Identification and Biology of Leaf Spot Pathogen on Chimonanthus salicifolius
-
摘要:
目的 为明确柳叶蜡梅(Chimonanthus Salicifolius)的叶部病害的病原种类,进行病叶病原分离鉴定并研究病原菌株生物学特性。 方法 对福建省寿宁县福瑞泰生物技术有限责任公司种植基地的柳叶腊梅叶斑病病叶采用离体组织分离法进行分离,对分离的病原菌采用形态学结合分子方法(rDNA-ITS和TUB序列)进行鉴定,并对该致病菌菌丝体在不同温度、pH值、光照、碳源、氮源及致死温度等条件下的生物学特性进行研究。 结果 病原菌分离株经形态特征观测及rDNA-ITS和TUB序列在NCBI数据库的分析比对,将寿宁县柳叶腊梅叶斑病病原菌鉴定为子囊菌门,格孢腔目,附球真菌属,高粱附球菌(Epicoccum Sorghinum)。生物学特性结果表明:在 5~30 ℃均可生长,最适生长温度 25 ℃;菌丝体生长最适pH值范围为5~9,在供试的11种碳源上均可生长,最佳碳源为蔗糖;在8种氮源培养基中最适菌丝生长的氮源为蛋白胨;光暗交替不影响菌丝生长,菌丝体致死温度为 52 ℃。 结论 分离鉴定了福建省寿宁县柳叶腊梅叶斑病病害的病原菌为高粱附球菌(E. sorghinum),生物学测定结果显示其对环境适应性强。 Abstract:Objective Pathogen that caused the leaf spot disease on Chimonanthus salicifolius was isolated and classified, and its biological characteristics determined. Method Specimens of C. salicifolius plants infected by leaf spot disease at Shouning county in Fujian were collected for in vitro tissue culture in the laboratory. Morphological and molecular examinations were performed on the isolates. Biological properties and culture conditions including temperature, pH, light, carbon source, nitrogen source, and lethal temperature were scrutinized for the pathogenic identification and characterization. Result Based on the morphology as well as the rDNA ITS and TUB sequences, the pathogen responsible for the disease was identified to be Ascomycetes Pleosporales Epicoccum sorghinum. It could grow at 5-30 ℃ with an optimum temperature at 25 ℃ and pH ranging from 5 to 9 in media of 11 various carbon sources including sucrose and 8 different nitrogen source including peptone under no specific light/dark conditions. The lethal temperature of the fungal mycelia was 52 ℃. Conclusion E. sorghinum was identified to be the major pathogen that caused the leaf spot disease on C. salicifolius in Shouning county. It had strong ability to grow on, resist to, and survive under adverse conditions. -
图 1 菌落形态和致病性鉴定
注:a为1013-1正面菌落形态;b为1013-1背面菌落形态;c为孢子;d 为10 min NaOH处理;e 为2 h NaOH处理;f为分生孢子器;h为病叶;h为CK(对照);i为1013-1的致病性测定
Figure 1. Colony morphology and pathogenic assay
Note: a is the colony morphology; b is the back of colony morphology; c is the spore morphology; d the strain on medium 10 min after NaOH treatment; e the strain on medium 2 h after NaOH treatment; f is pycnidium; g is the disease spot of C. salicifolius; h is CK; i is the pathogenic assay of 1013-1strain
表 1 ITS和β-Tub PCR扩增反应程序
Table 1. Primer ITS and β-Tub PCR amplification procedures
成分 Ingredient 浓度 Concentration 用量 Dosage/μL 扩增程序 Procedure 反应液 2xTaq PCR Master Mix — 10 94 ℃ 3 min;94 ℃ 30 s, 上下游引物 F/R primer 10 μmol·L−1 1 57 ℃ 30 s, 模板 DNA 60 ng·μL−1 2 72 ℃ 1 min,30 cycle; 水 ddH2O — 12 72 ℃ 7 min,end 16 ℃ 表 2 不同温度和pH处理病原菌的菌落直径
Table 2. Diameters of pathogen colonies at different temperatures and pHs
处理
Treatments菌落直径
Colony diameter/cm处理
Treatments菌落直径
