• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无人机数码影像的冬小麦氮素营养诊断研究

杨福芹 李天驰 冯海宽 谢瑞 肖天豪 陈超

杨福芹,李天驰,冯海宽,等. 基于无人机数码影像的冬小麦氮素营养诊断研究 [J]. 福建农业学报,2021,36(3):369−378 doi: 10.19303/j.issn.1008-0384.2021.03.016
引用本文: 杨福芹,李天驰,冯海宽,等. 基于无人机数码影像的冬小麦氮素营养诊断研究 [J]. 福建农业学报,2021,36(3):369−378 doi: 10.19303/j.issn.1008-0384.2021.03.016
YANG F Q, LI T C, FENG H K, et al. UAV Digital Image-assisted Monitoring on Nitrogen Nutrition of Winter Wheat in the Field [J]. Fujian Journal of Agricultural Sciences,2021,36(3):369−378 doi: 10.19303/j.issn.1008-0384.2021.03.016
Citation: YANG F Q, LI T C, FENG H K, et al. UAV Digital Image-assisted Monitoring on Nitrogen Nutrition of Winter Wheat in the Field [J]. Fujian Journal of Agricultural Sciences,2021,36(3):369−378 doi: 10.19303/j.issn.1008-0384.2021.03.016

基于无人机数码影像的冬小麦氮素营养诊断研究

doi: 10.19303/j.issn.1008-0384.2021.03.016
基金项目: 国家自然科学基金项目(41601346);河南省高等学校重点科研项目计划(19A420006); 2020年度河南省科技攻关计划项目(202102310333);河南工程学院博士基金项目(D2017008);国家自然科学基金资助项目(42007424)
详细信息
    作者简介:

    杨福芹(1979−),女,博士,讲师,主要从事农业定量遥感研究。(E-mail:yangfuqin0202@163.com)

    通讯作者:

    冯海宽(1982−),男,硕士,副研究员,主要从事农业定量遥感研究。(E-mail:fenghaikuan123@163.com)

  • 中图分类号: S 129

UAV Digital Image-assisted Monitoring on Nitrogen Nutrition of Winter Wheat in the Field

  • 摘要:   目的  准确、快速地获取作物的氮素信息,对监测作物氮素营养状况、指导变量施肥具有重要意义。  方法  获取了冬小麦挑旗期及开花期数码影像和相应的冬小麦地面农学参数,首先分析了数码图像指数与氮营养指数的相关性,然后结合相关系数和方差膨胀因子,筛选出对氮营养指数敏感且图像指数间不存在共线性的图像指数,通过偏最小二乘法建立各生育期氮营养诊断模型,并利用挑旗期和开花期的诊断模型对无人机影像进行填图和可视化。  结果  结合相关系数和方差膨胀因子筛选出挑旗期的图像指数分别是bg/b、(r−g−b)/(r+g)、NDI、WI,筛选出开花期的图像指数分别是br/b、(r−g−b)/(r+g)、VARI。就生育期而言,开花期建模的决定系数比挑旗期的决定系数高0.008 8,均方根误差低0.021 7,开花期可以较好地反应冬小麦氮素营养状况。  结论  挑旗期和开花期的数码影像,经填图和可视化处理后得到的氮营养指数分布图能较好地监测不同生育期氮素营养状况,为田间小麦氮素营养状况监测提供高效的技术手段。
  • 图  1  试验设计

    Figure  1.  Experimental design

    图  2  各生育期图像指数之间的方差膨胀因子

    注:A:挑旗期;B:开花期。

    Figure  2.  Variance inflation factor of image indices at flagging and flowering stages

    Note: A: Flagging; B: Flowering stage. The same as below.

