• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油棕多胺合成酶基因的分离及其在低温和脱水胁迫下的表达分析

金龙飞 尹欣幸 张安妮 曹红星

金龙飞,尹欣幸,张安妮,等. 油棕多胺合成酶基因的分离及其在低温和脱水胁迫下的表达分析 [J]. 福建农业学报,2021,36(4):402−412 doi: 10.19303/j.issn.1008-0384.2021.04.004
引用本文: 金龙飞,尹欣幸,张安妮,等. 油棕多胺合成酶基因的分离及其在低温和脱水胁迫下的表达分析 [J]. 福建农业学报,2021,36(4):402−412 doi: 10.19303/j.issn.1008-0384.2021.04.004
JIN L F, YIN X X, ZHANG A N, et al. Identification and Expressions under Low-temp/Draught Stress of Polyamine Synthesis Genes in Oil Palms [J]. Fujian Journal of Agricultural Sciences,2021,36(4):402−412 doi: 10.19303/j.issn.1008-0384.2021.04.004
Citation: JIN L F, YIN X X, ZHANG A N, et al. Identification and Expressions under Low-temp/Draught Stress of Polyamine Synthesis Genes in Oil Palms [J]. Fujian Journal of Agricultural Sciences,2021,36(4):402−412 doi: 10.19303/j.issn.1008-0384.2021.04.004

油棕多胺合成酶基因的分离及其在低温和脱水胁迫下的表达分析

doi: 10.19303/j.issn.1008-0384.2021.04.004
基金项目: 中国热带农业科学院基本科研业务费专项(1630152017008)
详细信息
    作者简介:

    金龙飞(1988−),男,博士,助理研究员,研究方向:热带木本油料作物栽培生理(E-mail:jlf_0511@163.com)

    通讯作者:

    曹红星(1976−),女,博士,研究员,研究方向:热带木本油料作物资源评价与创新利用(E-mail:hongxing1976@163.com)

  • 中图分类号: S 718.43

Identification and Expressions under Low-temp/Draught Stress of Polyamine Synthesis Genes in Oil Palms

  • 摘要:   目的   研究多胺合成酶基因在油棕生长发育及非生物胁迫应答中的作用,为油棕抗性品种培育提供理论基础。   方法   从油棕基因组中鉴定出15个编码多胺合成酶的基因,并对其进行生物信息学分析和表达模式分析。   结果   多胺合成酶的氨基酸长度为318~720,分子量为36.00~46.43 kDa,等电点为4.78~6.31,蛋白不稳定指数为29.26~48.73,脂溶指数为76.46~94.41,总平均亲水性为−0.315~0.082,外显子数目为1~11个,具有特定的蛋白保守基序和保守结构域。进化分析发现油棕多胺合成酶基因可以分为3个家族,EgADCs与水稻的亲缘关系较近,EgACLsEgSPDSs与椰枣的亲缘关系较近,EgSPMSs与玉米的亲缘关系较近。启动子上鉴定出大量植物激素响应、逆境胁迫响应和光响应的顺式作用元件。组织表达分析发现多胺合成酶基因在油棕不同组织中均有表达;多胺合成酶基因受低温和脱水胁迫的诱导。   结论   多胺合成酶基因参与油棕对低温和脱水胁迫的应答,其中EgSPDS1EgSPDS2EgSPMS1EgADC1EgADC2EgACL5-2EgACL5-3EgSAMDC3-1EgSAMDC4-1EgSAMDC4-2EgACL5-1受低温胁迫的诱导,EgSPDS1EgSPDS2EgADC1EgADC2EgSAMDC4-1Eg SAMDC4-2EgACL5-1受脱水胁迫的诱导。
  • 图  1  油棕多胺合成酶基因在染色体上的分布

    Figure  1.  Chromosome location of polyamine synthase genes in oil palm

    图  2  油棕多胺合成酶的进化关系、保守蛋白基序、结构域和基因结构分析

    Figure  2.  Phylogenetic relationships, architecture of conserved protein motifs and conserved domain, and gene structure of polyamine synthase genes in oil palm

