Effects of Soil Passivating Agents on Lead/Cadmium/ Chromium Contents in Vegetables
-
摘要:
目的 选取市场上常见的8种钝化修复产品,对比它们在大田环境下对菜叶类蔬菜的产量及吸收重金属的影响,筛选出适合福建省酸性土壤重金属污染的钝化剂。 方法 选取福建屏南县某Pb、Cd和Cr污染农田为试验地块,比较不同钝化剂对上海青(第一季)、夏阳白(第二季)的产量、重金属含量、土壤pH值和有效态的影响。 结果 (1)OSA土壤重金属钝化剂和特贝钙土壤调理剂分别显著增加上海青和夏阳白产量,增产84.2%和65.4%,增幅最大。(2)Yonker土壤调理剂和OSA土壤重金属钝化剂分别显著升高上海青和夏阳白土壤的pH值,达到5.25和4.76,提升效果最好。(3)海状元土壤调理剂显著降低了上海青和夏阳白中土壤DTPA提取态Cd含量,较对照降低31.0%和25.4%,效果最好。Yonker土壤调理剂和海状元土壤调理剂分别对上海青、夏阳白土壤中DTPA的Pb含量降低幅度最大。OSA土壤重金属钝化剂和康源土壤调理剂分别对上海青、夏阳白土壤中DTPA的Cr含量降低幅度最大。(4)OSA土壤重金属钝化剂显著降低了上海青和夏阳白的Pb含量,降低了41.5%和46.0%,效果最好。OSA土壤重金属钝化剂和Yonker土壤调理剂分别显著降低上海青和夏阳白中Cd含量,降低46.0%和34.6%,效果最好。万亩田有机肥和Yonker土壤调理剂分别显著降低上海青和夏阳白中Cr含量,降低73.2%和60.6%,效果最好。其中,OSA 土壤重金属钝化剂、特贝钙土壤调理剂和Yonker土壤调理剂处理后上海青中的Cd含量从超标降低至国家安全标准以内。(5)相关性分析得,上海青和夏阳白中Pb、Cd和Cr的含量与土壤DTPA提取态含量呈极显著正相关(P<0.01),但与土壤pH值呈极显著性负相关(P<0.01)。说明钝化剂提高土壤pH值,降低土壤有效态含量,减少土壤中重金属向上运移,降低上海青和夏阳白的重金属含量。 结论 综合分析,OSA土壤重金属钝化剂和Yonker土壤调理剂对酸性土壤Pb、Cd和Cr复合污染的钝化修复效果佳。 Abstract:Objective Commercial soil passivating agents were compared for their effects on the heavy metal uptakes by leafy vegetables in the field of acidic soil in Fujian. Method A farm in Pingnan county contaminated with Pb, Cd, and Cr was selected to conduct the tests for determining the effects of 8 passivating agents on yield and heavy metal content of Pakchoi (Brassica rapa subsp. chinensis) in the 1st season and Chinese cabbage (B. rapa subsp. pekinensis) in the 2nd season grown on the lot. pH and DTPA-extractable in the soil were measured to correlate them with the migration of the heavy metals to the vegetables. Result (1) Application of either the heavy metal passivator, OSA, or Tebbe Calcium Conditioner significantly increased the yield of Pakchoi by up to 84.2% and Chinese cabbage by up to 65.4% over control. (2) Yonker Soil Conditioner or OSA produced the most significant rises on the soil pH to 5.25 on the lot during the 1st season when Pakchoi were planted and 4.76 in the subsequent season for growing Chinese cabbages. (3) Sea Crown Soil Conditioner significantly reduced DTPA-extracted Cd in the soil of the Pakchoi lot by 31.0% and of the Chinese cabbage lot by 25.4% over control. Among the treatments, Yonker and Sea Crown rendered the highest reductions on the DTPA-extracted Pb, while OSA and Kangyuan Soil Conditioner on DTPA-extracted Cr in both vegetable lots. (4) Of all the agents applied, the best results by comparing to control were found with OSA, which significantly decreased Pb in Pakchoi by 41.5% and in Chinese cabbages by 46.0%, with OSA or Yonker, which