    图  3  冬小麦各生育期NNI实测值与偏最小二乘模型估测值关系

    Figure  3.  Correlation between measured and estimated values of NNIs of winter wheat at each growth stage by partial least squares model

    图  4  冬小麦各生育期NNI预测值

    Figure  4.  Estimated values of NNIs of winter wheat at each growth stage

    表  1  研究用到的图像指数

    Table  1.   Image indices applied

    图像指数
    Image index
    公式
    Formula
    参考文献
    Reference
    r r=R/R+G+B /
    g g=G/R+G+B /
    b b=B/R+G+B /
    r/b r/b *
    g/b g/b *
    r−b r−b *
    g+b g+b *
    g−b g−b *
    IKAW IKAW= r−b)/(r+b 文献[29]
    三波段植被指数(r−g−b)/(r+g r−g−b)/(r+g *
    超绿指数 ExG ExG=2×g−b−r 文献[30]
    红绿植被指数 GRVI GRVI=(g−r)/(g+r 文献[31]
    修正红绿植被指数 MGRVI MGRVI=(g2r2)/(g2+r2 文献[32]
    红绿蓝植被指数 RGBVI RGBVI=(g2b×r)/(g2+ b×r 文献[32]
    超红指数ExR ExR=1.4×r−g 文献[30]
    归一化差异植被指数 NDI NDI=(r−g)/(r+g+0.01) 文献[33]
    大气阻抗植被指数 VARI VARI=(g−r)/(g+rb 文献[34]
    超绿超红差分指数 EXGR EXGR=3×g−2.4×r−b 文献[30]
    沃贝克指数 WI WI=(g−b)/(r−g 文献[32]
    r/g r/g *
    r+b r+b *
    地平面影像指数 GLA GLA=(2×gr+b)/(2×g+r+b 文献[35]
    地平面影像指数 GLI GLI=(2×g−r−b)/(2×g+r+b 文献[35]
    超红绿指数 ExGR ExGR=ExG−1.4×r−g 文献[33]
    彩色植被指数 CIVE CIVE=0.441×r−0.881×g+0.3856×b+18.78745 文献[36]
    注:“ / ” 表示数码影像三个波段R、G、B分别归一化后的值,“ * ” 表示经验的图像指数。
    Note: " / " divides normalized R, G and B band values of digital image; " * " represents measured indices.
    下载: 导出CSV

    表  2  不同生育期图像指数与氮营养指数的相关性

    Table  2.   Correlation coefficients between image indices and NNIs at two growth stages of winter wheat crop

    图像指数
    Image index
    生育期
    Growth stage
    挑旗期
    Flagging stage
    开花期
    Flowering stage
    r −0.804 0** −0.710 3**
    g 0.313 4 0.370 1**
    b 0.855 7** 0.783 4**
    r/b −0.855 2** −0.813 7**
    g/b −0.738 0** −0.289 6
    r−b −0.848 2** −0.806 5**
    g+b 0.804 0** 0.710 3**
    g−b −0.660 1** −0.148 6
    IKAW −0.851 3** −0.818 4**
    r−g−b)/(r+g −0.820 0** −0.746 0**
    ExG 0.313 4 0.370 0**
    GRVI 0.711 5** 0.595 9**
    MGRVI 0.711 4** 0.594 7**
    RGBVI 0.190 0 0.335 2
    ExR −0.729 8** −0.610 6**
    NDI −0.711 4** −0.595 7**
    VARI 0.729 8** 0.621 5**
    EXGR −0.574 1** 0.491 9**
    WI 0.644 6** −0.058 5
    r/g −0.711 0** −0.588 5**
    r+b −0.313 4 −0.370 1**
    GLA 0.777 6** 0.668 0**
    GLI 0.314 4 0.370 3**
    ExGR 0.664 3** 0.552 7**
    CIVE −0.365 8** −0.391 2**
    注:**表示相关性在0.01水平下达到显著。
    Note: ** represents correlation reached a significant level at 0.01.
    下载: 导出CSV

    表  3  建模与验证

    Table  3.   Modeling and validation

    生育期
    Growth period
    建模
    Modeling
    验证
    Validation
    R2RMSEMAER2RMSEMAE
    挑旗期 Flagging stage 0.711 60.107 50.086 00.764 10.135 80.105 2
    开花期 Flowering stage0.720 40.085 80.071 70.798 90.187 10.131 0
    下载: 导出CSV
  • [1] 陆增根, 戴廷波, 姜东, 等. 氮肥运筹对弱筋小麦群体指标与产量和品质形成的影响 [J]. 作物学报, 2007(4):590−597. doi: 10.3321/j.issn:0496-3490.2007.04.011

    LU Z G, DAI T B, JIANG D, et al. Effects of nitrogen strategies on population quality index and grain yield & quality in weak-gluten wheat [J]. Acta Agronomica Sinica, 2007(4): 590−597.(in Chinese) doi: 10.3321/j.issn:0496-3490.2007.04.011
    [2] 郑利芳, 吴三鼎, 党廷辉. 不同施肥模式对春玉米产量、水分利用效率及硝态氮残留的影响 [J]. 水土保持学报, 2019, 33(4):221−227.

