Correlation between Soil Properties and Quality of Duobei Tea from Puding
-
摘要:
目的 分析贵州朵贝茶产地土壤特性及其对茶叶品质的影响,为改良朵贝茶茶园养分管理和提升茶叶品质提供理论依据。 方法 采集普定朵贝茶9个不同种植区的土壤,测定土壤中金属含量和其pH值、有机质、有效磷、碱解氮、速效钾等养分状况及蔗糖酶、脲酶、过氧化氢酶的活性,并与各种植区朵贝茶的营养成分和感官审评及其抗氧化活性进行相关性分析。 结果 9个不同种植区土壤中有机质含量和有效磷均达到Ⅰ级肥力标准,碱解氮和速效钾总体偏低。其中7#种植区土壤特性最好:有机质为45.57 g·kg−1,碱解氮为46.90 mg·kg−1,有效磷为14.81 mg·kg−1,速效钾为157.00 mg·kg−1,pH为4.68。结合茶感官审评和营养成分分析,各种植区朵贝茶品质呈“嫩、鲜、浓、醇”特征,其中1#、2#和7#种植区茶品质较好,7#种植区茶体外抗氧化能力最强。相关性分析表明:土壤有机质、碱解氮含量和脲酶、蔗糖酶活性较高对茶营养成分品质和各项感官评审因子具有正向作用;而土壤pH升高、有效磷含量和过氧化氢酶活性较高对茶营养成分品质和各项感官评审因子具有逆向作用。 结论 提高朵贝茶品质,应以“补氮补钾控磷,增加有机质”为管理措施。 Abstract:Objective Correlation between the soil properties and the quality of Duobei tea grown on the land was studied for improvements on plantation operation and product quality. Method Soils at 9 Duobei tea planting areas were sampled to determine the pH and contents of metals, organic matters, available phosphorus, alkali hydrolysis nitrogen, and available potassium as well as the activities of sucrase, urease, and catalase. Sensory evaluation and chemical analysis on the teas were conducted. Correlation between the soil properties and the quality and antioxidant activity of Duobei tea grown on a same locality was analyzed. Result The contents of organic matters and available phosphorus in the soil at the 9 planting areas reached the first-grade fertility standard, but the available nitrogen and potassium were generally low. Among the various lots, Field #7 showed the highest soil quality with 45.57g·kg−1 on organic matters, 46.90 mg·kg−1 on alkali hydrolyzed nitrogen, 14.81 mg·kg−1 on available phosphorus, 157.00 mg·kg−1 on available potassium, and 4.68 on pH. Judged being "tender, fresh, strong and mellow" on sensory quality and highly desirable on nutritional composition, the Duobei teas from Field #1, #2, and #7 deemed those areas the choice locations to produce premium grade products. And, the tea from Field #7 showed the greatest in vitro antioxidant capacity among all. A correlation analysis on the soil properties and tea quality revealed that the land with more organic matters, alkali hydrolysis nitrogen, urease, and invertase would likely to grow teas of higher nutritional and sensory quality but heightened soil pH, available phosphorus, and catalase activity in soil could bring about negative results. Conclusion It appeared that application of nitrogen and potassium, control on phosphorus, and enrichment on organic matters in plantation soil could considerably improve the quality of Duobei tea produced. -
Key words:
- Duobei tea /
- soli properties /
- quality indicators /
- metallic element /
- relevance
-
表 1 普定朵贝茶不同茶园的土壤和鲜叶取样点分布情况
Table 1. Soil and fresh tea leaf sampling spots at plantations in Puding
茶样编号
Tea No.土样编号
Soil No.来源
