Study on the aroma components of the juice of Guanximiyou and its bud-mutation varieties of Hongroumiyou and Sanhongmiyou
-
摘要:目的 研究探明琯溪蜜柚及其芽变新品种果汁的香气组分种类、相对含量与差异,以及引起香气组分变化的可能分子机理。方法 以琯溪蜜柚及其芽变品种红肉蜜柚和三红蜜柚果实为试材,采用气相色谱质谱法(GC-MS)测定果汁香气组分;通过转录组分析,筛选差异表达显著的基因,并采用FPKM值的趋势分析这些基因的表达模式。结果 供试3个果汁样品中共检出150种香气组分,占组分数量较多的香气化合物为芳香烃类、倍半萜烯类、醛类、醇类、酮类等;各品种的香气组分数量与含量相差较大,琯溪蜜柚、红肉蜜柚和三红蜜柚分别检出59种、129种和67种香气化合物,其总相对含量分别为4.56、8.02和9.90,说明芽变显著引起了香气组分和总相对含量的变化。香气组分中醛类相对含量最高,己醛为3个品种的共同主要香气组分;醇类、酮类相对含量次之,呋喃类、芳香烃类、倍半萜烯类、酯类、单萜类化合物相对含量较少;此外还检出相对含量很低或微量的其他类的香气组分32种,且均为未见报道的未知化合物。利用转录组分析筛选获得新基因(Citrus_maxima_newGene_12651)1个,表达差异显著的脂肪氧化酶(Lipoxidase)LOX2.1基因7个(cg2g001970、cg2g001980、cg2g002000、cg2g002010、cg2g002030、cg2g002040、cg2g002080)、LOX3.1基因1个(cg1g010660)和乙醇脱氢酶(Alcohol dehydrogenase)ADH1基因2个(cg3g017900、cg3g017890),采用FPKM值的趋势分析,初步推测3个品种的果汁香气组分差异与脂肪酸途径、异戊二烯途径中的基因差异表达有关。结论 醛类、醇类、酮类是琯溪蜜柚及其芽变品种红肉蜜柚和三红蜜柚的主要香气组分,己醛为3个品种的共同主要香气化合物;供试3个品种果汁香气组分差异显著,初步推测与脂肪酸途径、异戊二烯途径等途径中的基因差异表达有关。Abstract:Objective The aim of this study is to investigate the types, relative contents and differences in the aroma components of the juice of Guanximiyou and its new bud variants, as well as the possible molecular mechanisms causing the changes in the aroma components.Methods Fruits juice of Guanximiyou and its bud-variant varieties Hongroumiyou and Sanhongmiyou were used as test materials to determine the aroma components by gas chromatography-mass spectrometry (GC-MS). The genes that were significantly differentially expressed were screened by transcriptome analysis, and the expression patterns of these genes were analyzed using the trend of FPKM values.Results A total of 150 aroma components were detected in the three juice samples, and the aroma compounds that accounted for a large number were aromatic hydrocarbons, sesquiterpenes, aldehydes, alcohols and ketones. Guanximiyou, Hongroumiyou and Sanhongmiyou detected 59, 129 and 67 aroma compounds respectively, with their total relative contents of 4.56, 8.02 and 9.90 respectively, indicating that bud changes significantly caused changes in the aroma components and total relative content. The relative content of aldehydes was the highest, with hexanal being the main aroma component common to all three species; alcohols and ketones were the next most abundant, while furans, aromatic hydrocarbons, sesquiterpenes, esters and monoterpenes were less abundant; 32 other aroma components were also detected at very low or trace levels, all of which were unknown and unreported compounds. Transcriptome analysis was used to screen for one new gene (Citrus_maxima_newGene_12651), seven genes with significant differences in expression of Lipoxidase (LOX2.1) (cg2g001970, cg2g001980, cg2g002000, cg2g002010, cg2g002030, cg2g002040, cg2g002080 cg2g002030, cg2g002040, cg2g002080), one LOX3.1 gene (cg1g010660) and two Alcohol dehydrogenase (ADH1) genes (cg3g017900, cg3g017890), using trend analysis of FPKM values. It was tentatively hypothesized that the differences in the aroma components of the juices of the three varieties were related to the differential expression of genes in the fatty acid pathway and the isoprene pathway.Conclusion Aldehydes, alcohols and ketones were the main aroma components of Guanximiyou and its bud varieties, and hexanal was the main aroma compound common to the three varieties; The significant differences in the aroma components of the fruit juices of the three varieties tested were initially hypothesized to be related to the differential expression of genes in the fatty acid pathway and isoprene pathway.
