Heterologous Expression and Temperature Regulation of Prodigiosin-synthesis Gene Cluster in Serratia marcecens
-
摘要:
目的 构建黏质沙雷氏菌FZSF02灵菌红素合成基因簇的异源表达菌株,探究其合成灵菌红素可能的温度调控机制。 方法 构建3种携带不同启动子的异源表达大肠杆菌菌株,并利用实时荧光定量PCR(RT-qPCR)检测FZSF02中pig基因簇pigA、pigF、pigN基因在37 ℃与28 ℃培养条件下的转录水平差异。 结果 在28 ℃低温条件下,3种不同的启动子均能在大肠杆菌中启动各自重组质粒所携带的pig基因簇表达并合成灵菌红素,其中携带T7强启动子的重组菌株经IPTG诱导后可以在37 ℃少量合成色素,其余菌株37 ℃不能合成色素。RT-qPCR结果显示在黏质沙雷氏菌中上述基因转录水平在37 ℃条件下较28 ℃出现下调。 结论 黏质沙雷氏菌FZSF02之所以能够在28 ℃合成灵菌红素而在37 ℃无法合成灵菌红素,一方面由于pig基因簇的编码基因转录水平下调,另一方面是由基因簇编码的合成灵菌红素所需前体MBC和MAP的一种或者几种关键酶在相对较高的温度(37 ℃)条件下活性受到抑制导致。 Abstract:Objective Strains of Serratia marcescens FZSF02 that had heterologous expression and could produce prodigiosin with relevant synthesis gene cluster were constructed to study the mechanism relating to temperature regulation in the biological process. Methods Three Escherichia coli strains with heterologous expression carrying different promoters were constructed. Real-time fluorescent quantitative PCR (RT-qPCR) was used to determine the transcriptional differences of pigA, pigF and pigN in the pig gene cluster at 37 ℃ and 28 ℃. Results At 28 ℃, all 3 promoters initiated the expression of the pig gene cluster in E. coli, and prodigiosin was produced in the 3 recombinant strains. In contrast, only the recombinant strain carrying the strong T7 promoter delivered a small amount of the pigment after IPTG induction at 37 ℃. The RT-qPCR results showed the transcription levels of the above genes in S. marcescens FZSF02 were down-regulated at 37 ℃ in comparison to 28 ℃. Conclusion The reason why S. marcescens FZSF02 was able to produce prodigiosin at 28 ℃ but failed at 37 ℃ might be, at higher temperatures, that the pig gene cluster was down-regulated and/or that the activities of one or several key enzymes encoded by the pig genes for the biosynthesis of precursors MBC and MAP were somehow inhibited. -
图 1 pig基因簇、pig基因簇和pig启动子序列以及3种重组质粒所连片段的验证PCR扩增结果
注:M:DNA maker。A:1,pig基因簇;2,pig基因簇启动子与pig基因簇。B:(1,2)M13引物PCR扩增产物;3,T7引物PCR扩增产物。
Figure 1. PCR amplification results on pig gene cluster, pig gene cluster and pig promoter, and validation on sequences of 3 recombinant plasmid segments
Note:M: DNA maker. A: pig gene cluster (1); pig gene cluster and pig promoter (2). B: M13 primer PCR amplification product (1 and 2); T7 primer PCR amplification product (3).
图 2 3种重组质粒的构建过程
注:A: pTOPO-Blunt Simple-ppPig重组质粒;B: pEASY®-Blunt E2-Pig重组质粒;C: pTOPO-Blunt Simple-kpPig重组质粒。
Figure 2. Construction of 3 recombinant plasmids
Note:A: pTOPO-Blunt Simple-ppPig recombinant plasmid. B: pEASY®-Blunt E2-Pig recombinant plasmid. C: pTOPO-Blunt Simple-kpPig recombinant plasmid.
图 3 3种重组菌株在28 ℃和37 ℃培养条件下灵菌红素的合成情况
注:A:28 ℃培养pTOPO-ppPig重组菌株;B:28 ℃培养pTOPO-kpPig重组菌株;C:28 ℃培养pEASY-pig重组菌株;D:37 ℃培养pTOPO-ppPig重组菌株;E:37 ℃培养pTOPO-kpPig重组菌株;F:37 ℃培养pEASY-pig重组株。
Figure 3. Prodigiosin synthesis of 3 recombinant strains cultured at 28 ℃ and 37 ℃
Note: A: pTOPO-ppPig recombinant strains at 28 ℃. B: pTOPO-kpPig recombinant strains at 28 ℃. C: pEASY-pig recombinant strains at 28 ℃. D: pTOPO-ppPig recombinant strains at 37 ℃. E: pTOPO-kpPig recombinant strains at 37 ℃. F: pEASY-pig recombinant strains at 37 ℃.