    图  3  油棕和其他植物多胺合成酶基因家族的进化树

    Figure  3.  Phylogenetic tree of polyamine synthase genes in oil palms and other plants

    图  4  油棕多胺合成酶启动子顺式作用元件分析

    Figure  4.  Cis-acting elements in promoter of polyamine synthase in oil palms

    图  5  油棕多胺合成酶基因在不同组织中的表达模式

    Figure  5.  Expressions of polyamine synthase genes in tissues of oil palms

    图  6  多胺合成酶基因在低温胁迫下表达模式

    注:柱形图上方不同小写字母表示在0.05水平差异显著(下同)。

    Figure  6.  Expressions of polyamine synthase genes under low-temp stress

    Note:Different lowercase letters at the top of the bar chart indicate significant differences at the 0.05 level (the same as below).

    图  7  多胺合成酶基因在脱水胁迫下表达模式

    Figure  7.  Expressions of polyamine synthase genes under draught stress

    表  1  油棕多胺合成酶基因qRT-PCR引物序列

    Table  1.   Sequence of qRT-PCR primer of polyamine synthase genes in oil palms

    基因 Gene正向引物 Forward primer反向引物 Reverse primer产物长度 Product length
    EgSPDS1CCAGCAGGAGTCTTTACGCACAGCCCCAAGTGTCAGCATA122
    EgSPDS1LTGTCTGCCGCCAAACCTTTAATGAAACCAATCACCCCGCT84
    EgSPMS1CCGATTGGTCCAGCTCAAGAAAGCCACATGCTCTCTGCTT108
    EgSPMS2TGCGCCTGAAGGGATGTATGGGCCTTTCAACAAGTTCCCG81
    EgADCLGAAGGGCAAGTTCGGTCTGAAGCCGATGTGAAAGTGGAGG107
    EgADCGTGATGTTCGAGGGGCTCAAGCACCAGATAGGGCATGGAA112
    EgACL5-1ACTTGAACGGCGAGTTCCTTAAGAACAACATGCCCTCCCA135
    EgACL5-2CATGGGGATGGGTTATGGCAACAAGGAACTCGCCGTTCAA118
    EgACL5-3CTATGCTGACACTTGGGGCTCGGCAGATGCAAAGGTCTTG137
    EgACL5-4CCAGCAGGAGTCTTTACGCACAGCCCCAAGTGTCAGCATA122
    EgSAMDC2TCAGCGGACGATCCACTCTATGCTGAGTTGTGCTGGTTCT96
    EgSAMDC3-1CAGCCTTCTCCCCATCGTAGGATGATGCCGGATCGCCTAT110
    EgSAMDC3-2TGAAGCCATGGGTCTCAACCCCTTCTTCGACCATGTGCCT143
    EgSAMDC3-3AGTACTCCCGTGGGACCTTTAAGCCTTACCACCCGAACTG120
    EgSAMDC4-1GGAGATGACCGAGTTGACGGAATCGTCGAGTATCGGTCGC121
    EgSAMDC4-2TTACTCGATGAACGGCCTCGCCGGAATACGTTCACGACCT142
    β-actinCTCAACCCCAAGGCGAACGTAACACCATCTCCCGAGTCAA100
    下载: 导出CSV