significantly decreased Cd in Pakchoi by 46.0% and in Chinese cabbages by 34.6%, and with Ten-thousand-mu Organic Fertilizer or Yonker, which significantly reduced Cr in Pakchoi by 73.2% and in Chinese cabbages by 60.6%. In the soil, OSA, Tebbe, or Yonker also effectively reduced the Cd at the Pakchoi lot to be within the national safety standard limit. (5) Positive correlations between the Pb, Cd, and Cr contents in vegetables and the DTPA-extractable in soil (P<0.01), as well as a negative correction between the heavy metals in vegetables and soil pH (P<0.01). It suggested that the passivating agents raised the pH of the acidic soil and effectively lowered and mitigated the heavy metals migration from the soil resulting in significant reduction on Pb/Cd/Cr in Pakchoi and Chinese cabbages grown on the land. Conclusion It appeared that the tested passivator OSA and conditioner Yonker were effective in remediating Pb/Cd/Cr-polluted acidic soils for vegetable farming. -
Key words:
- Heavy metals /
- passivator /
- DTPA /
- vegetable /
- Pb, Cd, and Cr
-
表 1 试验农田土壤的基本理化性质
Table 1. Basic physiochemical properties of soil at tested farm
项目 Item pH OM/(g·kg−1) CEC/(cmol·kg−1) 土壤重金属总量Total amount of heavy metals in soil/(mg·kg−1) Cd Pb Cr As Ni 土壤 Soil 5.23 18.2 15.3 1.3 102.0 20.8 23.6 10.7 筛选值* filter value* 5.5 — — 0.3 70 150 40 60 注:*《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618—2018)
Note:*Soil Environmental Quality Standard for Soil Pollution Risk Control of Agricultural Land(Trial)(GB 15618—2018)表 2 钝化剂的基本信息
Table 2. Basic information on applied soil passivating agents
钝化剂
passivator主要成分
Main ingredients主要原料
main material每667 m2用量
Consumption per 667 m2
/kg特贝钙土壤调理剂(A)
Soil conditioner for Calcium Tebbe(A)CaO>45% 钙、磷、铁、锌微量元素
Calcium, phosphorus, iron, zinc trace elements牡蛎壳 Oyster shell 150 环保桥土壤调理剂(B)
Green Bridge Soil Conditioner(B)CaO>34%、SiO2>5.5% 生石灰、石灰石 海泡石、沸石
Quick lime, limestone, sepiolite, zeolite200 Yonker土壤调理剂(C)
Yonker Soil Conditioner(C)CaO>40%、MgO>20%、SiO2>15% 重质碳酸钙、生石灰、硅酸钙、海泡石
Heavy calcium carbonate, calcium oxide, calcium silicate, sepiolite200 康源土壤调理剂(D)
Kangyuan Soil conditioner(D)CaO>40%、MgO>5%、SiO2>7%、OM>10% 石灰石、硅酸钙
Limestone, calcium silicate60 海状元土壤调理剂(E)
Sea crown Soil Conditioner(E)CaO>45%、OM>20% 牡蛎壳、浒苔
Oyster shells, enteromorpha150 万亩田有机肥(F)
Ten thousand mu organic fertilizer(F)OM>35%、N+P2O5+K2O>5% — 300 土壤调理剂(G)
Soil conditioner(G)CaO>33%、MgO>5%、SiO2>28% 白云石、钾长石、石灰石
Dolomite, potassium feldspar, limestone200 OSA土壤重金属钝化剂(H)