-
Keywords:
- pomelo /
- Guanximiyou /
- bud-mutation varieties /
- aroma component /
- differentially expressed gene
-
0. 引言
【研究意义】猪流行性腹泻(porcine epidemic diarrhea, PED)是由猪流行性腹泻病毒(porcine epidemic diarrhea virus, PEDV)引起的一种接触性传染性病,临床表现和猪传染性胃肠炎极其相似,表现为以水样便腹泻、呕吐和脱水为主要表征的肠道疾病。该病可以感染所有日龄阶段的猪,尤其是新生仔猪,一旦发病,其死亡率高达100%[1]。1971年PED在欧洲首次被报道,随后蔓延到世界许多地区;2010年我国多个省份突然爆发了PED,美国、加拿大和墨西哥也大规模爆发,仅2014年就导致美国近千万头仔猪死亡,占美国所有仔猪的近十分之一[2],给全球生猪养殖业带来了巨大的经济损失。PEDV是一种单股、正链RNA病毒,具有冠状结构特征。全基因组约长28 kb,包括5′端帽、5′和3′非翻译区、3′poly-A 尾部以及7个开放阅读框[3]。ORF2和ORF4~6编码4种结构蛋白,包括S、E、M和N蛋白。其中,S蛋白是PEDV主要的免疫蛋白,在PEDV存活和逃避宿主免疫中起着至关重要的作用,为机体产生中和抗体的主要蛋白,在免疫监测中处于优先地位[4]。利用S蛋白建立PEDV快速检测方法具有较高的可行性。【前人研究进展】PEDV的检测方法主要包括病毒分离鉴定、中和试验、酶联免疫吸附试验等[5]。这些方法虽然灵敏性和特异性均较高,但在现实操作中过程繁琐、时间长、仪器价格昂贵、需要专业人员才能操作,而且ELISA试剂盒多为进口,成本高[6]。重组酶介导核酸等温扩增(RAA)是一种新型检测技术,具有快速、简单、低成本等优点,不需要复杂的热环境,在恒温条件下就能快速检测,相对于其他检测方法,优势显著[7]。近年来,该方法在病毒、细菌的研究中得到成功应用。Mao等[8]研究报道,猴痘病毒(monkeypox virus, MPXV)在RAA中对于其他痘病毒,如牛痘病毒(vaccinia virus, VACV)具有特异性和非交叉反应性。Nie等[9]报道采用乙脑病毒(japanese encephalitis virus, JEV)的RT-RAA方法对母猪流产胎儿和公猪的肿胀睾丸样本进行检测,检出率仅为6.49%。此外,RAA还被应用于人类疾病检测。Zhao等[10]采用RAA方法对人泌尿生殖系统中的血吸虫进行检测,与尿液显微镜检查具有100%的一致性。【本研究切入点】对于利用PEDV的S蛋白建立RT-RAA检测方法目前尚未见报道。【拟解决的关键问题】本研究根据PEDV S基因的高度保守区,设计多对引物和探针,建立针对PEDV 的S基因荧光RT-RAA检测方法,测定其敏感性、特异性和重复性,并进行临床初步应用,为研究PED的诊断与防控提供技术支撑。
1. 材料与方法
1.1 病毒及临床样品
PEDV以及猪传染性胃肠炎病毒(porcine transmissible gastroenteritis virus, TGEV)、猪瘟病毒(classical swine fever virus, CSFV)、伪狂犬病病毒(porcine pseudorabies virus, PRV)、猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus, PRRSV)、猪轮状病毒(porcine rotavirus, PoRV)等猪源病毒由福建省农业科学院畜牧兽医研究所收集保存;40份疑似PEDV感染临床样品为2020–2024年采自福建省19个家庭农场(表1)。
表 1 疑似猪流行性腹泻病料收集的来源信息Table 1. Information source and collection of suspected porcine epidemic diarrhea specimens地区
Region样本数(份)/来源猪场(个)
Samples/Farms宁德 Ningde 5/2 三明 Sanming 6/2 龙岩 Longyan 10/6 漳州 Zhangzhou 8/3 莆田 Putian 11/6 合计 Total 40/19 1.2 主要试剂
pMD19-T购自TaKaRa公司;Trelief5α感受态细胞购自擎科公司;引物和探针均由亚尚生物工程有限公司合成;RT-RAA核酸扩增试剂盒(荧光型)购自杭州众测生物科技有限公司;高保真聚合酶购自诺唯赞生物公司;质粒提取试剂盒及胶回收试剂盒购自艾科瑞公司。
1.3 引物及探针的设计与筛选
从GenBank基因数据库中下载25株PEDV的S基因序列,通过DNAMAN生物信息学软件分析PEDV的S基因的高度保守区域(图1),利用Primer 5.0软件对PEDV的S基因设计多对引物、探针。引物、探针信息见表2。
表 2 引物和探针Table 2. Primers and probes名称
Name序列(5′-3′)