    表  2  油棕多胺合酶基因的理化性质分析

    Table  2.   Physicochemical properties of polyamine synthase genes in oil palms

    基因名
    Symbol
    基因登录号
    Gene accession
    基因座登录号
    Gene locus
    氨基酸长度
    Number of amino acids
    分子量(kDa)
    Molecular weight
    等电点
    Theoretical pI
    蛋白不稳定指数
    Instability index
    脂溶指数
    Aliphatic index
    总平均亲水性
    Gravy
    EgSPDS1 XM_010943910.3 LOC105060266 346 37.92 4.80 48.15 85.29 −0.094
    EgSPDS2 XM_010930791.3 LOC105050680 342 37.52 4.78 48.1 83.16 −0.137
    EgSPMS1 XM_010915332.3 LOC105039242 389 42.70 5.31 45.35 81.93 −0.236
    EgSPMS2 XM_019849278.2 LOC105040703 363 40.12 5.61 42.47 85.62 −0.131
    EgACL5-1 XM_010934133.2 LOC105053105 332 37.74 5.36 30.61 82.20 −0.307
    EgACL5-2 XM_010936715.1 LOC105055022 334 37.42 5.91 30.65 78.53 −0.315
    EgACL5-3 XM_029263566.1 LOC105041819 318 36.00 5.10 29.26 83.71 −0.291
    EgADC1 XM_010910687.3 LOC105035222 720 76.58 5.14 42.79 92.82 0.082
    EgADC2 XM_010920850.3 LOC105043339 696 74.08 5.73 42.71 94.41 0.028
    EgSAMDC1 XM_019846142.1 LOC105031981 356 38.93 5.47 50.07 85.51 −0.008
    EgSAMDC2 XM_010906317.3 LOC105032002 423 46.43 6.05 46.75 80.21 −0.152
    EgSAMDC3-1 XM_010930896.3 LOC105050758 402 43.89 4.96 48.73 80.27 −0.083
    EgSAMDC3-2 XM_010915747.2 LOC105039560 382 41.89 5.01 44.15 86.05 0.000
    EgSAMDC4-1 XM_010923664.3 LOC105045398 340 37.34 6.31 46.89 81.18 −0.082
    EgSAMDC4-2 XM_010933625.3 LOC105052707 333 36.27 6.17 46.26 76.46 −0.158
    下载: 导出CSV
  • [1] 雷新涛, 曹红星, 冯美利, 等. 热带木本生物质能源树种——油棕 [J]. 中国农业大学学报, 2012, 17(6):185−190. doi: 10.11841/j.issn.1007-4333.2012.06.023

    LEI X T, CAO H X, FENG M L, et al. Oil Palm: a tropical woody tree species as biomass energy [J]. Journal of China Agricultural University, 2012, 17(6): 185−190.(in Chinese) doi: 10.11841/j.issn.1007-4333.2012.06.023
    [2] MAHLIA T M I, ISMAIL N, HOSSAIN N, et al. Palm oil and its wastes as bioenergy sources: a comprehensive review [J]. Environmental Science and Pollution Research International, 2019, 26(15): 14849−14866. doi: 10.1007/s11356-019-04563-x
    [3] ZHOU L, YARRA R, JIN L, et al. Genome-wide identification and expression analysis of MYB gene family in oil palm (Elaeis guineensis Jacq.) under abiotic stress conditions [J]. Environmental and Experimental Botany, 2020, 180: 104245. doi: 10.1016/j.envexpbot.2020.104245
    [4] XIAO Y, ZHOU L, LEI X, et al. Genome-wide identification of WRKY genes and their expression profiles under different abiotic stresses in Elaeis guineensis [J]. PLoS One, 2017, 12(12): e189224.
    [5] MICHAEL A J. Biosynthesis of polyamines and polyamine-containing molecules [J]. The Biochemical Journal, 2016, 473(15): 2315−2329. doi: 10.1042/BCJ20160185
    [6] 王广龙, 却枫, 陈伯清, 等. 胡萝卜S-腺苷甲硫氨酸脱羧酶SAMDC基因的克隆及其对非生物胁迫的响应 [J]. 植物生理学报, 2017, 53(3):413−421.

    WANG G L, QUE F, CHEN B Q, et al. Cloning of S-adenosylmethioine decarboxylase gene SAMDC from Daucus carota and its response to abiotic stresses [J]. Plant Physiology Communications, 2017, 53(3): 413−421.(in Chinese)
    [7] 王保全, 张晓娜, 刘继红, 等. 桃树PpADC基因克隆及逆境胁迫表达分析 [J]. 西南师范大学学报(自然科学版), 2020, 45(7):34−41.