Place of originT1 S1 化处镇张家村 Zhangjia Village, Huachu Town T2 S2 化处镇朵贝村 Duobei Village, Huachu Town T3 S3 龙场乡磨雄村 Moxiong Village, Longchang Town T4 S4 龙场乡龙场村 Longchang Village, Longchang Town T5 S5 坪上镇七村 Qi Village, Pingshang Town T6 S6 鸡场坡镇羊场村 Yangchang Village, Jichangpo Town T7 S7 猫洞乡补龙村 Bulong Village, Maodong Town T8 S8 白岩镇 Baiyan Town T9 S9 马官镇 Maguan Town 表 2 不同取样点朵贝茶理化成分
Table 2. Physiochemical properties of teas from different plantations
编号
No.水浸出物
Aqueous extracts/%氨基酸
Free amino
acid/%茶多酚
Tea polyphenol/%酚氨比
Phenol-ammonia
ratio咖啡碱
Caffeine/%可溶性糖
Soluble sugar/%铜Cu/
(mg·kg−1)锌Zn/
(mg·kg−1)铁Fe/
(mg·kg−1)T1 52.51±0.050 2.67±0.025 17.88±0.105 6.70±0.070 3.27±0.025 3.52±0.015 13.0±0.12 41.8±0.26 81.4±0.35 T2 52.56±0.045 2.79±0.015 25.39±0.045 9.10±0.036 3.21±0.062 3.71±0.020 11.7±0.12 40.2±0.23 76.7±0.26 T3 49.17±0.032 2.63±0.022 26.24±0.063 9.98±0.065 3.79±0.065 3.03±0.010 13.9±0.20 43.8±0.28 123.0±0.49 T4 48.73±0.045 2.47±0.018 16.43±0.036 6.65±0.046 3.38±0.047 2.98±0.023 11.7±0.14 36.9±0.16 90.3±0.36 T5 48.13±0.036 2.13±0.023 14.53±0.056 6.82±0.048 3.77±0.067 2.52±0.022 13.6±0.17 37.7±0.22 106.0±0.55 T6 49.28±0.052 1.86±0.012 16.63±0.032 8.94±0.032 3.47±0.040 2.84±0.036 11.1±0.16 32.5±0.29 66.8±0.12 T7 51.39±0.062 2.16±0.031 27.15±0.047 12.57±0.025 3.24±0.013 3.06±0.029 15.5±0.21 43.2±0.30 102.0±0.62 T8 48.04±0.054 1.81±0.042 29.02±0.067 16.03±0.046 3.87±0.026 1.65±0.015 14.3±0.20 31.6±0.20 72.4±0.38 T9 47.23±0.036 1.63±0.024 24.77±0.058 15.20±0.052 3.82±0.031 1.23±0.019 17.2±0.27 30.2±0.18 65.3±0.40 均值Mean values 49.67 2.24 22.00 10.22 3.54 2.73 13.56 37.54 87.10 表 3 不同取样点朵贝茶感官审评结果
Table 3. Sensory evaluation results on Duobei teas from different plantations
编号
No.外形(20%)
Shape汤色(10%)
Soup color香气(30%)
Aroma滋味(30%)
Taste叶底(10%)
Leaf bottom总分
Total scoreT1 90 90 95 94 95 93.20 T2 90 91 93 96 94 93.20 T3 89 90 91 94 92 91.20 T4 88 89 90 93 90 90.40 T5 86 88 87 90 91 88.20 T6 87 89 89 92 90 89.60 T7 90 90 94 93 94 92.50 T8 85 87 87 90 89 87.70 T9 85 85 85 89 87 86.40 均值 Mean values 87.78 88.78 90.11 92.33 91.33 90.27 注:括号中的数字为各项因子的占比。
Note: Number in parentheses represents proportion of factor.表 4 土壤理化指标与酶活性之间的相关系数
Table 4. Correlation coefficients between soil physiochemical indices and tea enzyme activity
指标
Index有机质
Organic matter碱解氮
Alkaline N有效磷
Available P速效钾
Available KpH值
pH value铜Cu 锌Zn 铁Fe 过氧化氢酶 Catalase −0.767 * −0.609 0.862 ** −0.288 0.867 ** −0.526 −0.286 −0.688 * 脲酶 Urease 0.881 ** 0.616 −0.773 * 0.545 −0.602 0.230 −0.070 0.185 蔗糖酶 Sucrase 0.630 0.336 −0.620 0.810 ** −0.823 ** 0.717 * 0.577 0.720 * 注:* 表示显著相关,P<0.05,** 表示极显著相关,P<0.01。
Note: * and ** represent significant correlation at P<0.05 and P<0.01, respectively.表 5 茶园土壤特性与茶叶成分之间的相关系数
Table 5. Correlation coefficients between soil physiochemical indices and tea chemical composition
指标
Index有机质
Organic matter碱解氮
Alkaline N有效磷
Available P速效钾
Available KpH
pH value铜Cu 锌Zn 铁Fe 过氧化氢酶
Catalase脲酶
Urease蔗糖酶