    ZHENG L F, WU S D, DANG T H. Effects of different fertilization modes on spring maize yield, water use efficiency and nitrate nitrogen residue [J]. Journal of Soil and Water Conservation, 2019, 33(4): 221−227.(in Chinese)
    [3] 黄倩楠, 王朝辉, 黄婷苗, 等. 中国主要麦区农户小麦氮磷钾养分需求与产量的关系 [J]. 中国农业科学, 2018, 51(14):2722−2734. doi: 10.3864/j.issn.0578-1752.2018.14.010

    HUANG Q N, WANG Z H, HUANG T M, et al. Relationships of N, P and K requirement to wheat grain yield of farmers in major wheat production regions of China [J]. Scientia Agricultura Sinica, 2018, 51(14): 2722−2734.(in Chinese) doi: 10.3864/j.issn.0578-1752.2018.14.010
    [4] YU H, WU H S, WANG Z J. Evaluation of SPAD and dualex for in-season corn nitrogen status estimation [J]. Acta Agronomica Sinica, 2010, 36(5): 840−847.
    [5] 孙俊, 金夏明, 毛罕平, 等. 基于高光谱图像光谱与纹理信息的生菜氮素含量检测 [J]. 农业工程学报, 2014, 30(10):167−173. doi: 10.3969/j.issn.1002-6819.2014.10.021

    SUN J, JIN X M, MAO H P, et al. Detection of nitrogen content in lettuce leaves based on spectroscopy and texture using hyperspectral imaging technology [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(10): 167−173.(in Chinese) doi: 10.3969/j.issn.1002-6819.2014.10.021
    [6] 李振海, 王纪华, 贺鹏, 等. 基于Dualex氮平衡指数测量仪的作物叶绿素含量估算模型 [J]. 农业工程学报, 2015, 31(21):191−197. doi: 10.11975/j.issn.1002-6819.2015.21.025

    LI Z H, WANG J H, HE P, et al. Modelling of crop chlorophyll content based on Dualex [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21): 191−197.(in Chinese) doi: 10.11975/j.issn.1002-6819.2015.21.025
    [7] 冯家莉, 刘凯, 朱远辉, 等. 无人机遥感在红树林资源调查中的应用 [J]. 热带地理, 2015, 35(1):35−42.

    FENG J L, LIU K, ZHU Y H, et al. Application of unmanned aerial vehicles to mangrove resources monitoring [J]. Tropical Geography, 2015, 35(1): 35−42.(in Chinese)
    [8] 王果, 蒋瑞波, 肖海红, 等. 基于无人机倾斜摄影的露天矿边坡三维重建 [J]. 中国矿业, 2017, 26(4):158−161. doi: 10.3969/j.issn.1004-4051.2017.04.031

    WANG G, JIANG R B, XIAO H H, et al. Research on slope reconstruction technique based on UAV oblique photogrammetry [J]. China Mining Magazine, 2017, 26(4): 158−161.(in Chinese) doi: 10.3969/j.issn.1004-4051.2017.04.031
    [9] TURNER D, LUCIEER A, WATSON C. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds [J]. Remote Sensing, 2012, 4(5): 1392−1410. doi: 10.3390/rs4051392
    [10] 杨全月, 董泽宇, 马振宇, 等. 基于SfM的针叶林无人机影像树冠分割算法 [J]. 农业机械学报, 2020, 51(6):181−190.

    YANG Q Y, DONG Z Y, MA Z Y, et al. Coniferous forest crown segmentation algorithm of UAV images based on SfM [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 181−190.(in Chinese)
    [11] 金忠明, 曹姗姗, 王蕾, 等. 天山云杉林无人机可见光影像树冠信息提取方法研究 [J]. 林业资源管理, 2020(1):125−135.