OSA soil heavy metal passivator(H)CaO>46%、MgCO3>5%、SiO2>20%、OM>10% 麦饭石、菱镁矿、钾长石、腐殖酸
Medical stone, magnesite, potassium feldspar, humic acid300 石灰粉(I)
Lime(I)CaO>85% 生石灰
quicklime300 不施用钝化剂(CK)
No passivator(CK)— — 0 表 3 不同钝化剂对土壤中DTPA提取态Pb、Cd和Cr的含量的影响
Table 3. Effects of soil treatments on contents of DTPA-extracted Pb, Cd, and Cr in soil
(单位:mg·kg−1) 钝化剂 Passivator 第一季(上海青) the first season(Pakchoi) 第二季(夏阳白) the second season(Chinese cabbage) DTPA-Pb DTPA-Cd DTPA-Cr DTPA-Pb DTPA-Cd DTPA-Cr A 16.7±3.18 a 0.43±0.04 a 0.21±0.00 a 17.4±3.11 a 0.40±0.04 ab 0.20±0.00 c B 15.7±2.21 a 0.35±0.01 abc 0.20±0.01 a 17.0±1.56 a 0.41±0.02 ab 0.22±0.01 bc C 14.6±0.56 a 0.31±0.08 bcd 0.21±0.03 a 15.3±0.50 a 0.46±0.01 a 0.24±0.01 abc D 16.7±3.21 a 0.40±0.01 ab 0.20±0.02 a 16.9±4.24 a 0.40±0.03 ab 0.20±0.02 c E 15.2±0.86 a 0.24±0.06 d 0.22±0.01 a 14.1±0.35 a 0.34±0.07 b 0.21±0.02 c F 14.9±0.50 a 0.32±0.02 bcd 0.18±0.01 a 15.7±0.35 a 0.35±0.00 b 0.23±0.01 abc G 17.5±2.05 a 0.37±0.03 abc 0.21±0.02 a 15.6±1.60 a 0.37±0.03 b 0.27±0.05 ab H 17.7±0.85 a 0.28±0.08 cd 0.17±0.02 a 16.1±1.16 a 0.40±0.03 ab 0.22±0.00 bc I 16.6±2.12 a 0.36±0.02 abc 0.19±0.02 a 16.2±2.86 a 0.37±0.03 b 0.24±0.01 abc CK 15.7±1.49 a 0.35±0.03 abc 0.19±0.05 a 15.8±2.96 a 0.45±0.01 a 0.28±0.01 a 表 4 上海青中重金属含量和土壤Ph、土壤DTPA提取态含量的相关系数
Table 4. Correlation between heavy metal contents in Pakchoi and pH or DTPA-extractable in soil
指标 index pH DTPA-Pb DTPA-Cd DTPA-Cr Pb Cd Cr pH 1 DTPA-Pb −0.419* 1 DTPA-Cd −0.750** 0.248 1 DTPA-Cr −0.840** 0.380* 0.271 1 Pb −0.243 0.524** 0.252 0.316 1 Cd −0.578** 0.325 0.676** 0.203 −0.120 1 Cr −0.501** 0.178 0.461* 0.602** −0.034 0.207 1 注:* 表示显著相关(P<0.05);** 表示极显著相关(P<0.01);Pb、Cd和Cr为上海青中的含量。
Note:* indicates significant correlation(P<0.05), ** indicates a significant correlation(P<0.01); Pb, Cd and Cr are the contents of Pakchoi表 5 夏阳白中重金属含量和土壤Ph、土壤DTPA提取态含量的相关系数
Table 5. Correlation between heavy metal contents in Chinese cabbages and pH or DTPA-extractable in soil
指标 index pH DTPA-Pb DTPA-Cd DTPA-Cr Pb Cd Cr PH 1 DTPA-Pb −0.447* 1 DTPA-Cd −0.684** 0.279 1 DTPA-Cr −0.738** 0.220 0.357 1 Pb −0.330 0.419* 0.154 0.394* Cd −0.410* 0.315 0.511** 0.351 0.251 1 Cr −0.605** 0.138 0.453* 0.748** 0.035 0.254 1 注:* 表示显著相关(P<0.05);** 表示极显著相关(P<0.01);Pb、Cd和Cr为夏阳白地上部中的含量。
Note:* indicates significant correlation(P<0.05), ** indicates a significant correlation(P<0.01); Pb Cd and Cr are the contents of Chinese cabbage -
