the oxygen metabolism, and upset the delicate balance of the antioxidant enzyme system. As a result, the excessively accumulated ROS in the plant could induce the peroxidization of lipid cellular membrane and impair the cell structure and functions that was detrimental to the photosynthesis as well as the nutrient transfer and accumulation of the plant. In the end, the much-reduced biomass and grain-filling but significantly increased number of empty, deflated, and unusable grains meant a final crop reduction. Insofar as resistance to waterlogging stress is concerned, Yangmai 16 was found to be stronger than Zhongmai 895. -
Key words:
- wheat /
- booting stage /
- waterlogging stress /
- chlorophyll content /
- reactive oxygen metabolism /
- yield
-
图 2 孕穗期渍害胁迫小麦超氧阴离子自由基(O2·−)产生速率和过氧化氢(H2O2)含量的变化
Figure 2. Changes on superoxide anion radical (O2·−) generation rate (A) and hydrogen peroxide (H2O2) content (B) in wheat at booting stage under waterlogging
Note: Figure 2-A: The superoxide anion radical, Figure 2-B. The hydrogen peroxide content.
表 1 孕穗期渍害胁迫对小麦产量构成因子的影响
Table 1. Effects of waterlogging on yield traits of wheat plants
品种
Variety处理
Treatment株高
Plant heigh/cm穗长
Ear length/cm有效穗
Effective panicle/
(个·株−1)穗粒数
Grain number per panicle/
(粒·穗−1)千粒重
1000—grain
weight /g产量
Yield/
(g·株−1)产量降幅
Yield loss/%中麦895
Zhongmai895CK 73.2±0.1 a 7.09±1.0 a 5.5±0.6 a 30.2±1.1 a 46.9±0.4 a 7.790±0.8 a — WL1 73.2±0.4 a 7.09±1.3 a 5.5±0.3 a 30.2±0.4 a 47.1±1.1 b 7.823±0.2 b 0.4 WL3 73.2±0.2 a 7.09±1.2 a 5.6±0.4 b 30.3±0.7 b 47.2±0.6 c 8.009±0.5 c 2.81 WL5 73.2±0.4 a 7.06±1.3 b 5.5±0.2 a 29.8±1.2 c 46.7±0.1 d 7.654±0.4 d −1.75 WL7 73.1±1.1 a 6.98±0.3 c 5.3±0.7 c 29.4±0.4 d 44.3±1.3 e 6.903±0.8 e −11.39 WL9 73±0.8 a 6.84±0.5 d 5.0±0.5 d 29.0±0.6 e 41.4±0.8 f 6.003±1.1 f −22.94 WL11 72.8±0.7 a 6.81±0.4 e 4.7±0.3 e 28.3±1.0 f 39.2±1.1 g 5.214±0.7 g −33.07 WL13 72.7±0.9 a 6.74±0.7 f 4.4±0.6 f 27.6±0.7 g 37.6±1.2 h 4.566±0.5 h −41.39 WL15 72.5±0.6 a 6.66±1.2 g 4.0±0.7 g 26.4±1.0 h 35.8±0.8 i 3.780±0.8 i −51.47 扬麦16
Yangmai16CK 85.4±0.7 a 8.94±1.1 a 4.7±0.5 a 39.2±0.9 a 39.1±0.8 a 7.204±0.7 a — WL1 85.4±1.2 a 8.95±0.8 a 4.7±0.8 a 39.1±0.2 b 39.2±0.2 b 7.204±1.2 a 2.13 WL3 85.4±0.9 a 8.97±1.0 b 4.8±0.3 b 39.2±0.1 a 39.2±0.1 b 7.530±0.5 b 3.46 WL5 85.2±1.1 a 8.94±0.6 a 4.6±0.5 c 38.9±0.3 c 38.7±0.4 c 6.925±0.1 c −3.87 WL7 85.2±0.3 a 8.89±0.5 c 4.6±0.9 c 38.2±0.2 d 36.9±0.3 d 6.484±0.1 d −9.99 WL9 85.1±0.4 ab 8.83±0.9 d 4.5±0.2 d 37.6±0.7 e 35.6±0.1 e 6.024±1.0 e −16.38 WL11 84.8±0.6 ab 8.75±0.4 e 4.2±0. e 36.8±0.2 f 34.4±0.5 f 5.317±0.8 f −26.19 WL13 84.5±0.2 bc 8.59±0.3 f 3.9±0.9 f 35.9±0.5 g 33.2±0.8 g 4.648±0.7 g −35.47 WL15 84.2±0.5 c 8.52±1.1 g 3.6±0.7 g 35.1±0.8 h 32.5±1.1 h 4.107±1.3 h −43.99 注:CK为空白组,WL1~15为渍害胁迫1~15 d,表中的值为平均值±标准误差,同列处理组内的数值后的不同小写字母表示差异显著(P<0.05)。