    JIN Z M, CAO S S, WANG L, et al. Study on extraction of tree crown information from UAV visible light image of piceaschrenkiana var. tianschanica forest [J]. Forest Resources Management, 2020(1): 125−135.(in Chinese)
    [12] 周小成, 何艺, 黄洪宇, 等. 基于两期无人机影像的针叶林伐区蓄积量估算 [J]. 林业科学, 2019, 55(11):117−125. doi: 10.11707/j.1001-7488.20191113

    ZHOU X C, HE Y, HUANG H Y, et al. Estimation of forest stand volume on coniferous forest cutting area based on two periods unmanned aerial vehicle images [J]. Scientia Silvae Sinicae, 2019, 55(11): 117−125.(in Chinese) doi: 10.11707/j.1001-7488.20191113
    [13] 侍昊, 李旭文, 牛志春, 等. 基于微型无人机遥感数据的城市水环境信息提取初探 [J]. 中国环境监测, 2018, 34(3):141−147.

    SHI H, LI X W, NIU Z C, et al. A preliminary study on remote sensing information extraction of urban water environment based on micro UAV images [J]. Environmental Monitoring in China, 2018, 34(3): 141−147.(in Chinese)
    [14] 陈桥驿. 无人机航测技术在河道水环境治理中的应用研究 [J]. 北京测绘, 2018, 32(8):953−956.

    CHEN Q Y. The application of unmanned aerial vehicle aerial survey technology in river water environment control [J]. Beijing Surveying and Mapping, 2018, 32(8): 953−956.(in Chinese)
    [15] 冯磊, 崔胜涛. 无人机遥感技术在海域监测陆源排污口中的应用 [J]. 测绘与空间地理信息, 2019, 42(5):107−109. doi: 10.3969/j.issn.1672-5867.2019.05.033

    FENG L, CUI S T. Application of UAV remote sensing technology in monitoring land source sewage in sea area [J]. Geomatics & Spatial Information Technology, 2019, 42(5): 107−109.(in Chinese) doi: 10.3969/j.issn.1672-5867.2019.05.033
    [16] 杨进. 基于无人机遥感玉米生长动态监测[D]. 石河子: 石河子大学, 2019.

    YANG J. Dynamic monitoring of maize growth based on unmanned aerial vehicle remote sensing[D]. Shihezi, China: Shihezi University, 2019. (in Chinese)
    [17] 赵晓庆, 杨贵军, 刘建刚, 等. 基于无人机载高光谱空间尺度优化的大豆育种产量估算 [J]. 农业工程学报, 2017, 33(1):110−116.

    ZHAO X Q, YANG G J, LIU J G, et al. Estimation of soybean breeding yield based on optimization of spatial scale of UAV hyperspectral image [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 110−116.(in Chinese)
    [18] 纪景纯, 赵原, 邹晓娟, 等. 无人机遥感在农田信息监测中的应用进展 [J]. 土壤学报, 2019, 56(4):773−784.

    JI J C, ZHAO Y, ZOU X J, et al. Advancement in application of UAV remote sensing to monitoring of farmlands [J]. Acta Pedologica Sinica, 2019, 56(4): 773−784.(in Chinese)
    [19] 李长春, 牛庆林, 杨贵军, 等. 基于无人机数码影像的大豆育种材料叶面积指数估测 [J]. 农业机械学报, 2017, 48(8):147−158.