Colony diameter/cm5 ℃ 0.11±0.10 D pH 3 3.98±0.13 D 10 ℃ 1.12±0.10 C pH 4 7.63±0.12 B 15 ℃ 5.82±0.10 B pH 5 8.00±0.00 A 20 ℃ 5.71±0.23 B pH 6 8.00±0.00 A 25 ℃ 6.89±0.35 A pH 7 8.00±0.00 A 30 ℃ 6.68±0.17 A pH 8 8.00±0.00 A 35 ℃ 0.82±0.03 C pH 9 8.00±0.00 A 40 ℃ 0 pH 10 7.63±0.12 B pH 11 7.37±0.15 B 注:不同大写字母表示0.01水平上的差异极显著。下同。
Note: Different uppercase letters indicate highly significant difference at 0.01 level .The same as below.表 3 光照对生长影响
Table 3. Effect of light on mycelial growth
光照处理
Lighting condition菌落直径
Colony diameter/cm全光照 Full light 8.00±0.0 A 半光照 12 h light and dark 7.90±0.10 A 全黑暗 Full dark 8.00±0.00 A 表 4 病原菌在不同碳源和氮源处理下的菌落直径
Table 4. Diameters of pathogen colonies on media of different carbon and nitrogen sources
不同碳源处理
Different carbon source treatments菌落直径
Colony diameter/cm不同氮源处理
Different nitrogensource treatments菌落直径
Colony diameter/cm葡萄糖 Glucose 7.65±0.05 B 硝酸钾
Potassium nitrate8.00±0.00 A 果糖 Fructose 6.97±0.20 D 酵母粉 Yeast powder 8.00±0.00 A 甘露醇 Mannitol 7.31±0.05 C 蛋白胨 Peptone 8.00±0.00 A 木糖 Xylose 7.40±0.13 C 硝酸钠 Sodium nitrate 8.00±0.00 A 蔗糖 Sucrose 8.00±0.00 A 尿素 The urea 0 乳糖 Lactose 6.59±0.08 E 氯化氨
Ammonia chloride4.25±0.09 C 麦芽糖 Maltose 8.00±0.00 A 甘氨酸 Glycine 8.00±0.0 A 可溶性淀粉
Soluble starch6.02±0.10 F 硫酸铵
Ammonium sulfate5.94±0.31 B 山梨醇 Sorbitol 7.02±0.08 D 肌醇 Inositol 6.88±0.08 D 木糖醇 Xylitol 6.96±0.10 D -
[1] LV Q D, QIU J, LIU J, et al. The Chimonanthus salicifolius genome provides insight into magnoliid evoluDion and flavonoid biosynthesis [J]. The Plant Journal, 2020, 103(5): 1910-1923. DOI: 10.1111/tpj.14874. [2] 叶玉娟, 叶龙华. 柳叶蜡梅的研究综述及开发应用前景 [J]. 黄山学院学报, 2015, 17(5):68−71. doi: 10.3969/j.issn.1672-447X.2015.05.018YE Y J, YE L H. The research summary and application prospect of Chimonanthus salicifolius S. Y. H [J]. Journal of Huangshan University, 2015, 17(5): 68−71.(in Chinese) doi: 10.3969/j.issn.1672-447X.2015.05.018 [3] 郭孝成, 王伟, 戴毅, 等. 柳叶蜡梅不同部位提取物总多酚含量及体外抗氧化、抑菌特性比较研究 [J]. 黄山学院学报, 2018, 20(5):66−70. doi: 10.3969/j.issn.1672-447X.2018.05.015GUO X C, WANG W, DAI Y, et al. Comparative study of total polyphenol content, antioxidant, antimicrobial activities in the extracts from different parts of Chimonanthus salicifolicus hu [J]. Journal of Huangshan University, 2018, 20(5): 66−70.(in Chinese) doi: 10.3969/j.issn.1672-447X.2018.05.015 [4] 廖庭. 烟草茎点霉叶斑病的病原鉴定及防治药剂筛选[D]. 南宁: 广西大学, 2015.LIAO T. Pathogen identification and fungicides screening of tobacco leaf spot of Phoma sorghina[D]. Naning: Guangxi University, 2015. (in Chinese). [5] ZENG H, LU Q, LI R. First report of leaf spot of lily caused by Epicoccum sorghinum in China [J]. Plant Disease, 2018, 102(12): 2648. [6] 林宇, 李增平, 吴如慧, 等. 非洲楝拟茎点霉叶斑病病原菌鉴定及其生物学特性的测定 [J]. 热带生物学报, 2019, 10(1):34−40.LIN Y, LI Z P, WU R H, et al. Identification and biological characteristics of the pathogen causing Phomopsis leaf spot in Khaya senegalensis [J]. Journal of Tropical Biology, 2019, 10(1): 34−40.(in Chinese) [7] 窦晓丽, 胡文静, 刘凡, 等. 新疆2种苜蓿叶斑病病原菌主要生物学特性 [J]. 