Note: CK: control; WL1-15: waterlogging stress imposed for 1-15 d; data are mean ± standard error; data with different lowercase letters on same column indicate significant differences (P<0.05). -
[1] 吴启侠, 朱建强, 程伦国, 等. 基于地下水埋深的江汉平原冬小麦防涝渍排水指标确定 [J]. 农业工程学报, 2017, 33(3):121−127. doi: 10.11975/j.issn.1002-6819.2017.03.016WU Q X, ZHU J Q, CHENG L G, et al. Determination of groundwater depth-based drainage index against waterlogging and submergence for winter wheat in Jianghan Plain [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(3): 121−127.(in Chinese) doi: 10.11975/j.issn.1002-6819.2017.03.016 [2] 田文涛. 小麦耐涝渍鉴定方法及耐性生理特征研究 [D]. 荆州: 长江大学, 2017.TIAN W T. Study on waterlogging resistance identification method and its physiological characteristic of wheat[D]. Jingzhou, China: Yangtze University, 2017. (in Chinese) [3] 马兴华. 小麦优质高产需水特性与植株—土壤氮素循环的研究 [D]. 泰安: 山东农业大学, 2007.MA X H. Studies on water requirement characteristic for high quality and yield and on nitrogen cycle of plant-soil system in wheat[D]. Taian: Shandong Agricultural University, 2007. (in Chinese) [4] 黄钦友, 田文涛, 王晓玲. 渍害下小麦相对叶绿素含量的降低效应及其与产量的相关性 [J]. 长江大学学报(自科版), 2017, 14(14):1−4.HUANG Q Y, TIAN W T, WANG X L. Reduction effects on SPAD values of wheat leaves and its correlation with yield under waterlogging stress [J]. Journal of Yangtze University (Natural Science Edition), 2017, 14(14): 1−4.(in Chinese) [5] BOHNERT H J, NELSON D E, JENSEN R G. Adaptations to environmental stresses [J]. The Plant Cell, 1995, 7(7): 1099. doi: 10.2307/3870060 [6] 王传光, 田咏梅, 周浩亮, 等. 灌浆期淹水时间对冬小麦旗叶光合特性的影响 [J]. 河北农业科学, 2012, 16(7):11−14. doi: 10.3969/j.issn.1088-1631.2012.07.003WANG C G, TIAN Y M, ZHOU H L, et al. Effects of waterlogging time in filling stage on photosynthetic characteristics of winter wheat flag leaves [J]. Journal of Hebei Agricultural Sciences, 2012, 16(7): 11−14.(in Chinese) doi: 10.3969/j.issn.1088-1631.2012.07.003 [7] ZIAEI A N, SEPASKHAH A R. Model for simulation of winter wheat yield under dryland and irrigated conditions [J]. Agricultural Water Management, 2003, 58(1): 1−17. doi: 10.1016/S0378-3774(02)00080-X [8] WANG Y, ZHANG H, HOU P, et al. Foliar-applied salicylic acid alleviates heat and high light stress induced photoinhibition in wheat(Tricum aestivum) during the grain filling stage by modulating the psbA, gene transcription and antioxidant defense [J]. Plant Growth Regulation, 2014, 73(3): 290. [9] CHEN Y E, ZHANG C M, SU Y Q, et al. Responses of photosystem II and antioxidative systems to high light and high temperature co-stress in wheat [J]. Environment and Experimental Botany, 2017, 135: 51. [10] 林琪, 侯立白, 韩伟, 等. 