    WANG B Q, ZHANG X N, LIU J H, et al. Cloning and abiotic stress-induced expression of the arginine decarboxylase gene from Prunus persica [J]. Journal of Southwest China Normal University (Natural Science Edition), 2020, 45(7): 34−41.(in Chinese)
    [8] 孙培培. 枳精氨酸脱羧酶基因PtADC抗逆功能解析及其调控因子分离与鉴定[D]. 武汉: 华中农业大学, 2014, .

    SUN P P. Functional charaterization of arginine decarboxylase gene PtADC from Poncirus trifoliata and indentification of the regulators[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese).
    [9] 杨硕知, 刘球, 吴际友, 等. 外源多胺对红椿S-腺苷甲硫氨酸脱羧酶基因表达的调节作用 [J]. 中南林业科技大学学报, 2019, 39(1):116−123.

    YANG S Z, LIU Q, WU J Y, et al. Gene cloning and expression analysis of TcSAMDC of Toona ciliata [J]. Journal of Central South University of Forestry & Technology, 2019, 39(1): 116−123.(in Chinese)
    [10] 王显瑞, 刘莉莉, 柴晓娇, 等. 外源亚精胺对干旱胁迫下谷子幼苗光合作用及碳水化合物积累的影响 [J]. 作物杂志, 2015(5):100−106.

    WANG X R, LIU L L, CAI X J, et al. Effects of exogenous spermidine on photosynthesis and carbohydrate accumulation in foxtail millet (Setaria italica) seedlings under drought stress [J]. Crops, 2015(5): 100−106.(in Chinese)
    [11] 李丹阳, 闫永庆, 殷媛, 等. 外源Spd和NO对盐胁迫下玉竹脯氨酸代谢途径的影响 [J]. 河南农业科学, 2018, 47(6):111−116.

    LI D Y, YAN Y Q, YING Y, et al. Effects of spd and NO on proline metabolic pathways of polygonatum odoratum (Mill.) druce under salt stress [J]. Journal of Henan Agricultural Sciences, 2018, 47(6): 111−116.(in Chinese)
    [12] HANFREY C, SOMMER S, MAYER M J, et al. Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity [J]. The Plant Journal, 2001, 27(6): 551−560. doi: 10.1046/j.1365-313X.2001.01100.x
    [13] SHI H, CHAN Z. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway [J]. Journal of Integrative Plant Biology, 2014, 56(2): 114−121. doi: 10.1111/jipb.12128
    [14] LIU J H, WANG W, WU H, et al. Polyamines function in stress tolerance: from synthesis to regulation [J]. Frontiers in Plant Science, 2015, 6: 827.
    [15] KOU S, CHEN L, TU W, et al. The arginine decarboxylase gene ADC1, associated to the putrescine pathway, plays an important role in potato cold-acclimated freezing tolerance as revealed by transcriptome and metabolome analyses [J]. The Plant Journal, 2018, 96(6): 1283−1298. doi: 10.1111/tpj.14126
    [16] HIDALGO-CASTELLANOS J, DUQUE A S, BURGUEÑO A, et al. Overexpression of the arginine decarboxylase gene promotes the symbiotic interaction Medicago truncatula-Sinorhizobium meliloti and induces the accumulation of proline and spermine in nodules under salt stress conditions [J]. Journal of Plant Physiology, 2019, 241: 153034. doi: 10.1016/j.jplph.2019.153034
    [17] LIU Z, LIU P, QI D, et al. Enhancement of cold and salt tolerance of Arabidopsis by transgenic expression of the S-adenosylmethionine decarboxylase gene from Leymus chinensis [J]. Journal of Plant Physiology, 2017, 211: 90−99. doi: 10.1016/j.jplph.2016.12.014
    [18] JI M, WANG K, WANG L, et al. Overexpression of a S-adenosylmethionine decarboxylase from sugar beet M14 increased Araidopsis salt tolerance [J]. International Journal of Molecular Sciences, 2019, 20(8).
    [19] QIU Z, YAN S, XIA B, et al. The eggplant transcription factor MYB44 enhances resistance to bacterial wilt by activating the expression of spermidine synthase [J]. Journal of Experimental Botany, 2019, 70(19): 5343−5354. doi: 10.1093/jxb/erz259
    [20] SINGH R, ONGABDULLAH M, LOW E T L, et al. Oil palm genome sequence reveals divergence of interfertile species in old and new worlds [J]. Nature, 2013, 500(7462): 335. doi: 10.1038/nature12309
    [21] 吴昊. 柑橘转录因子CsCBF1PtrNAC72在调控精氨酸脱羧酶基因表达及抗逆中的功能鉴定[D]. 武汉: 华中农业大学 2017.