    LI C C, NIU Q L, YANG G J, et al. Estimation of leaf area index of soybean breeding materials based on UAV digital images [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 147−158.(in Chinese)
    [20] 陈鹏, 冯海宽, 李长春, 等. 无人机影像光谱和纹理融合信息估算马铃薯叶片叶绿素含量 [J]. 农业工程学报, 2019, 35(11):63−74. doi: 10.11975/j.issn.1002-6819.2019.11.008

    CHEN P, FENG H K, LI C C, et al. Estimation of chlorophyll content in potato using fusion of texture and spectral features derived from UAV multispectral image [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(11): 63−74.(in Chinese) doi: 10.11975/j.issn.1002-6819.2019.11.008
    [21] 田明璐, 班松涛, 常庆瑞, 等. 基于低空无人机成像光谱仪影像估算棉花叶面积指数 [J]. 农业工程学报, 2016, 32(21):102−108. doi: 10.11975/j.issn.1002-6819.2016.21.014

    TIAN M L, BAN S T, CHANG Q R, et al. Use of hyperspectral images from UAV-based imaging spectroradiometer to estimate cotton leaf area index [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(21): 102−108.(in Chinese) doi: 10.11975/j.issn.1002-6819.2016.21.014
    [22] DU M M, NOGUCHI N. Monitoring of wheat growth status and mapping of wheat yield's within-field spatial variations using color images acquired from UAV-camera system [J]. Remote Sensing, 2017, 9(3): 289. doi: 10.3390/rs9030289
    [23] 岳松华, 刘春雨, 黄玉芳, 等. 豫中地区冬小麦临界氮稀释曲线与氮营养指数模型的建立 [J]. 作物学报, 2016, 42(6):909−916. doi: 10.3724/SP.J.1006.2016.00909

    YUE S H, LIU C Y, HUANG Y F, et al. Simulating critical nitrogen dilution curve and modeling nitrogen nutrition index in winter wheat in central Henan area [J]. Acta Agronomica Sinica, 2016, 42(6): 909−916.(in Chinese) doi: 10.3724/SP.J.1006.2016.00909
    [24] 杨福芹, 戴华阳, 冯海宽, 等. 基于赤池信息准则的冬小麦植株氮含量高光谱估算 [J]. 农业工程学报, 2016, 32(23):161−167. doi: 10.11975/j.issn.1002-6819.2016.23.022

    YANG F Q, DAI H Y, FENG H K, et al. Hyperspectral estimation of plant nitrogen content based on Akaike's information criterion [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(23): 161−167.(in Chinese) doi: 10.11975/j.issn.1002-6819.2016.23.022
    [25] 王新, 马富裕, 刁明, 等. 滴灌番茄临界氮浓度、氮素吸收和氮营养指数模拟 [J]. 农业工程学报, 2013, 29(18):99−108. doi: 10.3969/j.issn.1002-6819.2013.18.013

    WANG X, MA F Y, DIAO M, et al. Simulation of critical nitrogen concentration, nitrogen uptake and nitrogen nutrition index of processing tomato with drip irrigation [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(18): 99−108.(in Chinese) doi: 10.3969/j.issn.1002-6819.2013.18.013
    [26] 王仁红, 宋晓宇, 李振海, 等. 基于高光谱的冬小麦氮素营养指数估测 [J]. 农业工程学报, 2014, 30(19):191−198. doi: 10.3969/j.issn.1002-6819.2014.19.023