SequencePEDV S-DF AAATCTGGCAGTATTGGCTAC PEDV S-DR ATCGGCTGAAAGAATGTCC PEDV S-F1 TATTCCCACCAACTTTAGTATGAGTATTAG PEDV S-F2 GTATTCCCACCAACTTTAGTATGAGTATTA PEDV S-F3 AGTATTCCCACCAACTTTAGTATGAGTATT PEDV S-R1 TAATGCTGACTCTATGGTCTTACATGCTGC PEDV S-R2 GTTGTAATGCTGACTCTATGGTCTTACATG PEDV S-R3 TGTAATGCTGACTCTATGGTCTTACATGCT PEDV S-P GACAGAATATTTACAGCTTTACAACACGCC(i6FAMdT)(THF)(iBHQ1dT)TAGTGTTGATTGTGC-C3spacer 1.4 核酸的提取
按照核酸提试剂盒说明书, 提取PEDV、TGEV、CSFV、PRV、PCV、PRRSV、PoRV核酸,并保存于–80 ℃备用。
1.5 重组质粒标准品的构建
根据PEDV S基因序列设计引物(PEDV-DF/DR),以逆转录cDNA为模板进行PCR扩增,预期扩增产物大小为969 bp。将胶回收的产物与pMD19-T载体连接,经PCR检测后,送至生工生物工程(上海)股份有限公司测序鉴定,重组质粒经测序正确后作为标准质粒。通过分光光度计测定浓度,计算拷贝数。
1.6 RT-RAA反应体系
根据荧光型RT-RAA核酸扩增试剂盒说明书,配置50.0 μL反应体系,包括buffer A缓冲液25.0 μL、引物F(10 μmol·L−1)2.0 μL、引物R(10 μmol·L−1)2.0 μL、探针(10 μmol·L−1)0.6 μL、buffer B缓冲液2.5 μL、样本5.0 μL,最后加ddH2O至50.0 μL。混匀后10 s低速离心,荧光定量PCR仪测定吸光值。
1.7 引物筛选及反应条件优化
将构建好的标准质粒作为模板,设置不同上、下游引物组合处理,筛选出起峰时间最早、荧光信号最强的最佳引物对;确定最佳引物后,以标准质粒作为模板,在37、39、42 ℃下反应20 min,确定最佳反应温度;采用确定的最佳试验条件,将反应时间设定为17、20、25 min进行RT-RAA反应,确定最佳反应时间。
1.8 特异性试验
通过建立的RT-RAA检测方法对TGEV、CSFV、PRV、PCV、PRRSV、PoRV病毒核酸进行检测,评价方法的特异性。
1.9 重复性试验
以102 、103、105拷贝·μL−1的3种标准质粒浓度作为模板进行荧光RT-RAA反应,重复3次,以评估检测方法的重复性。
1.10 灵敏度试验
将标准质粒用无核酸酶水进行10倍倍比稀释,选用100~106标准质粒作为模板进行RT-RAA反应,评价方法的敏感性。
1.11 临床检测
利用本研究所建立的荧光RT-RAA检测方法和Ren等[11]建立的实时荧光定量PCR检测方法,对2020–2024年采集的40份猪组织样品进行检测,比较两者检测结果。
2. 结果与分析
2.1 重组标准质粒的鉴定
以引物PEDV-DF/DR进行PCR扩增,结果(图2)显示在969 bp左右有目的条带,和预期结果一致。测序结果显示重组标准质粒构建成功,经测定其质量浓度为47.1 ng·μL−1,拷贝数为4.43×1010。
2.2 最佳引物对及反应条件优化
通过上、下游引物不同组合,进行实时荧光RT-RAA检测,结果(图3)显示,F3/R3引物对的扩增效果最好。通过比较不同温度条件下的起峰时间、荧光信号,结果(图4)显示,当反应温度为42 ℃时,扩增曲线效果最好。通过比较不同时间下的反应强度,结果(图5)显示,当反应时间为20 min时,扩增曲线效果最好。因此,选择42 ℃下作用20 min为最适反应条件。
2.3 特异性试验
以PEDV及TGEV、CSFV、PRV、PCV、PRRSV、PoRV的核酸为模板,进行RT-RAA荧光扩增,结果(图6)显示,PEDV产生明显荧光信号,判定为阳性,而其他均无扩增曲线,判为阴性,表明该方法具有很好的特异性。
2.4 重复性试验
以102、103和105拷贝·μL−1的标准质粒为模板。通过建立的荧光RT-RAA进行的重复性试验,结果(图7)显示,相同浓度标准质粒的差异很小,说明本试验所建立的荧光RT-RAA具有良好的重复性。
2.5 灵敏度试验
将标准质粒进行10倍倍比稀释,以100~106为模板进行RT-RAA 扩增,结果(图8)显示,随着标准质粒拷贝数的降低,出峰时间逐渐延长,荧光强度逐渐减弱,最低检出拷贝数为102拷贝数,与常规RT-PCR[12]相比较,PEDV荧光RT-RAA检测方法的最低检出拷贝数是常规RT-PCR检测方法的
1000 倍。表明该RT-RAA检测方法具有较高的灵敏度。2.6 临床样品检测
利用本试验所建立的PEDV RT-RAA检测方法对40份临床样本进行检测,结果(表3)显示,3份样品为阳性,阳性率7.5%,与RT-qPCR方法结果相同,说明本试验建立的荧光RT-RAA检测方法,适用于对PEDV的临床检测。
表 3 临床样本的检测Table 3. Detection on clinical samples方法
Method阳性样品
Number of
positives/份阴性样品
Number of
negatives/份总数
Total/份阳性率
Positivity
rate/%RT-RAA 3 37 40 7.5 RT-qPCR 3 37 40 7.5 3. 讨论与结论