    WU H. Functional characterization of Citrus sinensis CBF1 and NAC72 in regulation of arginine decarboxylase gene expression and stress tolerance[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese).
    [22] CHEN C, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
    [23] EDGAR R C, BATZOGLOU S. Multiple sequence alignment [J]. Current Opinion in Structural Biology, 2006, 16(3): 368−373. doi: 10.1016/j.sbi.2006.04.004
    [24] VUOSKU J, MUILU-MÄKELÄ R, AVIA K, et al. Thermospermine synthase (ACL5) and diamine oxidase (DAO) expression is needed for zygotic embryogenesis and vascular development in Scots pine [J]. Frontiers in Plant Science, 2019, 10: 1600. doi: 10.3389/fpls.2019.01600
    [25] 刘荣, 黄海, 韩树全, 等. 芒果精氨酸脱羧酶基因MiADC的克隆及表达分析 [J]. 农业科学与技术(英文版), 2018, 19(2):9−16.

    LIU R, HUANG H, HAN S Q, et al. Cloning and expression analysis of arginine decarboxylase gene MiADC from mango [J]. Agricultural Science & Technology, 2018, 19(2): 9−16.(in Chinese)
    [26] GONG X, DOU F, CHENG X, et al. Genome-wide identification of genes involved in polyamine biosynthesis and the role of exogenous polyamines in Malus hupehensis Rehd. under alkaline stress [J]. Gene, 2018, 669: 52−62. doi: 10.1016/j.gene.2018.05.077
    [27] LIU T, HUANG B, CHEN L, et al. Genome-wide identification, phylogenetic analysis, and expression profiling of polyamine synthesis gene family members in tomato [J]. Gene, 2018, 661: 1−10. doi: 10.1016/j.gene.2018.03.084
    [28] MO H, WANG X, ZHANG Y, et al. Cotton ACAULIS5 is involved in stem elongation and the plant defense response to Verticillium dahliae through thermospermine alteration [J]. Plant cell reports, 2015, 34(11): 1975−1985. doi: 10.1007/s00299-015-1844-3
    [29] TSANIKLIDIS G, KOTSIRAS A, TSAFOUROS A, et al. Spatial and temporal distribution of genes involved in polyamine metabolism during tomato fruit development [J]. Plant Physiology and Biochemistry, 2016, 100: 27−36. doi: 10.1016/j.plaphy.2016.01.001
    [30] WOITTIEZ L S, van WIJK M T, SLINGERLAND M, et al. Yield gaps in oil palm: A quantitative review of contributing factors [J]. European Journal of Agronomy, 2017, 83: 57−77. doi: 10.1016/j.eja.2016.11.002
    [31] CORLEY R H V, TINKER P B. The oil palm[M]. New Jersey: Wiley Blackwell, 2016: 324−327.
    [32] ALCÁZAR R, MARCO F, CUEVAS J C, et al. Involvement of polyamines in plant response to abiotic stress [J]. Biotechnology Letters, 2006, 28(23): 1867−1876. doi: 10.1007/s10529-006-9179-3
    [33] KASUKABE Y, HE L, NADA K, et al. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana [J]. Plant & Cell Physiology, 2004, 45(6): 712−722.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  719
  • HTML全文浏览量:  197
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-02
  • 修回日期:  2021-01-31
  • 网络出版日期:  2021-03-27
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回