干旱胁迫对小麦旗叶活性氧代谢及灌浆速率的影响 [J]. 西北植物学报, 2003, 23(12):2152−2156. doi: 10.3321/j.issn:1000-4025.2003.12.018LIN Q, HOU L B, HAN W, et al. Effect of drought stress on active oxygen metabolism of wheat flag leaf and filling rate [J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(12): 2152−2156.(in Chinese) doi: 10.3321/j.issn:1000-4025.2003.12.018 [11] 刘莉, 蒋苑, 马静, 等. 水稻细胞质雄性不育花药和叶片中的活性氧代谢研究 [J]. 中国农学通报, 2016, 32(12):6−12. doi: 10.11924/j.issn.1000-6850.casb15100093LIU L, JIANG Y, MA J, et al. Metabolism of reactive oxygen species in anthers and leaves of cytoplasmic male-sterile rice [J]. Chinese Agricultural Science Bulletin, 2016, 32(12): 6−12.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb15100093 [12] HOSSAIN M A, ARAKI H, TAKAHASHI T. Poor grain filling induced by waterlogging is similar to that in abnormal early ripening in wheat in Western Japan [J]. Field Crops Research, 2011, 123(2): 100−108. doi: 10.1016/j.fcr.2011.05.005 [13] 刘聪, 董腊嫒, 林建中, 等. 逆境胁迫下植物体内活性氧代谢及调控机理研究进展 [J]. 生命科学研究, 2019, 23(3):253−258.LIU C, DONG L A, LIN J Z, et al. Research advances on regulation mechanism of reactive oxygen species metabolism under stresses [J]. Life Science Research, 2019, 23(3): 253−258.(in Chinese) [14] 程琳, 曹鹏, 刘章勇, 等. 氧肥对渍害胁迫下西瓜生理特性、产量及品质的影响 [J]. 湖北农业科学, 2015, 54(12):2939−2942, 3017.CHENG L, CAO P, LIU Z Y, et al. Effects of oxygen fertilizer on the physiological characteristics, yield and quality of Citrullus lanatus under waterlogging stress [J]. Hubei Agricultural Sciences, 2015, 54(12): 2939−2942, 3017.(in Chinese) [15] 马尚宇, 王艳艳, 黄正来, 等. 渍害对小麦生长的影响及耐渍栽培技术研究进展 [J]. 麦类作物学报, 2019, 39(7):835−843.MA S Y, WANG Y Y, HUANG Z L, et al. Research progress of effects of waterlogging on wheat growth and cultivation technique for waterlogging resistance [J]. Journal of Triticeae Crops, 2019, 39(7): 835−843.(in Chinese) [16] 刘杨, 石春林, 刘晓宇, 等. 渍害胁迫时期和持续时间对冬小麦产量及其构成因素的影响 [J]. 麦类作物学报, 2018, 38(2):239−245. doi: 10.7606/j.issn.1009-1041.2018.02.16LIU Y, SHI C L, LIU X Y, et al. Effect of waterlogging stress duration at different growth stages on yield and its components of winter wheat [J]. Journal of Triticeae Crops, 2018, 38(2): 239−245.(in Chinese) doi: 10.7606/j.issn.1009-1041.2018.02.16 [17] 李金才, 董琦, 余松烈. 不同生育期根际土壤淹水对小麦品种光合作用和产量的影响 [J]. 