PED具有很强的传染性,在全球许多地区的感染率和死亡率均较高,给生猪养殖业造成重大经济损失[13]。目前,虽然有许多上市的PED疫苗,包括灭活疫苗、减毒活疫苗和亚单位疫苗等,但PEDV在长期的流行期间,会适应不同的地区环境[14]。PEDV研究的最新进展指出,目前尚无特有效的疫苗来防控该病[15],PEDV仍然对养猪业的健康造成严重威胁。
近年来,许多学者建立了多种PEDV检测方法,主要包括RT-PCR、RT-qPCR和LAMP等。俞正玉等[16]建立的PRDV的RT-PCR检测方法,最低可检测出103 ng·μL−1的PEDV样品,对华东地区采集的318份样品进行检测,PEDV阳性率为34.3%。Song等[17]建立了可同时检测包含PEDV在内的4种常见猪病的TaqMan多重荧光定量RT-PCR方法,最低检测下限为101拷贝·μL−1。Li等[18]建立并优化了一种PEDV RT-LAMP检测法,通过加入SYBR Green I荧光染料对PEDV进行检测,在61.9 ℃、59 min或80 ℃、3 min即可完成检测,灵敏度要比传统的RT-PCR高100倍。这些方法特异性和灵敏度虽然较高,但由于其操作繁琐、检测时间长、专业性强、不适合快速临床检测。RT-RAA检测方法是近年来兴起的一种检测方法,能够克服以上检测方法检测时间长、操作繁琐等局限性,并已应用于多种病毒检测,如猪轮状病毒(PoRV)[19]、猪繁殖与呼吸综合征病毒(PRRSV)[20]、禽流感病毒(avian influenza virus, AIV)[21]等。在建立RT-RAA检测方法的过程中,引物和探针的选择与设计十分重要,但目前尚无专门的设计程序。因此,建立RT-RAA检测方法重中之重在于引物、探针的筛选。本研究对多株PEDV S蛋白序列进行比对,选择较为保守的区域设计了3对引物和1个探针,通过自由组合筛选出最佳引物对。此外,在RT-RAA反应体系化中,对反应温度的优化也十分重要,本研究将最佳引物温度逐渐提高至42 ℃后,起峰速度、荧光信号均明显增强,因此选择42 ℃为最佳反应温度,这样大大地提高了检测效率。
综上所述,本研究所建立的PEDV RT-RAA检测方法具有灵敏度强、特异性高和重复性好的特点,极大压缩了检测时间和成本,很适合基层对PEDV的快速检测,具有广泛的应用前景。
-
表 1 琯溪蜜柚、红肉蜜柚和三红蜜柚果汁样品中的醛类香气组分
Table 1 Aroma volatiles(Aldehydes)in juice samples of Guanximiyou, Hongroumiyou and Sanhongmiyou
化合物
Compound保留指数 RI
(计算Calculated)相对含量
Relative contentHR SH GX 反-2-戊烯醛
(E)-2-Pentenal735.43(748)* 0.02 0.10 0.02 顺-3-己烯醛
(Z)-3-Hexenal764.01(793) 0.31 0.26 0.08 己醛 Hexanal 766.26(787) 3.65 5.77 2.24 2-己烯醛 2-Hexenal 807.38(854) 0.04 0.03 0.01 反-2-己烯醛
(E)-2-Hexenal814.59(844) 0.38 0.23 0.13 4-甲基-己醛
4-methyl-Hexanal840.57(889) tr 0.01 0.71 庚醛 Heptanal 867.56(899) 0.07 0.35 nd 反-2-庚醛
(E)-2-Heptanal932.46(946) 0.01 0.12 nd 辛醛 Octanal 989.86(998) 0.01 0.10 tr 反-2-辛烯醛
(E)-2-Octenal1055.85(1059) tr 0.15 nd 壬醛 Nonanal 1112.22(1109) 0.01 0.05 nd 反-2-壬烯醛
(E)-2-Nonenal1175.83(1160) nd 0.02 tr 正葵醛 Decanal 1228.75(1228) nd tr nd 注:数据均为内标峰面积的相对定量值,且为3个生物学重复的平均值。RI:保留指数Retention index,*:括号内数字为已发表的保留指数RI;tr :表示此处有被识别的峰,但值小于0.0095;nd:表示未检测到峰;GX:琯溪蜜柚,HR:红肉蜜柚,SH:三红蜜柚。下同。
Note: The data are all relative quantitative values of internal standard peak areas and are the average of three biological replicates. RI: Retention index, *: the number in parentheses is the published retention index(RI). tr: there is an identified peak here, but the value is less than 0.009 5. nd: no peak was detected. GX: Guanximiyou, HR: Hongroumiyou, SH: Sanhongmiyou. Same as below.