[1] 苗秀荣, 来雪慧, 李梦茜, 等. 不同钝化剂对土壤有效态重金属含量及其在小白菜中累积的影响 [J]. 河南农业科学, 2020, 49(8):63−71.MIAO X R, LAI X H, LI M X, et al. Effects of different passivators on available heavy metal contents in soil and their accumulation in pakchoi [J]. Journal of Henan Agricultural Sciences, 2020, 49(8): 63−71.(in Chinese) [2] 王玉军, 刘存, 周东美, 等. 客观地看待我国耕地土壤环境质量的现状: 关于《全国土壤污染状况调查公报》中有关问题的讨论和建议 [J]. 农业环境科学学报, 2014, 33(8):1465−1473. doi: 10.11654/jaes.2014.08.001WANG Y J, LIU C, ZHOU D M, et al. A critical view on the status quo of the farmland soil environmental quality in China: Discussion and suggestion of relevant issues on report on the national general survey of soil contamination [J]. Journal of Agro-Environment Science (J Agro-Environ Sci), 2014, 33(8): 1465−1473.(in Chinese) doi: 10.11654/jaes.2014.08.001 [3] 陈增文. 福建土壤重金属地积累污染特征及潜在生态危害评价 [J]. 亚热带资源与环境学报, 2016, 11(4):37−45. doi: 10.3969/j.issn.1673-7105.2016.04.006CHEN Z W. Geo-accumulation index and potential ecological risk on soil heavy metals: An evaluation of case in Fujian [J]. Journal of Subtropical Resources and Environment, 2016, 11(4): 37−45.(in Chinese) doi: 10.3969/j.issn.1673-7105.2016.04.006 [4] 黄益宗, 郝晓伟, 雷鸣, 等. 重金属污染土壤修复技术及其修复实践 [J]. 农业环境科学学报, 2013, 32(3):409−417.HUANG Y Z, HAO X W, LEI M, et al. The remediation technology and remediation practice of heavy metals-contaminated soil [J]. Journal of Agro-Environment Science, 2013, 32(3): 409−417.(in Chinese) [5] 郭观林, 周启星, 李秀颖. 重金属污染土壤原位化学固定修复研究进展 [J]. 应用生态学报, 2005, 16(10):1990−1996. doi: 10.3321/j.issn:1001-9332.2005.10.037GUO G L, ZHOU Q X, LI X Y. Advances in research on in situ chemo-immobilization of heavy metals in contaminated soils [J]. Chinese Journal of Applied Ecology, 2005, 16(10): 1990−1996.(in Chinese) doi: 10.3321/j.issn:1001-9332.2005.10.037 [6] 王林, 徐应明, 孙国红, 等. 海泡石和磷酸盐对镉铅污染稻田土壤的钝化修复效应与机理研究 [J]. 生态环境学报, 2012, 21(2):314−320. doi: 10.3969/j.issn.1674-5906.2012.02.020WANG L, XU Y M, SUN G H, et al. Effect and mechanism of immobilization of paddy soil contaminated by cadmium and lead using sepiolite and phosphate [J]. Ecology and Environment Sciences, 2012, 21(2): 314−320.(in Chinese) doi: 10.3969/j.issn.1674-5906.2012.02.020 [7] 谢运河, 纪雄辉, 田发祥, 等. 不同Cd污染特征稻田施用钝化剂对水稻吸收积累Cd的影响 [J]. 环境工程学报, 2017, 11(2):1242−1250. doi: 10.12030/j.cjee.201510041XIE Y H, JI X H, TIAN F X, et al. Effect of passivator on Cd uptaking of rice in different Cd pollution characteristics paddy soils [J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 1242−1250.(in Chinese) doi: 10.12030/j.cjee.201510041 [8] 骆文轩, 宋肖琴, 陈国安, 等. 田间施用石灰和有机肥对水稻吸收镉的影响 [J]. 水土保持学报, 2020, 34(3):232−237.LUO W X, SONG X Q, CHEN G A, et al. Effects of applying lime and organic fertilizer on cadmium uptake by rice [J]. Journal of Soil and Water Conservation, 2020, 34(3): 232−237.