Microalgae for Effective Nitrogen and Phosphorus Removal from Aquaculture Effluence
-
摘要:
目的 筛选对养殖废水具有脱氮除磷效果的微藻藻种。 方法 选取小球藻JY-1(Chlorella sp.JY-1)、小球藻SY-4(Chlorella sp.SY-4)以及链带藻SH-1(Desmodesmus sp. SH-1)等3株微藻为研究对象,研究其对水产养殖废水脱氮除磷的效果。 结果 培养5 d,JY-1、SY-4和SH-1在7‰±1‰盐度养殖废水中的细胞含量分别为1.56×107、1.47×107、6.62×106个·mL−1;JY-1、SY-4和SH-1对养殖废水中总氮的去除率分别为50.36%、41.51%和49.74%;氨态氮(NH4+-N)的去除率分别为96.29%、84.92%和96.65%;硝态氮(NO3−-N)的去除率分别为15.84%、3.69%和12.56%;总磷(PO43--P)的去除率分别为93.51%、82.38%和94.25%;对亚硝态氮的去除效果不明显;3株藻在5‰、10‰、20‰和30‰盐度的培养基中均可以正常生长。JY-1在养殖废水中的生长能力和对水体净化能力均优于小球藻SY-4和链带藻SH-1。 结论 小球藻JY-1对水产养殖废水具有较好的脱氮除磷效果。本研究为应用微藻进行养殖废水脱氮除磷处理提供了参考数据。 Abstract:Objective Microalgae capable of effectively removing nitrogen and phosphorus from wastewater were screened for potential applications on antipollution or effluence treatment at aquaculture farms. Method Three selected microalgae, Chlorella sp. JY-1, Chlorella sp. SY-4, and Desmodesmus sp. SH-1, were evaluated for their capability in removing nitrogen and phosphorus from the wastewater at a shrimp aquaculture farm. Result After 5d of cultivation, the microalgae grew to a cell density in the (7±1)‰ salinity medium at 1.56×107·ml−1 on JY-1, 1.47×107·ml−1 on SY-4, and 6.62×106·ml−1 on SH-1. The removal rate on total nitrogen was 50.36% by JY-1, 41.51% by SY-4, and 49.74% by SH-1; that on ammonia nitrogen, 96.29% by JY-1, 84.92% by SY-4, and 96.65% by SH-1; that on nitrate nitrogen, 15.84% by JY-1, 3.69% by SY-4, and 12.56% by SH-1; and, that on total phosphorus, 93.51% by JY-1, 82.38% by SY-4, and 94.25% by SH-1; but not significant on nitrite nitrogen by any of them. The microalgae appeared to grow normally in a culture medium of 5%, 10%, 20% or 30% salinity. Among them, Chlorella sp. JY-1 performed the best on growth as well as nitrogen and phosphorus removal in the test wastewater. Conclusion Chlorella sp. JY-1 appeared to offer a promising potential for application of purifying aquaculture effluence. -
Key words:
- Microalgae /
- aquaculture wastewater /
- nitrogen and phosphorus removal
-
图 1 3种微藻在不同盐度培养基中生长的最终细胞含量
注:不同藻种之间无相同小写字母者表示差异达到显著水平;无相同大写字母者表示差异达到极显著水平。表1~5同。
Figure 1. Final cell densities of microalgae in media of varied salinities
Note: Data with different lowercase letters indicate significant difference; data with different uppercase letters indicate very significant difference.The same as table 1-5.
表 1 3株微藻对水产养殖废水中总氮的去除效果
Table 1. Efficiency of total nitrogen removal by various microalgae
(单位: mg·L−1) 藻种
Species0 d 1 d 2 d 3 d 4 d 5 d 5 d去除率
removal rate/%SH-1 10.757±0.06 a 8.290±0.06 Dd 7.230±0.07 Cc 5.693±0.06 Cc 5.530±0.03 Cc 5.407±0.06 Cc 49.74 JY-1 10.730±0.06 a 8.690±0.03 Cc 7.323±0.03 Cc 5.707±0.08 Cc 5.593±0.08 Cc 5.327±0.07 Cc 50.36 SY-4 10.760±0.07 a 9.853±0.06 Bb 8.877±0.09 Bb 7.160±0.09 Bb 6.530±0.07 Bb 6.293±0.06 Bb 41.51 CK 10.743±0.06 a 10.550±0.07 Aa 10.430±0.08 Aa 10.363±0.08 Aa 10.307±0.05 Aa 10.210±0.05 Aa 4.96 表 2 3株微藻对水产养殖废水中氨氮的去除效果
Table 2. Efficiency of NH4+-N removal by various microalgae
(单位: mg·L−1) 藻种
Species0 d 1 d 2 d 3 d 4 d 5 d 5 d去除率
removal rate/%SH-1 2.790±0.02 a 1.037±0.03 Dd 0.357±0.03 Cc 0.127±0.00 Cc 0.103±0.00 Cc 0.093±0.00 Cc 96.65 JY-1 2.787±0.02 ab 1.347±0.05 Cc 0.310±0.03 Cc 0.127±0.01 Cc 0.117±0.00 Cc 0.103±0.00 Cc 96.29 SY-4 2.763±0.02 ab 1.967±0.03 Bb 1.180±0.03 Bb 0.777±0.03 Bb 0.543±0.03 Bb 0.417±0.02 Bb 84.92 CK 2.733±0.02 b 2.677±0.02 Aa 2.603±0.03 Aa 2.477±0.02 Aa 2.397±0.02 Aa 2.347±0.02 Aa 14.15 表 3 3株微藻对水产养殖废水中硝态氮的去除效果