表 1 供试菌株和质粒
Table 1. Bacterial strains and plasmids used in this study
细菌 Bacterial strains 菌株 Strain 参考/来源 Reference/source Serratia marcescens FZSF02(WT) This work(本实验) E.coli DH5α This work(本实验) BL21(DE3) This work(本实验) 质粒 Plasmids 注释 Note 参考/来源 Reference/source pTOPO CV22-Zero Background pTOPO-Blunt Simple Cloning Kit Purchased from Aidlab(购自艾伯莱生物公司) pEASY pEASY®- Blunt E2 Expression Kit Purchase from TransGen Biotech
(购自全式金生物公司)pTOPO-kan Used for the amplification of universal promoter and Kan resistance genes This work(本实验) pTOPO-ppPig A pTOPO based plasmid containing the pig cluster and pig promoter This work(本实验) pEASY-Pig A pEASY based plasmid containing the pig cluster This work(本实验) pTOPO-kpPig A pTOPO based plasmid containing the pig cluster and Kan promoter This work(本实验) 表 2 供试引物
Table 2. Primers used in this study
引物 Primers 序列 Sequences(5′→3′) 用途 purpose ExpF ATGGATTTTAACTTATCAAGCGA Clone a pig gene cluster(克隆pig基簇) ExpR TTACAGCACGAAAGGAATGAAACA CluspigF TTTTTCCTCCGGAATGCTCCTGC Clone pig gene clusters and pig promoter
(克隆pig基因簇及其启动子)CluspigR TTACAGCACGAAAGGAATGAAAC KanproF2 ATTCCTTTCGTGCTGTAATCAGAA TTGGTTAATTGGTTGTA Linearize the attached pTOPO KanproR2 TGATAAGTTAAAATCCATAACACC vector and Kan promoter
(线性化pTOPO载体和Kan启动子)CCTTGTATTACTGTTA M13F TGTAAACGACGGCCAGT Check the size of the gene attached to the pTOPO vector
(验证pTOPO载体所连接的基因大小)M13R CAGCAAACAGCTATGACC 16SF CGTTACTCGCAGAAGAAGCA Used for qPCR amplification(用于qPCR扩增) 16SR TCACCGCTACACCTGGAA PigAF CGCCATCTTCCACGATTCAA Used for qPCR amplification(用于qPCR扩增) PigAR CATTAGCCGACACTGTTCCA PigFF CACGGTATTCGGCGATGAC Used for qPCR amplification(用于qPCR扩增) PigFR CACGGTGTTGCGAGAAGT PigNF CGGTTACCCTGGTCTATTG Used for qPCR amplification(用于qPCR扩增) PigNR TGTCAGCACGATGTTCAT 表 3 菌株在535 nm下的吸光度
Table 3. Absorbance at 535 nm of recombinant strains
菌株 strains 吸光度 Absorbance 28 ℃ 37 ℃ DH5α(pTOPO-ppPig) 0.435 0.002 DH5α(pTOPO-kpPig) 0.468 0.001 DH5α(pEASY-Pig) 0.394 0.026 FZSF02 1.056 0.001 -
[1] WEI J, XIE X, HUANG F Y, et al. Simultaneous Microcystis algicidal and microcystin synthesis inhibition by a red pigment prodigiosin [J]. Environmental Pollution, 2020, 256: 113444. doi: 10.1016/j.envpol.2019.113444 [2] GUTIÉRREZ-ROMÁN M I, HOLGUÍN-MELÉNDEZ F, BELLO-MENDOZA R, et al. Production of prodigiosin and chitinases by tropical Serratia marcescens strains with potential to control plant pathogens [J]. World Journal of Microbiology and Biotechnology, 2012, 28(1): 145−153. doi: 10.1007/s11274-011-0803-6 [3] MONTANER B, NAVARRO S, PIQUÉ M, et al. Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines [J]. British Journal of Pharmacology, 2000, 131(3): 585−593. doi: 10.1038/sj.bjp.0703614 [4] HAN S B, KIM H M, KIM Y H, et al. T-cell specific immunosuppression by prodigiosin isolated from Serratia marcescens [J]. International Journal of Immunopharmacology, 1998, 20(1-3): 1−13. doi: 10.1016/S0192-0561(97)00062-3 [5] WILLIAMS R P. Biosynthesis of prodigiosin, a secondary metabolite of Serratia marcescens [J]. Applied Microbiology, 1973, 25(3): 396−402. doi: 10.1128/AM.25.3.396-402.1973 [6] ALOIS F. Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years [J]. Angewandte Chemie International Edition, 2003, 34(43): 3582−3603. [7] KAWAUCHI K, SHIBUTANI K, YAGISAWA H, et al. A possible immunosuppressant, cycloprodigiosin hydrochloride, obtained from Pseudoalteromonas denitrificans [J]. Biochemical and Biophysical Research Communications, 1997, 237(3): 543−547. doi: 10.1006/bbrc.1997.7186 [8] 孙地, 刘聪, 刘伟杰. 灵杆菌合成灵菌红素的转录调控 [J]. 微生物学报, 2019, 59(11):2051−2060.SUN D, LIU C, LIU W J. Research progress in transcriptional regulation of prodigiosin biosynthesis in Serratia marcescens [J]. Acta Microbiologica Sinica, 2019, 59(11): 2051−2060.(in Chinese) [9] STANKOVIC N, SENEROVIC L, ILIC-TOMIC T, et al. Properties and applications of undecylprodigiosin and other bacterial prodigiosins [J]. Applied Microbiology and Biotechnology, 2014, 98(9): 3841−3858. doi: 10.1007/s00253-014-5590-1 [10] DE ARAÚJO H W C, FUKUSHIMA K, TAKAKI G M C. Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate [J]. Molecules (Basel, Switzerland), 2010, 15(10): 6931−6940. doi: 10.3390/molecules15106931 [11] WILLIAMSON N R, FINERAN P C, LEEPER F J, et al. The biosynthesis and regulation of bacterial prodiginines [J]. Nature Reviews Microbiology, 2006, 4(12): 887−899. doi: 10.1038/nrmicro1531 [12] ZHANG F, WEI Q E, TONG H, et al. Crystal structure of MBP-PigG fusion protein and the essential function of PigG in the prodigiosin biosynthetic pathway in Serratia marcescens FS14 [J]. International Journal of Biological Macromolecules, 2017, 99: 394−400. doi: 10.1016/j.ijbiomac.2017.02.088 [13] THOMSON N R, CROW M A, MCGOWAN S J, et al. Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control [J]. Molecular Microbiology, 2000, 36(3): 539−556. [14] LIN C Q, JIA X B, FANG Y, et al. Enhanced production of prodigiosin by Serratia marcescens FZSF02 in the form of pigment pellets [J]. Electronic Journal of Biotechnology, 2019, 40: 58−64. doi: 10.1016/j.ejbt.2019.04.007 [15] BHAGWAT A, PADALIA U. Optimization of prodigiosin biosynthesis by Serratia marcescens using unconventional bioresources [J]. Journal, Genetic Engineering & Biotechnology, 2020, 18(1): 26. [16] YUKO T, JUNKO Y, MASAHIRO B, et al. Temperature-dependent bacteriostatic activity of Serratia marcescens [J]. Microbes and Environments, 2004, 19(3): 236−240. doi: 10.1264/jsme2.19.236 [17] SUN Y, WANG L J, PAN X W, et al. Improved prodigiosin production by relieving CpxR temperature-sensitive inhibition [J]. Frontiers in Bioengineering and Biotechnology, 2020(8): 344. [18] ROMANOWSKI E G, LEHNER K M, MARTIN N C, et al. Thermoregulation of prodigiosin biosynthesis by Serratia marcescens is controlled at the transcriptional level and requires HexS [J]. Polish Journal of Microbiology, 2019, 68(1): 43−50. [19] DOMRÖSE A, KLEIN A S, HAGE-HÜLSMANN J, et al. Efficient recombinant production of prodigiosin in Pseudomonas putida [J]. Frontiers in Microbiology, 2015, 6: 972. [20] 徐虹, 徐美娟, 杨套伟, 等. 温度对黏质沙雷氏菌合成灵菌红素的影响 [J]. 微生物学报, 2014, 54(5):517−524.XU H, XU M J, YANG T W, et al. Effect of temperature on prodigiosin synthesis in Serratia marcecens [J]. Acta Microbiologica Sinica, 2014, 54(5): 517−524.(in Chinese)