(in Chinese) [9] KOMKIENE J, BALTRENAITE E. Biochar as adsorbent for removal of heavy metal ions [Cadmium (II), Copper (II), Lead (II), Zinc (II)] from aqueous phase [J]. International Journal of Environmental Science and Technology, 2016, 13(2): 471−482. doi: 10.1007/s13762-015-0873-3 [10] 周颖, 罗惠莉, 吴根义, 等. 海泡石基钝化剂对猪粪中铜、锌钝化的影响 [J]. 环境污染与防治, 2019, 41(1):55−59.ZHOU Y, LUO H L, WU G Y, et al. Effects of sepiolite based passivator on the stabilization of Cu and Zn in pig manure [J]. Environmental Pollution and Control, 2019, 41(1): 55−59.(in Chinese) [11] 夏鹏, 王学江, 张晶, 等. 生物质炭对单一与复合污染土壤中铜、铅、铬的钝化作用 [J]. 土壤通报, 2016, 47(1):192−197.XIA P, WANG X J, ZHANG J, et al. Immobilization of copper, lead and chromium in single and multiple contaminated soil with biochar [J]. Chinese Journal of Soil Science, 2016, 47(1): 192−197.(in Chinese) [12] 赵明柳, 唐守寅, 董海霞, 等. 硅酸钠对重金属污染土壤性质和水稻吸收 Cd Pb Zn 的影响 [J]. 农业环境科学学报, 2016, 35(9):1653−1659. doi: 10.11654/jaes.2016-0288ZHAO M L, TANG S Y, DONG H X, et al. Effects of sodium silicate on soil properties and Cd, Pb and Zn absorption by rice plant [J]. Journal of Agro-Environment Science, 2016, 35(9): 1653−1659.(in Chinese) doi: 10.11654/jaes.2016-0288 [13] 高瑞丽, 唐茂, 付庆灵, 等. 生物炭、蒙脱石及其混合添加对复合污染土壤中重金属形态的影响 [J]. 环境科学, 2017, 38(1):361−367.GAO R L, TANG M, FU Q L, et al. Fractions transformation of heavy metals in compound contaminated soil treated with biochar, montmorillonite and mixed addition [J]. Environmental Science, 2017, 38(1): 361−367.(in Chinese) [14] 王宇霞, 郝秀珍, 苏玉红, 等. 不同钝化剂对Cu、Cr和Ni复合污染土壤的修复研究 [J]. 土壤, 2016, 48(1):123−130.WANG Y X, HAO X Z, SU Y H, et al. Remediation of heavy metal contaminated soil with different amendments [J]. Soils, 2016, 48(1): 123−130.(in Chinese) [15] 谢飞, 谷子欣, 严妍. 二乙三胺五乙酸-三乙醇胺-硝酸钙体系浸取土壤中8种重金属有效态 [J]. 冶金分析, 2020, 40(2):12−17.XIE F, GU Z X, YAN Y. Extraction of eight available-state heavy metals in soil with diethyltriamine pentaacetic acid-triethanolamine- calcium nitrate system [J]. Metallurgical Analysis, 2020, 40(2): 12−17.(in Chinese) [16] 刘昭兵, 纪雄辉, 彭华, 等. 磷肥对土壤中镉的植物有效性影响及其机理 [J]. 应用生态学报, 2012, 23(6):1585−1590.LIU Z B, JI X H, PENG H, et al. Effects of phosphorous fertilizers on phytoavailability of cadmium in its contaminated soil and related mechanisms [J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1585−1590.(in Chinese) [17] 罗远恒, 顾雪元, 吴永贵, 等. 钝化剂对农田土壤镉污染的原位钝化修复效应研究 [J]. 