Resistance of Tea Plants to Empoasca vitis Gothe Invasion Analyzed by PPIN
-
摘要:
目的 细胞生长的每个阶段都离不开蛋白质相互作用,研究假眼小绿叶蝉侵染茶叶后差异基因参与的蛋白质相互作用对解析抗虫分子机理具有指导意义。 方法 对有无受假眼小绿叶蝉侵害的都匀毛尖茶树鸟王种进行转录组测序,基于同源比对算法构建0 h与12 h、0 h与24 h的差异基因蛋白质相互作用网络。 结果 0 h与12 h的差异基因共有212个互作,0 h与24 h的差异基因共有3 551个互作,合并网络后得到3 605个互作,并对网络进行拓扑属性分析,发现网络中蛋白质的度符合幂律分布。通过网络可以进行蛋白质的功能预测,并且对网络进行GO和KEGG分析发现差异基因的蛋白互作主要参与植物病原体互作,植物激素信号转导,DNA碱基切除修复、核酸切除修复、错配修复,亚麻酸和亚油酸代谢等生物过程,并且侵染24 h比侵染12 h需要启动更多的互作来抵御假眼小绿叶蝉的侵染。 结论 茶叶主要通过三个差异基因启动相应的互作来抵抗假眼小绿叶蝉的侵害,继续被侵害时将启动更多的互作,并通过产生相关次级代谢产物来抵御虫害。研究结果为探究鸟王种受假眼小绿叶蝉取食前后茶树抵御假眼小绿叶蝉侵染的代谢机理提供参考,为都匀毛尖病虫害防治、后续良种选育和引种奠定基础。 Abstract:Objective The protein-protein interaction networks (PPINs) was applied to decipher the protective mechanism of tea plants in resisting the invasion by insects. Method RNA-seq was used to determine if a Camellia sinensis cv. Niaowang plant was infested by Empoasca vitis Gothe. PPINs of differential expression genes (DEGs) between 0 h and 12 h as well as 0 h and 24 h after the infestation were constructed based on Interolog. Result There were 212 PPIs between 0 h and 12 h, 3 551 PPIs between 0 h and 24 h, and 3 605 PPIs in the merged network. The topological properties of the PPINs showed the degree of the protein distribution following the power-law model, and hence, their functions predictable. It was found that DEGs mainly partook in the plant-pathogen interactions, plant hormone signal transduction, DNA base excision repair, nucleotide excision repair, mismatch repair, linolenic acid and alpha-linoleic acid metabolism, and other biological processes through GO and KEGG analysis. Furthermore, the tea leaves that were infected for 24 h would require greater amounts of PPIs than those affected for 12 h to develop the defense mechanism to ward off the ill-effect brought by Empoasca vitis Gothe. Conclusion Tea plants mainly resist the invasion of Empoasca Vitis through the three differential genes to promote the corresponding interaction, and when tea plants continue to be invaded, more interactions will be initiated, or various secondary metabolites will be produced to resist pests. To resist the invasion of Empoasca Vitis, tea plant mainly promoted the PPIs of three differential genes. When invasion continuing, more interactions would be initiated, and various secondary metabolites would be produced to resist pests. -
表 1 差异基因相互作用数目
Table 1. Number of PPIs in DEGs
差异基因 DEG 蛋白质相互作用数目 PPI number 0 h vs 12 h 212 0 h vs 24 h 3 551 12 h vs 24 h 0 表 2 三个网络的全局特性
Table 2. Global properties of 3 networks
特性
Property0 h与12 h的
差异基因蛋白
互作网络
0 h vs 12 h0 h与24 h的
差异基因蛋白
互作网络
0 h vs 24 h合并的网络
Merged network节点 Nodes 112 499 531 聚合系数
Clustering coefficient0.220 0.351 0.333 网络直径
Network diameter6 7 7 网络半径
Network radius1 1 1 最短路径
Shortest paths32% 33% 32% 特征路径长度
Characteristic path length2.912 2.625 2.668 平均邻居数
Avg.number of neighbors3.786 14.232 13.578 -