表 2 琯溪蜜柚、红肉蜜柚和三红蜜柚果汁样品中的醇类香气组分
Table 2 Aroma volatiles (Alcohols) in juice samples of Guanximiyou, Hongroumiyou and Sanhongmiyou
化合物
Compound保留指数RI
(计算Calculated)相对含量
Relative contentHR SH GX 正戊醇 1-Pentanol 743.08(761 d) 0.04 0.07 0.04 顺-2-戊烯-1-醇
(Z)-2-Penten-1-ol744.78(767 c) 0.03 0.03 0.02 3-己烯-1-醇
(E)-3-Hexen-1-ol819.22(851 b) 0.95 0.74 tr 反-2-己烯-1-醇
(E)-2-Hexen-1-ol829.79(858 g) 0.05 0.02 tr 正己醇 1-Hexanol 835.19(865 b) 1.17 0.66 0.03 RI 949 948.98 tr tr tr 反-2-庚烯-1-醇
(E)-2-Hepten-1-ol949.04(958 g) 0.01 0.03 0.02 正庚醇 1-Heptanol 952.49(967 g) 0.02 0.04 nd 1-辛烯-3-醇(蘑菇醇)
1-Octen-3-ol963.78(974 a) 0.02 0.04 0.02 RI 1032 1032.38 nd tr tr 芳樟醇 Linalool 1106.80(1 104 d) tr tr tr 正辛醇 1-Octanol 1075.06(1 068 e) nd 0.01 nd 表 3 琯溪蜜柚、红肉蜜柚和三红蜜柚果汁样品中的酮类香气组分
Table 3 Aroma volatiles (Ketone) in juice samples of Guanximiyou, Hongroumiyou and Sanhongmiyou
化合物
Compound保留指数RI
(计算Calculated)相对含量
Relative contentHR SH GX RI 733 732.77 tr tr tr RI 854 854.02 tr 0.03 tr 甲基己基甲酮 2-Octanone 909.18(984) tr nd tr RI 919 919.31 nd 0.01 tr 1-辛烯-3-酮 1-Octen-3-one 957.95(972) tr 0.03 0.01 6-甲基-5-庚烯-2-酮
6-methyl-5-Hepten-2-one967.70(981) 0.17 0.49 0.01 2-庚酮 2-Heptanone 973.40(889) nd 0.04 0.01 RI 1096 1095.97 nd tr 0.17 RI 1138 1138.24 nd 0.02 tr RI 1154 1153.82 nd tr 0.01 4-庚烯-2-酮 (E)-4-Hepten-2-one 1478.28 nd tr nd 异丙基三级丁基酮
2,2,4-Trimethyl-3-pentanone1755.93 0.01 nd nd 表 4 琯溪蜜柚、红肉蜜柚和三红蜜柚果汁样品中的芳香烃类香气组分
Table 4 Aroma volatiles(Aromatic hydrocarbons)in juice samples of Guanximiyou, Hongroumiyou and Sanhongmiyou
化合物
Compound保留指数RI
(计算Calculated)相对含量
Relative contentHR SH GX RI 731 730.67 tr tr nd 甲苯 Toluene 741.71(773) 0.04 0.04 0.03 RI 820 820.07 tr nd 0.68 1,3-二甲基苯
1,3-dimethyl-Benzene853.57(862) tr tr tr RI 999 999.25 nd 0.01 0.01 RI 1020 1020.01 0.01 0.01 nd RI 1029 1028.87 nd tr 0.07 RI 1054 1053.85 tr tr tr RI 1272 1272.38 tr tr nd RI 1296 1295.64 nd tr tr RI 1355 1355.35 tr nd nd 3,3′-联[环己烯]
Bi-2-cyclohexen-1-yl1404.24 tr nd nd RI 1446 1445.87 0.04 tr nd RI 1470 1470.38 tr nd nd α-罗勒烯
3,7-dimethyl-1,3,7-Octatriene1480.44 tr nd nd RI 1573 1573.43 0.01 nd nd 2,5-dimethyl-3-methylene-1,5-Heptadiene 1576.62 tr nd nd RI 1578 1578.15 0.01 nd nd 4-甲基-十三烷
Tridecane, 4-methyl-1583.55 0.01 nd nd 正十三烷烃 Tridecane 1628.07 0.02 nd nd RI 1631 1631.10 0.01 nd nd RI 1634 1634.29 0.01 nd nd 2,3,3-三甲基戊烷
2,3,3-trimethyl-Pentane1640.04 0.01 nd nd RI 1645 1645.49 0.01 nd nd RI 1652 1651.53 tr nd nd 2,2-二甲基丁烷
2,2-dimethyl-Butane1661.20 0.02 nd nd RI 1663 1663.38 0.02 nd nd 2-甲基辛烷
2-methyl-Octane1666.62 0.01 nd nd RI 1672 1671.95 0.01 nd nd RI 1677 1677.41 0.01 nd nd 2-溴(正)壬烷
2-Bromononane1683.40 0.01 nd nd RI 1709 1708.83 tr nd nd RI 1718 1717.58 tr nd nd RI 1722 1722.38 tr nd nd 3,3-二甲基己烷
3,3-dimethyl-Hexane1725.56 0.01 nd nd RI 1732 1731.85 0.01 nd nd RI 1745 1744.63 0.01 nd nd (1 -甲基乙基)-环己烷
(1-methylethyl)-Cyclohexane1756.23 0.01 nd nd RI 1791 1791.04 0.01 nd nd RI 1824 1823.79 0.01 nd nd 表 5 琯溪蜜柚、红肉蜜柚和三红蜜柚果汁样品中的呋喃类香气组分
Table 5 Aroma volatiles(Furan)in juice samples of Guanximiyou, Hongroumiyou and Sanhongmiyou