农业环境科学学报, 2014, 33(5):890−897. doi: 10.11654/jaes.2014.05.010LUO Y H, GU X Y, WU Y G, et al. In-situ remediation of cadmium-polluted agriculture land using stabilizing amendments [J]. Journal of Agro-Environment Science, 2014, 33(5): 890−897.(in Chinese) doi: 10.11654/jaes.2014.05.010 [18] 吴文成, 陈显斌, 刘晓文, 等. 有机及无机肥料修复重金属污染水稻土效果差异研究 [J]. 农业环境科学学报, 2015, 34(10):1928−1935. doi: 10.11654/jaes.2015.10.013WU W C, CHEN X B, LIU X W, et al. Effects of organic and inorganic fertilizers on heavy metal immobilization in paddy soil [J]. Journal of Agro-Environment Science, 2015, 34(10): 1928−1935.(in Chinese) doi: 10.11654/jaes.2015.10.013 [19] ZHU H H, CHEN C, XU C, et al. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China [J]. Environmental Pollution, 2016, 219: 99−106. doi: 10.1016/j.envpol.2016.10.043 [20] 王哲, 骆逸飞, 郑春丽, 等. 淋溶条件下生物炭对矿区土壤中重金属迁移的影响 [J]. 化工进展, 2020, 39(2):738−746.WANG Z, LUO Y F, ZHENG C L, et al. Effect of biochar on migration of heavy metals in mining soil under leaching conditions [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 738−746.(in Chinese) [21] 杨秀敏, 任广萌, 李立新, 等. 土壤pH值对重金属形态的影响及其相关性研究 [J]. 中国矿业, 2017, 26(6):79−83. doi: 10.3969/j.issn.1004-4051.2017.06.015YANG X M, REN G M, LI L X, et al. Effect of pH value on heavy metals form of soil and their relationship [J]. China Mining Magazine, 2017, 26(6): 79−83.(in Chinese) doi: 10.3969/j.issn.1004-4051.2017.06.015 [22] 谢运河, 纪雄辉, 黄涓, 等. 有机肥与钝化剂及其配施对土壤Cd生物有效性的影响 [J]. 作物研究, 2014, 28(8):890−895.XIE Y H, JI X H, HUAN J, et al. Effects of organic fertilizer and passivator and their combination on soil Cd bioavailability [J]. Crop Research, 2014, 28(8): 890−895.(in Chinese) [23] 高瑞丽, 朱俊, 汤帆, 等. 水稻秸秆生物炭对镉、铅复合污染土壤中重金属形态转化的短期影响 [J]. 环境科学学报, 2016, 36(1):251−256.GAO R L, ZHU J, TANG F, et al. Fractions transformation of Cd, Pb in contaminated soil after short-term application of rice straw biochar [J]. Acta Scientiae Circumstantiae, 2016, 36(1): 251−256.(in Chinese) [24] 殷飞, 王海娟, 李燕燕, 等. 不同钝化剂对重金属复合污染土壤的修复效应研究 [J]. 农业环境科学学报, 2015, 34(3):438−448. doi: 10.11654/jaes.2015.03.005YIN F, WANG H J, LI Y Y, et al. Remediation of multiple heavy metal polluted soil using different immobilizing agents [J]. Journal of Agro-Environment Science, 2015, 34(3): 438−448.(in Chinese) doi: 10.11654/jaes.2015.03.005 [25] 陈丹艳, 许仙菊, 栾德琴, 等. 几种改良剂对砷镉铅复合污染水稻土的修复 [J]. 江苏农业学报, 2011, 27(6):1284−1288. doi: 10.3969/j.issn.1000-4440.2011.06.020CHEN D Y, XU X J, LUAN D Q, et al. Remediation of paddy soil contaminated by arsenic, cadmium and lead with amendments [J]. Jiangsu Journal of Agricultural Sciences, 2011, 27(6): 1284−1288.(in Chinese) doi: 10.3969/j.issn.1000-4440.2011.06.020