[1] 毕守东, 张书平, 余燕, 等. 安徽省茶园假眼小绿叶蝉优势种天敌的评判 [J]. 植物保护学报, 2019, 46(4):910−917.BI S D, ZHANG S P, YU Y, et al. Assessment of the dominant species of natural enemies of the smaller green leafhopper Empoasca vitis in the tea garden in Anhui Province [J]. Journal of Plant Protection, 2019, 46(4): 910−917.(in Chinese) [2] 金珊, 孙晓玲, 陈宗懋, 等. 不同茶树品种对假眼小绿叶蝉的抗性 [J]. 中国农业科学, 2012, 45(2):255−265. doi: 10.3864/j.issn.0578-1752.2012.02.007JIN S, SUN X L, CHEN Z M, et al. Resistance of different tea cultivars to Empoasca vitis Gothe [J]. Scientia Agricultura Sinica, 2012, 45(2): 255−265.(in Chinese) doi: 10.3864/j.issn.0578-1752.2012.02.007 [3] 苗进, 韩宝瑜. 假眼小绿叶蝉(Empoasca vitis Gothe)在不同品种茶树上的取食行为 [J]. 生态学报, 2007, 27(10):3973−3982. doi: 10.3321/j.issn:1000-0933.2007.10.004MIAO J, HAN B Y. The probing behavior of the tea green leafhopper on different tea plant cultivars [J]. Acta Ecologica Sinica, 2007, 27(10): 3973−3982.(in Chinese) doi: 10.3321/j.issn:1000-0933.2007.10.004 [4] 曾莉, 王平盛, 许玫. 茶树对假眼小绿叶蝉的抗性研究 [J]. 茶叶科学, 2001, 21(2):90−93. doi: 10.3969/j.issn.1000-369X.2001.02.003ZENG L, WANG P S, XU M. Studies on the resistance of tea plant to leafhopper (Empoasca vitis Gothe) [J]. Journal of Tea Science, 2001, 21(2): 90−93.(in Chinese) doi: 10.3969/j.issn.1000-369X.2001.02.003 [5] 边磊, 孙晓玲, 陈宗懋. 假眼小绿叶蝉的日飞行活动性及成虫飞行能力的研究 [J]. 茶叶科学, 2014, 34(3):248−252. doi: 10.3969/j.issn.1000-369X.2014.03.008BIAN L, SUN X L, CHEN Z M. Studies on daily flight activity and adult flight capacity of Empoasca vitis Gothe [J]. Journal of Tea Science, 2014, 34(3): 248−252.(in Chinese) doi: 10.3969/j.issn.1000-369X.2014.03.008 [6] 王庆森, 王定锋, 吴光远. 我国茶树假眼小绿叶蝉研究进展 [J]. 福建农业学报, 2013, 28(6):615−623. doi: 10.3969/j.issn.1008-0384.2013.06.022WANG Q S, WANG D F, WU G Y. Research advances on Empoasca vitis(Gothe) in tea trees in China [J]. Fujian Journal of Agricultural Sciences, 2013, 28(6): 615−623.(in Chinese) doi: 10.3969/j.issn.1008-0384.2013.06.022 [7] 李倩, 陈学新, 韩宝瑜. 假眼小绿叶蝉微卫星位点的生物信息学分析 [J]. 昆虫学报, 2016, 59(4):421−426.LI Q, CHEN X J, HAN B Y. Bioinformatics analysis of microastellites in the tea green leafhopper, Empoasca vitis (Hemiptera: Cicadellidae) [J]. Acta Entomologica Sinica, 2016, 59(4): 421−426.(in Chinese) [8] LEGRAIN P, WOJCIK J, GAUTHIER J M. Protein-protein interaction maps: a lead towards cellular functions [J]. Trends Genet, 2001, 17(6): 346−352. doi: 10.1016/S0168-9525(01)02323-X [9] FIELDS S, SONG O. A novel genetic system to detect protein-protein interactions [J]. Nature, 1989, 340 (6230): 245−246. doi: 10.1038/340245a0 [10] KROGAN N J, CAGNEY G, YU H, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae [J]. Nature, 2006, 440 (7084): 637−643. doi: 10.1038/nature04670 [11] 陈君君. 茶多酚饲料添加剂在鸡养殖业发展中的应用 [J]. 中国饲料, 2019(22):8−11.CHEN J J. Application of tea polyphenol as feed additive in the development of chicken breeding industry [J]. China Feed, 2019(22): 8−11.(in Chinese) [12] 宛晓春, 李大祥, 张正竹, 等. 茶叶生物化学研究进展 [J]. 茶叶科学, 2015, 35(1):1−10. doi: 10.3969/j.issn.1000-369X.2015.01.003WAN X C, LI D X, ZHANG Z Z, et al. Tea biochemistry research progress [J]. Journal of Tea Science, 2015, 35(1): 1−10.(in Chinese) doi: 10.3969/j.issn.1000-369X.2015.01.003 [13] 王洪新, 胡昌云. 茶叶蛋白质的改性及其功能性质研究 [J]. 食品科学, 2005, 26(6):135−140. doi: 10.3321/j.issn:1002-6630.2005.06.028WANG H X, HU C Y. Study on modification and functional properties of tea dregs protein [J]. Food science, 2005, 26(6): 135−140.