作物学报, 2001, 27(4):434−441. doi: 10.3321/j.issn:0496-3490.2001.04.005LI J C, DONG Q, YU S L. Effect of waterlogging at different growth stages on photosynthesis and yield of different wheat cultivars [J]. Acta Agronomica Sinica, 2001, 27(4): 434−441.(in Chinese) doi: 10.3321/j.issn:0496-3490.2001.04.005 [18] 佟汉文, 高春保, 邹娟, 等. 湖北稻茬小麦新品种(系)孕穗期耐渍性的鉴定与评价 [J]. 麦类作物学报, 2016, 36(12):1635−1642. doi: 10.7606/j.issn.1009-1041.2016.12.13TONG H W, GAO C B, ZOU J, et al. Evaluation of waterlogging tolerance of wheat varieties at booting stage in Hubei rice-wheat rotation system [J]. Journal of Triticeae Crops, 2016, 36(12): 1635−1642.(in Chinese) doi: 10.7606/j.issn.1009-1041.2016.12.13 [19] 卢奕霏, 顾迎港, 陈威, 等. 高温胁迫对小麦花药活性氧代谢的影响 [J]. 麦类作物学报, 2020, 40(4):488−493.LU Y F, GU Y G, CHEN W, et al. Effect of high-temperature stress on reactive oxygen metabolism of wheat anther [J]. Journal of Triticeae Crops, 2020, 40(4): 488−493.(in Chinese) [20] BA Q S, ZHANG G S, WANG J S, et al. Relationship between metabolism of reactive oxygen species and chemically induced male sterility in wheat(Triticum aestivum L.) [J]. Canadian Journal of Plant Science, 2013, 93: 675. doi: 10.4141/cjps2012-280 [21] 王爱国, 罗广华, 邵从本, 等. 大豆种子超氧物歧化酶的研究 [J]. 植物生理学报, 1983(1):77−84.WANG A G, LUO G H, SHAO C B, et al. A study on the superoxide dismutase of soybean seeds [J]. Acta Phytophysiologia Sinica, 1983(1): 77−84.(in Chinese) [22] WANG S P, ZHANG G S, SONG Q L, et al. Programmed cell death, antioxidant response and oxidative stress in wheat flag leaves induced by chemical hybridization agent SQ-1 [J]. Journal of Intergrative Agriculture, 2016, 15(1): 76. doi: 10.1016/S2095-3119(14)60977-1 [23] WANG S P, ZHANG G S, ZHANG Y X, et al. Comparative studies of mitochondrial proteomics reveal an intimate protein network of male sterility in wheat(Triticum aestivum L.) [J]. Journal of Experimental Botany, 2015, 66(20): 6191. doi: 10.1093/jxb/erv322 [24] 李彩霞, 周新国, 王和州, 等. 小麦花后淹水胁迫对根区土温及籽粒灌浆的影响 [J]. 麦类作物学报, 2013, 33(6):1232−1236. doi: 10.7606/j.issn.1009-1041.2013.06.027LI C X, ZHOU X G, WANG H Z, et al. Root zone soil temperature and grain filling progress of winter wheat under water flooding at grain filling stage [J]. Journal of Triticeae Crops, 2013, 33(6): 1232−1236.(in Chinese) doi: 10.7606/j.issn.1009-1041.2013.06.027 [25] 毕明, 李福海, 王秀兰, 等. 开花后淹水对两个冬小麦品种旗叶光合性能的影响研究 [J]. 气象与环境科学, 2012, 35(1):38−42. doi: 10.3969/j.issn.1673-7148.2012.01.007BI M, LI F H, WANG X L, et al. Effects of post-anthesis waterlogging on flag leaf photosynthetic characteristics in two winter wheat varieties [J]. Meteorological and Environmental Sciences, 2012, 35(1): 38−42.