化合物
Compound保留指数RI
(计算Calculated)相对含量
Relative contentHR SH GX 2-propyl-Furan 756.60(793) tr tr tr 2-正丁基呋喃 2-n-Butyl furan 854.77(892) nd 0.01 0.01 2,2,6-三甲基-6-乙烯基四氢-
2H-呋喃-3-醇
cis-Linalool oxide1069.21(1070) 0.22 0.16 tr 反-氧化芳樟醇
trans-Linalool oxide(furanoid)1088.26(1088) 0.07 0.05 0.02 2-丁基四氢呋喃
2-butyltetrahydro-Furan1100.32 nd tr 0.05 表 6 琯溪蜜柚、红肉蜜柚和三红蜜柚果汁样品中的酯类香气组分
Table 6 Aroma volatiles(Ester)in juice samples of Guanximiyou, Hongroumiyou and Sanhongmiyou
化合物
Compound保留指数RI
(计算Calculated)相对含量
Relative contentHR SH GX RI 896 895.70 tr tr 0.08 RI 988 987.64 tr nd tr RI 1048 1047.57 tr tr nd RI 1687 1687.01 tr nd nd RI 1761 1761.19 0.01 nd nd RI 1767 1767.03 0.01 nd nd RI 1794 1794.40 tr nd nd 草酸环丁基壬酯
Oxalic acid, cyclobutyl nonyl ester1801.61 tr nd nd 草酸烯丙基壬酯
Oxalic acid, allyl nonyl ester1812.18 0.01 nd nd RI 1847 1846.74 tr nd nd 表 7 琯溪蜜柚、红肉蜜柚和三红蜜柚果汁样品中的倍半萜烯类香气组分
Table 7 Aroma volatiles(Sesquiterpene)in juice samples of Guanximiyou, Hongroumiyou and Sanhongmiyou
化合物
Compound保留指数RI
(计算Calculated)相对含量
Relative contentHR SH GX RI 1360 1360.07 tr nd nd RI 1364 1363.78 0.01 tr nd 荜澄茄烯 β-Cubebene 1375.92(1387) tr nd nd RI 1397 1397.35 tr nd tr RI 1404 1403.94 tr nd nd β-波旁烯(-)-β-Bourbonene 1411.29(1417) 0.03 nd nd RI 1419 1418.70 tr nd nd RI 1457 1456.54 tr nd nd RI 1472 1472.33 tr nd nd RI 1475 1475.20 tr nd nd RI 1486 1485.94 tr nd nd RI 1487 1487.46 tr nd nd RI 1498 1497.97 tr nd nd 大牛儿烯 D Germacrene D 1501.39(1487) 0.02 nd nd RI 1506 1505.71 0.08 tr nd RI 1513 1512.73 tr nd nd RI 1518 1517.58 0.01 nd tr RI 1522 1522.08 tr nd nd (1S,4aS,8aR)-1-异丙基-4,7-
二甲基-1,2,4A,5,6,8A-六氢萘
α-Muurolene1524.06(1523) 0.01 nd nd RI 1528 1527.99 tr nd nd RI 1537 1536.66 0.03 tr nd δ杜松烯 δ-Cadinene 1542.61(1540) 0.06 tr nd 4-diene Cadina-1(2) 1554.56(1533) tr nd tr RI 1559 1558.55 0.01 nd tr 表 8 琯溪蜜柚、红肉蜜柚和三红蜜柚果汁样品中的单萜类香气组分
Table 8 Aroma volatiles(Monoterpene)in juice samples of Guanximiyou, Hongroumiyou and Sanhongmiyou
化合物
Compound保留指数RI
(计算Calculated)相对含量
Relative contentHR SH GX β-月桂烯 β-Myrcene 973.26(988) 0.01 0.06 tr 柠檬烯 Limonene 1018.06(1024) 0.01 0.02 tr -
[1] MINH TU N T, THANH L X, UNE A, et al. Volatile constituents of Vietnamese pummelo, orange, tangerine and lime peel oils [J]. Flavour and Fragrance Journal, 2002, 17(3): 169−174. DOI: 10.1002/ffj.1076
[2] CHUNG H, CHUNG W Y, YOO E S, et al. Characterization of volatile aroma-active compounds in Dangyooja (Citrus grandis Osbeck) [J]. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55(1): 133−136. DOI: 10.1007/s13765-012-0023-2
[3] 张捷莉, 车奋勇, 李学成, 等. 玉环柚果皮中香气成分的GC-MS分析 [J]. 食品科学, 2008, 29(10):480−482. DOI: 10.3321/j.issn:1002-6630.2008.10.113 ZHANG J L, CHE F Y, LI X C, et al. Analysis of volatiles in Yuhuan shaddock peel by GC-MS [J]. Food Science, 2008, 29(10): 480−482.(in Chinese) DOI: 10.3321/j.issn:1002-6630.2008.10.113
[4] 王贤亲, 林滨, 林丹, 等. 苍南四季柚果皮挥发油成分的气相色谱-质谱联用分析 [J]. 药物分析杂志, 2009, 29(12):2044−2046. WANG X Q, LIN B, LIN D, et al. GC-MS analysis of chemical constituents of volatile oil from peels of Cangnan Sijiyou [J]. Chinese Journal of Pharmaceutical Analysis, 2009, 29(12): 2044−2046.(in Chinese)