(in Chinese) doi: 10.3321/j.issn:1002-6630.2005.06.028 [14] 潘杰. 茶树抗性相关蛋白(Cs-cystatin, Cs-Rip)对假眼小绿叶蝉消化道组织的影响[D]. 厦门: 厦门大学, 2014.PAN J. Toxic effects of resistance associated proteins (Cs-cystatin, Cs-Rip) of tea on Empoasca vitis[D], Xiamen: Xiamen University, 2014. (in chinese). [15] 杜娟. 根内球囊霉菌对茶树抗铅胁迫能力的调节效应[D]. 郑州: 河南农业大学, 2013.DU J. Adjustment effect of glomus intraradices on Pb stress resistance ability of the tea plants[D]. Zhengzhou: Henan Agricultural University, 2013. (in Chinese). [16] 朱俊庆. 不同茶树品种对假眼小绿叶蝉抗性的初步研究 [J]. 植物保护学报, 1992(1):29−32.ZHU J Q. The study on resistance of different tea cultivars to Empoasca vitis Gothe [J]. Journal of Plant Protection, 1992(1): 29−32.(in Chinese) [17] 张贻礼, 张觉晚, 杨阳, 等. 茶树抗虫品种资源调查及抗性机制研究——Ⅱ. 不同品种茶树特征特性对假眼小绿叶蝉抗性的相关分析 [J]. 茶叶通讯, 1994(2):4−6.ZHANG Y L, ZHANG J W, YANG Y, et al. Investigation of insect-resistant variety resources of tea tree and study on resistance mechanism—Ⅱ. Correlation analysis of resistance of different tea plants to pseudomonas aeruolinus leafhoppers [J]. Tea Communication, 1994(2): 4−6.(in Chinese) [18] 金珊, 韩李伟, 叶乃兴, 等. 茶小绿叶蝉危害乌龙茶茶树品种的挥发物分析 [J]. 热带作物学报, 2019, 40(3):576−582.JIN S, HAN L W, YE N X, et al. Analysis on volatiles of Oolong tea varieties induced by Empoasca sp [J]. Chinese Journal of Tropical Crops, 2019, 40(3): 576−582.(in Chinese) [19] 苗进. 外源MeSA诱导茶树防御假眼小绿叶蝉机理研究[D]. 杭州: 中国农业科学院, 2008.MIAO J. The study on mechanism of tea tree against feeding of tea green leafhopper induced by methylsalicylate[D]. Hangzhou: Chinese Academy of Agricultural Sciences, 2008. (in Chinese). [20] 袁红雨, 马宁, 杨会敏, 等. 茶树Ⅱ型核糖体失活蛋白基因CsRIP1和CsRIP2的克隆与表达分析 [J]. 林业科学, 2015, 51(2):147−153.YUAN H Y, MA N, YANG H M, et al. Cloning and expression of tpe Ⅱ ribosome inactivating protein Genes CsRIP1 and CsRIP2 from camellia sinensis [J]. Scientia Silvae Sinicae, 2015, 51(2): 147−153.(in Chinese) [21] WEI C L, YANG H, WANG S B, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): E4151−E4158. doi: 10.1073/pnas.1719622115 [22] VON MERING C, JENSEN LJ, KUHN M, et al. STRING7-recent developments in the integration and prediction of protein interactions [J]. Nucleic Acids Research, 2007, 35 (Database issue): D358−D362. doi: 10.1093/nar/gkl825 [23] SHNNON P, MARKIEL A, OZIER O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research 2003, 13 (11): 2498−2504. [24] 杨会敏. 茶树抗假眼小绿叶蝉相关基因的克隆及表达研究[D]. 信阳: 信阳师范学院, 2010.YANG H M. Cloning and expression of anti-Empoasca vitis-related genes in tea[D]. Xinyang: Xinyang Normal University, 2010. (in Chinese). [25] MATSUI K, KURISHITA S, HISAMITSU A, et al. A lipid-hydrolysing activity involved in hexenal formation [J]. Biochemical Society Transactions, 2000, 28(6): 857−860. doi: 10.1042/bst0280857 [26] 穆丹. 茶树挥发性信息素调控假眼小绿叶蝉及叶蝉三棒缨小蜂行为的功效[D]. 北京: 中国农业科学院, 2011.MU D. Studies on efficacy of volatile infochemicals from tea plants regulating behaviours of tea green leafhopper and its egg parasitoid stethynium empoascae[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese). [27] 金珊. 不同茶树品种抗假眼小绿叶蝉机理研究[D]. 杨凌: 西北农林科技大学, 2012.JIN S. Resistance mechanisms of tea plant cultivars to tea green leafhopper[D]. Yangling: Northwest A&F University, 2012. (in Chinese).