(in Chinese) doi: 10.3969/j.issn.1673-7148.2012.01.007 [26] 向永玲, 方正武, 赵记伍, 等. 灌浆期涝害对弱筋小麦相对叶绿素含量及产量的影响 [J]. 福建农业学报, 2019, 34(3):264−270.XIANG Y L, FANG Z W, ZHAO J W, et al. Leaf chlorophyll and grain yield of low-gluten wheat as affected by waterlogging at grain-filling stage [J]. Fujian Journal of Agricultural Sciences, 2019, 34(3): 264−270.(in Chinese) [27] 闫素辉, 李文阳, 杨安中, 等. 灌溉地和雨养地小麦旗叶生育后期抗氧化酶活性变化的比较 [J]. 华北农学报, 2011, 26(1):162−166. doi: 10.7668/hbnxb.2011.01.033YAN S H, LI W Y, YANG A Z, et al. Antioxidant enzymes activities of flag leaves in winter wheat during late grain filling under irrigation and rainfed treatments [J]. Acta Agriculturae Boreali-Sinica, 2011, 26(1): 162−166.(in Chinese) doi: 10.7668/hbnxb.2011.01.033 [28] 李玲, 张春雷, 张树杰, 等. 渍水对冬油菜苗期生长及生理的影响 [J]. 中国油料作物学报, 2011, 33(3):247−252.LI L, ZHANG C L, ZHANG S J, et al. Effects of waterlogging on growth and physiological changes of winter rapeseed seedling (Brassica napus L.) [J]. Chinese Journal of Oil Crop Sciences, 2011, 33(3): 247−252.(in Chinese) [29] WANG S P, ZHANG Y X, FANG Z W, et al. Cytological and proteomic analysis of wheat pollen abortion induced by chemical hybridization agent [J]. International Journal of Molecular Sciences, 2019, 20(7): 1615. doi: 10.3390/ijms20071615 [30] 肖旭峰, 李猛, 龙俊敏, 等. 镉诱导小白菜活性氧及抗氧化酶活性与自噬关系分析 [J]. 江西农业大学学报, 2019, 41(5):873−880.XIAO X F, LI M, LONG J M, et al. Relationship of active oxygen, antioxidant enzyme activity and autophagy under Cd stress in pakchoi [J]. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition), 2019, 41(5): 873−880.(in Chinese) [31] 江敏, 郑舒文, 宁慧宇, 等. 外源水杨酸对涝渍胁迫下小麦产量及相关生理指标的影响 [J]. 江苏农业科学, 2017, 45(5):55−57.JIANG M, ZHENG S W, NING H Y, et al. Effects of exogenous salicylic acid on wheat yield and related physiological indexes under waterlogging stress [J]. Jiangsu Agricultural Sciences, 2017, 45(5): 55−57.(in Chinese) [32] 于晶晶, 王小燕, 段营营, 等. 江汉平原主推小麦品种抗渍能力研究 [J]. 湖北农业科学, 2014, 53(4):760−764. doi: 10.3969/j.issn.0439-8114.2014.04.005YU J J, WANG X Y, DUAN Y Y, et al. Studies on the waterlogging resistance of main wheat varieties in Jianghan plain [J]. Hubei Agricultural Sciences, 2014, 53(4): 760−764.(in Chinese) doi: 10.3969/j.issn.0439-8114.2014.04.005 [33] 向永玲, 方正武, 赵记伍, 等. 灌浆期涝渍害对弱筋小麦籽粒产量及品质的影响 [J]. 麦类作物学报, 2020, 40(6):730−736. doi: 10.7606/j.issn.1009-1041.2020.06.11XIANG Y L, FANG Z W, ZHAO J W, et al. Effect of waterlogging at grain filling stage on grain yield and quality of weak gluten wheat [J]. Journal of Triticeae Crops, 2020, 40(6): 730−736.(in Chinese) doi: 10.7606/j.issn.1009-1041.2020.06.11