    WANG R H, SONG X Y, LI Z H, et al. Estimation of winter wheat nitrogen nutrition index using hyperspectral remote sensing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(19): 191−198.(in Chinese) doi: 10.3969/j.issn.1002-6819.2014.19.023
    [27] DORDAS C A. Nitrogen nutrition index and its relationship to N use efficiency in linseed [J]. European Journal of Agronomy, 2011, 34(2): 124−132. doi: 10.1016/j.eja.2010.11.005
    [28] JUSTES E, MARY B, MEYNARD J M, et al. Determination of a critical nitrogen dilution curve for winter wheat crops [J]. Annals of Botany, 1994, 74(4): 397−407. doi: 10.1006/anbo.1994.1133
    [29] KAWASHIMA S, NAKATANI M. An algorithm for estimating chlorophyll content in leaves using a video camera [J]. Annals of Botany, 1998, 81(1): 49−54. doi: 10.1006/anbo.1997.0544
    [30] MEYER G E, NETO J C. Verification of color vegetation indices for automated crop imaging applications [J]. Computers and Electronics in Agriculture, 2008, 63(2): 282−293. doi: 10.1016/j.compag.2008.03.009
    [31] TUCKER C J. Red and photographic infrared linear combinations for monitoring vegetation [J]. Remote Sensing of Environment, 1979, 8(2): 127−150. doi: 10.1016/0034-4257(79)90013-0
    [32] BENDIG J, YU K, AASEN H, et al. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley [J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39(7): 79−87. doi: 10.1016/j.jag.2015.02.012
    [33] WOEBBECKE D M, MEYER G E, BARGEN K V, et al. Color indices for weed identification under various soil, residue, and lighting conditions [J]. Transactions of the ASAE, 1995, 38(1): 259−269. doi: 10.13031/2013.27838
    [34] GITELSON A A, VIÑA A, ARKEBAUER T J, et al. Remote estimation of leaf area index and green leaf biomass in maize canopies [J]. Geophysical Research Letters, 2003, 30(5): 1248.
    [35] LOUHAICHI M, BORMAN M M, JOHNSON D E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat [J]. Geocarto International, 2001, 16(1): 65−70. doi: 10.1080/10106040108542184
    [36] KATAOKA T, KANEKO T, OKAMOTO H, et al. Crop growth estimation system using machine vision[C]//Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003). July 20-24, 2003, Kobe, Japan. IEEE, 2003: b1079-b1083.
    [37] 张湘平, 邹逢兴, 李大琪. 线性回归模型岭迹选择主元方法及应用研究 [J]. 航天控制, 1998(1):33−38. doi: 10.3969/j.issn.1006-3242.1998.01.006

    ZHANG X P, ZOU F X, LI D Q. Linear regression model ridge trace selection procedure and application research [J]. Aerospace Control, 1998(1): 33−38.(in Chinese) doi: 10.3969/j.issn.1006-3242.1998.01.006
    [38] 吴明山. 回归模型的估计方法及在林业中的应用研究[D]. 昆明: 西南林学院, 2008.

    WU M S. Study on estimation method and application of regression model in forestry[D]. Kunming: Southwest Forestry University, 2008. (in Chinese)
    [39] 魏鹏飞, 徐新刚, 李中元, 等. 基于无人机多光谱影像的夏玉米叶片氮含量遥感估测 [J]. 农业工程学报, 2019, 35(8):126−133, 335.

    WEI P F, XU X G, LI Z Y, et al. Remote sensing estimation of nitrogen content in summer maize leaves based on multispectral images of UAV [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(8): 126−133, 335.(in Chinese)
    [40] 陈鹏飞, 梁飞. 基于低空无人机影像光谱和纹理特征的棉花氮素营养诊断研究 [J]. 中国农业科学, 2019, 52(13):2220−2229. doi: 10.3864/j.issn.0578-1752.2019.13.003

    CHEN P F, LIANG F. Cotton nitrogen nutrition diagnosis based on spectrum and texture feature of images from low altitude unmanned aerial vehicle [J]. Scientia Agricultura Sinica, 2019, 52(13): 2220−2229.(in Chinese) doi: 10.3864/j.issn.0578-1752.2019.13.003
    [41] 刘帅兵, 杨贵军, 景海涛, 等. 基于无人机数码影像的冬小麦氮含量反演 [J]. 农业工程学报, 2019, 35(11):75−85. doi: 10.11975/j.issn.1002-6819.2019.11.009

    LIU S B, YANG G J, JING H T, et al. Retrieval of winter wheat nitrogen content based on UAV digital image [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(11): 75−85.(in Chinese) doi: 10.11975/j.issn.1002-6819.2019.11.009
    [42] 秦占飞, 常庆瑞, 谢宝妮, 等. 基于无人机高光谱影像的引黄灌区水稻叶片全氮含量估测 [J]. 农业工程学报, 2016, 32(23):77−85. doi: 10.11975/j.issn.1002-6819.2016.23.011

    QIN Z F, CHANG Q R, XIE B N, et al. Rice leaf nitrogen content estimation based on hysperspectral imagery of UAV in Yellow River diversion irrigation district [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(23): 77−85.(in Chinese) doi: 10.11975/j.issn.1002-6819.2016.23.011
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  690
  • HTML全文浏览量:  156
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 修回日期:  2020-10-29
  • 网络出版日期:  2021-04-20
  • 刊出日期:  2021-03-31

目录

    /

    返回文章
    返回