新疆农业科学, 2020, 57(10):1863−1870.DOU X L, HU W J, LIU F, et al. Biological characteristics of pathogens causing of two Alfalfa leaf spot in Xinjiang [J]. Xinjiang Agricultural Sciences, 2020, 57(10): 1863−1870.(in Chinese) [8] 雷娅红, 况卫刚, 郑春生, 等. 基于DNA条形码技术对镰刀菌属的检测鉴定 [J]. 植物保护学报, 2016, 43(4):544−551.LEI Y H, KUANG W G, ZHENG C S, et al. Detection and identification of the genus Fusarium by DNA barcoding [J]. Acta Phytophylacica Sinica, 2016, 43(4): 544−551.(in Chinese) [9] 王梦奇, 白庆荣, 王大川, 等. 吉林省大豆茎点霉叶斑病病原鉴定 [J]. 大豆科学, 2019, 38(3):428−433, 454.WANG M Q, BAI Q R, WANG D C, et al. Pathogen identification of soybean leaf spot caused by Boeremia exigua var. exigua in Jilin Province [J]. Soybean Science, 2019, 38(3): 428−433, 454.(in Chinese) [10] 王梦奇. 东北地区茎点霉属真菌研究[D]. 长春: 吉林农业大学, 2019.WANG M Q. Study of Phoma in northeast China[D]. Changchun: Jilin Agricultural University, 2019. (in Chinese). [11] 方中达. 植病研究法[M]. 第3版. 北京: 中国农业出版社, 2001. [12] BOEREMA G H, GRUYTER J D, NOORDELOOS M E, et al. Phoma identification manual[M]. CABI publishing, 2004. [13] BIAN J Y, FANG Y L, SONG Q, et al. The fungal endophyte Epicoccum dendrobii as a potential biocontrol agent against Colletotrichum gloeosporioides [J]. Phytopathology, 2021, 111(2): 293-303. DOI: 10.1094/PHYTO-05-20-0170-R. [14] VENKATASUBBAIAH P, DYKE C G V, CHILTON W S. Phytotoxic metabolites of Phoma sorghina, a new foliar pathogen of pokeweed [J]. Mycologia, 1992, 84(5): 715−723. doi: 10.1080/00275514.1992.12026197 [15] 朱香. Epicoccum sorghinum的分离及多基因转玉米株系的抗性鉴定[D]. 武汉: 华中农业大学, 2018.ZHU X. Isolation of Epicoccum sorghinum and resistance identification of multi-transgenes Maizei lines[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese). [16] 聂秀美, 赵桂琴, 孙浩洋, 等. 天祝县燕麦叶斑病的发生情况及其病原鉴定 [J]. 草地学报, 2019, 27(5):1384−1391. doi: 10.11733/j.issn.1007-0435.2019.05.034NIE X M, ZHAO G Q, SUN H Y, et al. Occurrence and pathogenic identification of Oat leaf spot in Tianzhu county [J]. Acta Agrestia Sinica, 2019, 27(5): 1384−1391.(in Chinese) doi: 10.11733/j.issn.1007-0435.2019.05.034 [17] 江涛, 胡媛媛, 马良, 等. 细交链孢菌酮酸人工抗原的制备 [J]. 食品科学, 2014, 35(19):153−157. doi: 10.7506/spkx1002-6630-201419032JIANG T, HU Y Y, MA L, et al. Preparation of artificial antigens for tenuazonic acid [J]. Food Science, 2014, 35(19): 153−157.(in Chinese) doi: 10.7506/spkx1002-6630-201419032 [18] DU L, ZHU T, FANG Y, et al. Aspergiolide A, a novel anthraquinone derivative with naphtha [1, 2, 3-de] chromene-2, 7-dione skeleton isolated from a marine-derived fungus Aspergillus glaucus [J]. Tetrahedron, 2007, 38(24): 1085−1088. [19] OLIVEIRA R C, DAVENPORT K W, HOVDE B, et al. Draft genome sequence of sorghum grain mold fungus Epicoccum sorghinum, a producer of tenuazonic acid [J]. Genome Announcements, 2017, 5(4): e01495−16. [20] LIU X Y, HU T L, CAO K Q. Biological characteristics of strain F603 of Epicoccom sp., an antagonistic fungus for controlling Phytophthora infestans [J]. Frontiers of Agriculture in China, 2007, 1(2): 175−178. doi: 10.1007/s11703-007-0029-4