[5] 李悦, 侯滨滨, 静宝元. 葡萄柚精油的气相色谱-质谱分析 [J]. 食品研究与开发, 2009, 30(12):128−131. DOI: 10.3969/j.issn.1005-6521.2009.12.037 LI Y, HOU B B, JING B Y. The analysis of grapefruit essential oil by gas chromatography/mass spectrometry [J]. Food Research and Development, 2009, 30(12): 128−131.(in Chinese) DOI: 10.3969/j.issn.1005-6521.2009.12.037
[6] ABERTO J N, HEN M, JO M H B. Volatile flavor components of grapefruit juice (Citrus paradise Mascfadyen) [J]. Journal of the Science of Food and Agriculture, 1985, 36(8): 757−763. DOI: 10.1002/jsfa.2740360818
[7] PIILIP E S, MANUEL G M. Quantification of volatile constituents in orange juice drinks and its use for comparison with pure juice by multivariate analysis [J]. LWT - Food Science and Technology,, 1997, 30: 497−501. DOI: 10.1006/fstl.1996.0207
[8] REGA B, FOURNIER N, GUICHARD E. Solid phase microextraction (SPME) of orange juice flavor: odor representativeness by direct gas chromatography olfactometry (D-GC-O) [J]. Journal of Agricultural and Food Chemistry, 2003, 51(24): 7092−7099. DOI: 10.1021/jf034384z
[9] MACCARONE E, CAMPISI S, FALLICO B, et al. Flavor components of Italian orange juices [J]. Journal of Agricultural and Food Chemistry, 1998, 46(6): 2293−2298. DOI: 10.1021/jf970949d
[10] MOUFIDA S, MARZOUK B. Biochemical characterization of blood orange, sweet orange, lemon, bergamot and bitter orange [J]. Phytochemistry, 2003, 62(8): 1283−1289. DOI: 10.1016/S0031-9422(02)00631-3
[11] 周海燕. 柑橘果汁特征香气组成及其在贮藏中的变化[D]. 武汉: 华中农业大学, 2006. ZHOU H Y. Characteristic aroma component of orange juice and its variation during storage[D]. Wuhan: Huazhong Agricultural University, 2006. (in Chinese).
[12] ARENA E, GUARRERA N, CAMPISI S, et al. Comparison of odour active compounds detected by gas-chromatography–olfactometry between hand-squeezed juices from different orange varieties [J]. Food Chemistry,, 2006, 98(1): 59−63. DOI: 10.1016/j.foodchem.2005.04.035
[13] 乔宇, 谢笔钧, 柴倩, 等. 血橙果实香气成分的气相色谱-质谱分析 [J]. 质谱学报, 2008, 29(1):1−5, 9. QIAO Y, XIE B J, CHAI Q, et al. Analysis of aroma components in blood orange fruit by gas chromatography-mass spectrometry [J]. Journal of Chinese Mass Spectrometry Society, 2008, 29(1): 1−5, 9.(in Chinese)
[14] 杨菜冬, 张晓鸣. 不同品种甜橙芳香物质的SPME分析 [J]. 食品研究与开发, 2006, 27(11):162−166. DOI: 10.3969/j.issn.1005-6521.2006.11.054 YANG C D, ZHANG X M. Analysis of aroma compounds of different varieties of sweet orange with spme [J]. Food Research and Development, 2006, 27(11): 162−166.(in Chinese) DOI: 10.3969/j.issn.1005-6521.2006.11.054
[15] SHARON-ASA L, SHALIT M, FRYDMAN A, et al. Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene [J]. The Plant Journal, 2003, 36(5): 664−674. DOI: 10.1046/j.1365-313X.2003.01910.x
[16] NJOROGE S M, UKEDA H, KUSUNOSE H, et al. Volatile components of the essential oils from Kabosu, Daidai, and Yuko, Japanese sour citrus fruits [J]. Flavour & Fragrance Journal,, 2010, 9(6): 289−297.