Sucrase水浸出物 Aqueous extracts 0.807 ** 0.835 ** −0.770 * 0.233 −0.578 0.087 −0.102 0.360 −0.763 * 0.871 ** 0.511 氨基酸 Free amino acid 0.776 * 0.748 * −0.843 ** −0.066 −0.510 0.097 −0.357 0.254 −0.676 * 0.553 0.231 茶多酚 Tea polyphenol −0.863 ** −0.655 0.880 ** −0.182 0.612 −0.168 −0.047 −0.412 0.813 ** −0.822 ** −0.578 酚氨比 Phenol-ammonia ratio −0.921 ** −0.708 * 0.947 ** −0.171 0.650 −0.177 0.123 −0.357 0.782 * −0.773 * −0.503 咖啡碱 Caffeine −0.790 * −0.666 0.683 * −0.394 0.515 0.137 0.336 0.001 0.566 −0.892 ** −0.374 可溶性糖 Soluble sugar 0.946 ** 0.709 * −0.964 ** 0.304 −0.791 * 0.251 −0.126 0.362 −0.848 ** 0.781 * 0.523 铜Cu −0.515 −0.242 0.558 −0.016 0.515 −0.154 0.120 −0.110 0.485 −0.219 −0.570 锌Zn 0.856 ** 0.646 −0.880 ** 0.341 −0.663 0.305 −0.007 0.446 −0.698 * 0.730 * 0.638 铁Fe 0.473 0.099 −0.539 0.318 −0.448 0.430 0.160 0.340 −0.295 0.225 0.487 注:* 表示显著相关,P<0.05,** 表示极显著相关,P<0.01。
Note: * and ** represent significant correlation at P<0.05 and P<0.01, respectively.表 6 茶园土壤特性与茶感官品质之间的相关系数
Table 6. Correlation coefficients between soil physiochemical indices and tea sensory quality
指标
Index有机质
Organic matter碱解氮
Alkaline N有效磷
Available P速效钾
Available KpH
pH value铜Cu 锌Zn 铁Fe 过氧化氢酶
Catalase脲酶
Urease蔗糖酶
Sucrase外形 Shape 0.935 ** 0.756 * −0.917 ** 0.292 −0.666 0.065 −0.144 0.300 −0.791 * 0.895 ** 0.531 汤色 Soup color 0.970 ** 0.619 −0.982 ** 0.302 −0.787 * 0.254 0.021 0.401 −0.845 ** 0.798 ** 0.581 香气 Aroma 0.907 ** 0.838 ** −0.860 ** 0.301 −0.633 0.036 −0.125 0.343 −0.735 * 0.898 ** 0.528 滋味 Taste 0.878 ** 0.629 −0.904 ** 0.026 −0.590 0.013 −0.171 0.217 −0.806 * 0.747 ** 0.334 叶底 Leaf bottom 0.881 ** 0.836 ** −0.870 ** 0.363 −0.707 * 0.306 −0.003 0.519 −0.788 * 0.847 ** 0.673 * 总分 Total score 0.938 ** 0.788 * −0.916 ** 0.252 −0.664 0.071 −0.136 0.324 −0.796 * 0.886 ** 0.513 注:* 表示显著相关,P<0.05,** 表示极显著相关,P<0.01。
Note: * and ** represent significant correlation at P<0.05 and P<0.01, respectively. -
[1] 黄万兴. 普定县志[M]. 贵阳: 贵州人民出版社, 1999. [2] 郭建军, 周艺, 孙海燕, 等. 响应面法优化朵贝茶抗氧化活性的冲泡工艺 [J]. 食品研究与开发, 2017, 38(5):106−110. doi: 10.3969/j.issn.1005-6521.2017.05.023GUO J J, ZHOU Y, SUN H Y, et al. Optimization of brewing conditions for the antioxidant activity of Duobei tea by response surface method [J]. Food Research and Development, 2017, 38(5): 106−110.(in Chinese) doi: 10.3969/j.issn.1005-6521.2017.05.023 [3] 唐颢, 唐劲驰, 操君喜, 等. 凤凰单丛茶品质的海拔区间差异分析 [J]. 中国农学通报, 2015, 31(34):143−151. doi: 10.11924/j.issn.1000-6850.casb15060056TANG H, TANG J C, CAO J X, et al. Analysis of quality differences among Fenghuang Dancong tea in different altitude ranges [J]. Chinese Agricultural Science Bulletin, 2015, 31(34): 143−151.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb15060056 [4] 王婷婷, 金心怡. 生态条件对茶叶品质的影响探析 [J]. 茶叶科学技术, 2014(3):6−12.WANG T T, JIN X Y. Effects of ecological conditions on tea quality [J]. Tea Science and Technology, 2014(3): 6−12.(in Chinese) [5] 李渝, 刘彦伶, 黄兴成, 等. 贵州不同茶区土壤养分及微生物量分析评价 [J]. 灌溉排水学报, 2018, 37(8):98−105.LI Y, LIU Y L, HUANG X C, et al. Assessing soil nutrient and microbial biomass in tea plantation regions of Guizhou Province [J]. Journal of Irrigation and Drainage, 2018, 37(8): 98−105.(in Chinese) [6] 赵茜, 施龙清, 黄世勇, 等. 西班牙河碳酸盐岩对茶园土壤状况和土壤细菌群落的影响 [J]. 福建农业学报, 2020, 35(9):1026−1033.ZHAO Q, SHI L Q, HUANG S Y, et al. Effects of Spanish river carbonatite on soil and bacterial community at tea plantations [J]. Fujian Journal of Agricultural Sciences, 2020, 35(9): 1026−1033.(in Chinese) [7] 陈秋金. 不同调理剂对茶园土壤理化性状及茶叶产量、品质的影响 [J]. 福建农业学报, 2014, 29(10):1015−1020. doi: 10.3969/j.issn.1008-0384.2014.10.016CHEN Q J. Effect of soil conditioners on physical and chemical characteristics of soil and yield and quality of tea [J]. Fujian Journal of Agricultural Sciences, 2014, 29(10): 1015−1020.(in Chinese) doi: 10.3969/j.issn.1008-0384.2014.10.016 [8] DING Z T, JIA S S, WANG Y, et al. Phosphate stresses affect ionome and metabolome in tea plants [J]. Plant Physiology and Biochemistry, 2017, 120: 30−39. doi: 10.1016/j.plaphy.2017.09.007 [9] 董迹芬, 边金霖, 朱全武, 等. 茶叶香气与产地土壤条件的关系 [J]. 浙江大学学报(农业与生命科学版), 2013, 39(3):309−317.DONG J F, BIAN J L, ZHU Q W, et al. Relationship between tea aroma and soil conditions [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(3): 309−317.(in Chinese) [10] LIU M Y, BURGOS A, MA L F, et al. Lipidomics analysis unravels the effect of nitrogen fertilization on lipid metabolism in tea plant (Camellia sinensis L.) [J]. BMC Plant Biology, 2017, 17(1): 1−10. doi: 10.1186/s12870-016-0951-9 [11] HUANG H, YAO Q Y, XIA E H, et al. Metabolomics and transcriptomics analyses reveal nitrogen influences on the accumulation of flavonoids and amino acids in young shoots of tea plant (Camellia sinensis L.) associated with tea flavor [J]. Journal of Agricultural and Food Chemistry, 2018, 66(37): 9828−9838. doi: 10.1021/acs.jafc.8b01995 [12] 陈默涵. 有机物料对黔中山区茶园土壤养分水分与茶树生长的影响[D]. 贵阳: 贵州大学, 2018.CHEN M H. The effect of organic materials on soil nutrient, water and tea growth in tea garden of central area guizhou[D]. Guiyang: Guizhou University, 2018. (in Chinese). [13] 陈宗懋, 阮建云, 蔡典雄, 等. 茶树生态系中的立体污染链与阻控 [J]. 中国农业科学, 2007(5):948−958. doi: 10.3321/j.issn:0578-1752.2007.05.012CHEN Z M, RUAN J Y, CAI D X, et al. Tri-dimension pollution chain in tea ecosystem and its control [J]. Scientia Agricultura Sinica, 2007(5): 948−958.(in Chinese) doi: 10.3321/j.issn:0578-1752.2007.05.012 [14] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. [15] 中华人民共和国农业部. 土壤有机质测定法: NY/T 85—1988[S]. 北京: 中国标准出版社, 1988. [16] 中华人民共和国农业部. 茶叶产地环境技术条件: NY/T 853—2004[S]. 北京: 中国农业出版社, 2005. [17] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. [18] 中华人民共和国国家质量监督检验检疫总局. 茶 游离氨基酸总量测定: GB/T 8314—2002[S]. 北京: 中国标准出版社, 2002. [19] 国家市场监督管理总局, 国家标准化管理委员会. 茶叶中茶多酚和儿茶素类含量的检测方法: GB/T 8313—2018[S]. 北京: 中国标准出版社, 2018. [20] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 茶水浸出物测定: GB/T 8305—2013[S]. 