[17] SAWAMURA M, THI MINH TU N, ONISHI Y, et al. Characteristic odor components of Citrus reticulata blanco (ponkan) cold-pressed oil [J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(8): 1690−1697. DOI: 10.1271/bbb.68.1690
[18] MIYAZAWA N, FUJITA A, KUBOTA K. Aroma character impact compounds in kinokuni mandarin orange (Citrus kinokuni) compared with Satsuma mandarin orange (Citrus unshiu) [J]. Bioscience, Biotechnology, and Biochemistry, 2010, 74(4): 835−842. DOI: 10.1271/bbb.90937
[19] ALLEGRONE G, BELLIARDO F, CABELLA P. Comparison of volatile concentrations in hand-squeezed juices of four different lemon varieties [J]. Journal of Agricultural and Food Chemistry, 2006, 54(5): 1844−1848. DOI: 10.1021/jf051206s
[20] ROBERT J C, ARKADIUSZ K, NICOLE L C, et al. Identification, synthesis, and characterization of novel sulfur-containing volatile compounds from the in-depth analysis of lisbon lemon peels (Citrus limon L. Burm. f. cv. Lisbon). [J]. Journal of Agricultural and Food Chemistry, 2015, 63: 1915−1931. DOI: 10.1021/jf505177r
[21] 杨荣华. 白柠檬果皮油特征香气成分的评价 [J]. 食品与发酵工业, 2000, 26(3):31−34. DOI: 10.3321/j.issn:0253-990X.2000.03.007 YANG R H. Haracteristic flavor compounds in peel oil of lime [J]. Food and Fermentation Industries, 2000, 26(3): 31−34.(in Chinese) DOI: 10.3321/j.issn:0253-990X.2000.03.007
[22] VENTURINI N, CURK F, DESJOBERT J M, et al. Chemotaxonomic investigations of peel and petitgrain essential oils from 17 citron cultivars [J]. Chemistry & Biodiversity, 2010, 7(3): 736−751.
[23] KATUMI U, YUKIO H A, SHIBAMOTO T. Volatile Chemicals Identified in Extracts from Newly Hybrid Citrus, Dekopon (Shiranuhi mandarin Suppl. J.) [J]. Journal of Agricultural and Food Chemistry, 2002, 50(19): 5355−5359. DOI: 10.1021/jf0203951
[24] DHARMAWAN J, KASAPIS S, SRIRAMULA P, et al. Evaluation of aroma-active compounds in Pontianak orange peel oil (Citrus nobilis Lour. var. microcarpa Hassk.) by gas chromatography-olfactometry, aroma reconstitution, and omission test. [J]. Journal of Agricultural & Food Chemistry, 2009, 57(1): 239−244.
[25] 赵雪梅, 叶兴乾, 朱大元. 常山胡柚皮中挥发性成分分析 [J]. 果树学报, 2007, 24(1):109−112. ZHAO X M, YE X Q, ZHU D Y. Study on the volatile oils and volatile components in the rind of Changshan Huyou pomelo cultivar [J]. Journal of Fruit Science, 2007, 24(1): 109−112.(in Chinese)
[26] 尚雪波, 张菊华, 单杨, 等. GC-MS法分析杂柑皮中挥发性精油成分 [J]. 食品科学, 2010, 31(2):175−178. SHANG X B, ZHANG J H, SHAN Y, et al. GC-MS analysis of peel volatile oils of three hybrid cultivars of Citrus [J]. Food Science, 2010, 31(2): 175−178.(in Chinese)
[27] 潘鹤立. 琯溪蜜柚芽变株系果实性状的研究——基于基因组学和转录组学[D]. 福州: 福建农林大学, 2019. PAN H L. Study on fruit Characters of pomelo [Citrus grandis (L.)Osbeck] bud mutant strain based on genomics and transcriptome[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019.
[28] 潘鹤立, 潘腾飞, 佘文琴, 等. 柚芽变株系类胡萝卜素代谢差异基因的转录组学分析 [J]. 热带作物学报, 2020, 41(11):2165−2175. DOI: 10.3969/j.issn.1000-2561.2020.11.004 PAN H L, PAN T F, SHE W Q, et al. Transcriptome analysis of carotenoid metabolism differential genes in pomelo bud strain [J]. Chinese Journal of Tropical Crops, 2020, 41(11): 2165−2175.(in Chinese) DOI: 10.3969/j.issn.1000-2561.2020.11.004
[29] BLÉE E. Phytooxylipins and plant defense reactions [J]. Progress in Lipid Research, 1998, 37(1): 33−72. DOI: 10.1016/S0163-7827(98)00004-6
[30] HOWE G A, SCHILMILLER A L. Oxylipin metabolism in response to stress [J]. Current Opinion in Plant Biology, 2002, 5(3): 230−236. DOI: 10.1016/S1369-5266(02)00250-9
[31] LIN J, ROUSEFF R L. Characterization of aroma-impact compounds in cold-pressed grapefruit oil using time-intensity GC-olfactometry and GC-MS [J]. Flavour & Fragrance Journal, 2001, 16(6): 457−463.
[32] 嵇海峰, 朱艳冰, 蔡慧农, 等. 3种福建省柚子汁挥发性成分及香气分析 [J]. 集美大学学报(自然科学版), 2014, 19(4):266−273. JI H F, ZHU Y B, CAI H N, et al. Analysis of the volatiles and aroma of the juice of three varieties of pummelo in Fujian Province [J]. The Editorial Board of Jimei University (Natural Science), 2014, 19(4): 266−273.(in Chinese)