北京: 中国标准出版社, 2014. [21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 茶咖啡碱测定: GB/T 8312—2013[S]. 北京: 中国标准出版社, 2014. [22] 商业部. 茶叶品质理化分析[M]. 上海: 上海科学技术出版社, 1989. [23] 何书美, 刘敬兰. 茶叶中总黄酮含量测定方法的研究 [J]. 分析化学, 2007(9):1365−1368. doi: 10.3321/j.issn:0253-3820.2007.09.028HE S M, LIU J L. Study on the determination method of flavone content in tea [J]. Chinese Journal of Analytical Chemistry, 2007(9): 1365−1368.(in Chinese) doi: 10.3321/j.issn:0253-3820.2007.09.028 [24] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 茶叶感官审评方法: GB/T 23776—2018[S]. 北京: 中国标准出版社, 2018. [25] MILIAUSKAS G, VENSKUTONIS P R, VAN BEEK T A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts [J]. Food Chemistry, 2004, 85(2): 231−237. doi: 10.1016/j.foodchem.2003.05.007 [26] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 茶叶中铁、锰、铜、锌、钙、镁、钾、钠、磷、硫的测定 电感耦合等离子体原子发射光谱法: GB/T 30376—2013[S]. 北京: 中国标准出版社, 2013. [27] 刘少坤, 周卫军, 苗霄霖, 等. 茶树根际土壤铝形态演变规律及其影响因素 [J]. 土壤, 2014, 46(5):881−885.LIU S K, ZHOU W J, MIAO X L, et al. Evolvement of aluminum forms and its effect factors in tea rhizospheric soil [J]. Soils, 2014, 46(5): 881−885.(in Chinese) [28] 张小琴, 陈娟, 高秀兵, 等. 贵州重点茶区茶园土壤pH值和主要养分分析 [J]. 西南农业学报, 2015, 28(1):286−291.ZHANG X Q, CHEN J, GAO X B, et al. Analysis on pH and major soil nutrients of tea gardens in key tea producing areas of Guizhou [J]. Southwest China Journal of Agricultural Sciences, 2015, 28(1): 286−291.(in Chinese) [29] 赵华富, 周国兰, 刘晓霞, 等. 贵州茶区土壤养分状况综合评价 [J]. 中国土壤与肥料, 2012(3):30−34. doi: 10.3969/j.issn.1673-6257.2012.03.007ZHAO H F, ZHOU G L, LIU X X, et al. Comprehensive evaluation on tea garden soil fertility status of tea planting areas in Guizhou [J]. Soil and Fertilizer Sciences in China, 2012(3): 30−34.(in Chinese) doi: 10.3969/j.issn.1673-6257.2012.03.007 [30] 李俊, 蔡滔, 周雪丽, 等. 贵州绿茶品质分析研究 [J]. 中国茶叶, 2017, 39(7):22−26. doi: 10.3969/j.issn.1000-3150.2017.07.012LI J, CAI T, ZHOU X L, et al. Analysis of quality features in Guizhou Green Tea [J]. China Tea, 2017, 39(7): 22−26.(in Chinese) doi: 10.3969/j.issn.1000-3150.2017.07.012 [31] 王红磊, 韦红巧, 李祝森, 等. 绿茶多酚对急性脑出血大鼠抗氧化能力及神经细胞凋亡的影响 [J]. 实用医学杂志, 2020, 36(15):2048−2052.WANG H L, WEI H Q, LI Z S, et al. Effects of green tea polyphenols on neurological function and antioxidant activity in rats with acute cerebral hemorrhage [J]. The Journal of Practical Medicine, 2020, 36(15): 2048−2052.(in Chinese) [32] 黄啟亮, 龚永新, 蔡烈伟. 茶叶中锌含量研究进展 [J]. 茶叶科学技术, 2006(4):12−14.HUANG Q L, GONG Y X, CAI L W. Research progress of zinc content in tea [J]. Tea Science and Technology, 2006(4): 12−14.(in Chinese) [33] 程雨卉, 蒋经伟, 董颖, 等. 二价金属离子对光棘球海胆免疫相关酶活力的影响 [J]. 水产科学, 2017, 36(1):22−28.CHENG Y H, JIANG J W, DONG Y, et al. Effects of divalent metal ions on activities of immune-related enzymes in sea urchin Strongylocentrotus nudus [J]. Fisheries Science, 2017, 36(1): 22−28.(in Chinese)