Table 3. Efficiency of NO3−-N removal by various microalgae
(单位: mg·L−1) 藻种
species0 d 1 d 2 d 3 d 4 d 5 d 5 d去除率
removal rate/%SH-1 3.980±0.03 a 3.937±0.02 a 3.870±0.03 b 3.723±0.02 Bc 3.623±0.02 Cc 3.480±0.03 Cc 12.56 JY-1 3.977±0.02 a 3.920±0.02 a 3.850±0.03 b 3.587±0.03 Cd 3.457±0.02 Dd 3.347±0.02 Dd 15.84 SY-4 3.937±0.02 a 3.950±0.02 a 3.910±0.01 ab 3.877±0.02 Ab 3.850±0.01 Bb 3.827±0.01 Bb 3.69 CK 3.957±0.01 a 3.957±0.02 a 3.940±0.01 a 3.943±0.02 Aa 3.937±0.02 Aa 3.933±0.01 Aa 0.59 表 4 3株微藻对水产养殖废水中亚硝态氮的去除效果
Table 4. Efficiency of NO2−-N removal by various microalgae
(单位: mg·L−1) 藻种
species0 d 1 d 2 d 3 d 4 d 5 d 5 d去除率
removal rate/%SH-1 0.100±0.00 a 0.103±0.00 a 0.110±0.00 a 0.130±0.01 Ab 0.143±0.00 Bb 0.163±0.00 Ab −63.33 JY-1 0.100±0.00 a 0.107±0.00 a 0.107±0.00 ab 0.143±0.00 Aa 0.157±0.00 Aa 0.177±0.00 Aa −76.67 SY-4 0.097±0.00 a 0.100±0.00 a 0.100±0.00 b 0.107±0.00 Bc 0.107±0.00 Cc 0.117±0.00 Bc −20.69 CK 0.097±0.00 a 0.100±0.00 a 0.103±0.00 ab 0.100±0.00 Bc 0.103±0.00 Cc 0.103±0.00 Bd −6.90 表 5 3株微藻对水产养殖废水中总磷的去除效果
Table 5. Efficiency of total phosphate removal by various microalgae
(单位: mg·L−1) 藻种
species0 d 1 d 2 d 3 d 4 d 5 d 5 d去除率
removal
rate/%SH-1 0.870±0.01 a 0.430±0.02 Cc 0.143±0.01 Dd 0.053±0.00 Cc 0.050±0.01 Cc 0.050±0.00 Cc 94.25 JY-1 0.873±0.02 a 0.427±0.02 Cc 0.187±0.01 Cc 0.057±0.00 Cc 0.053±0.00 Cc 0.057±0.00 Cc 93.51 SY-4 0.870±0.02 A 0.627±0.02 Bb 0.433±0.01 Bb 0.243±0.02 Bb 0.197±0.01 Bb 0.153±0.00 Bb 82.38 CK 0.847±0.00 a 0.847±0.00 Aa 0.843±0.00 Aa 0.847±0.01 Aa 0.843±0.01 Aa 0.843±0.00 Aa 0.39 -
[1] 中华人民共和环境保护部. 2016中国近岸海域环境质量公报[R]. 2017, 5. [2] 孙娟, 赵丹, 刘轶韵, 等. 富营养化水体的氮磷脱除技术进展 [J]. 金属世界, 2009(z1):83−87. doi: 10.3969/j.issn.1000-6826.2009.z1.025SUN J, ZHAO D, LIU Y Y, et al. Water eutrophication and the progress of nitrogen and phosphorus removal [J]. Metal World, 2009(z1): 83−87.(in Chinese) doi: 10.3969/j.issn.1000-6826.2009.z1.025 [3] SAMORÌ G, SAMORÌ C, GUERRINI F, et al. Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: Part I [J]. Water Research, 2013, 47(2): 791−801. doi: 10.1016/j.watres.2012.11.006 [4] NIRBHAY K S, DOLLY W D. Microalgal Remediation of Sewage Effluent [J]. Proceedings of the Indian National Science Academy, 2010, 76(4): 209−221. [5] 冯思然, 朱顺妮, 王忠铭. 微藻污水处理研究进展 [J]. 环境工程, 2019, 37(4):57−62, 6.FENG S R, ZHU S N, WANG Z M. Microalgal wastewater treatment: A review [J]. Environmental Engineering, 2019, 37(4): 57−62, 6.(in Chinese) [6] 蔡卓平, 段舜山, 朱红惠. “污水-微藻-能源”串联技术新进展 [J]. 生态环境学报, 2012, 21(7):1380−1386.CAI Z P, DUAN S S, ZHU H H. Recent advance on sewage-microalga-biofuel coupling technology [J]. Ecology and Environmnet, 2012, 21(7): 1380−1386.(in Chinese) [7] BARBOSA M, VALENTÃO P, ANDRADE P B. Bioactive compounds from macroalgae in the new millennium: Implications for neurodegenerative diseases [J]. Marine Drugs, 2014, 12(9): 4934−4972. doi: 10.3390/md12094934 [8] CHRISTENSON L, SIMS R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts [J]. Biotechnology Advances, 2011, 29(6): 686−702. doi: 10.1016/j.biotechadv.2011.05.015 [9] GHOSH A, KHANRA S, MONDAL M, et al. Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value added chemicals: A review [J]. Energy Conversion and Management, 2016, 113: 104−118. doi: 10.1016/j.enconman.2016.01.050 [10] 丁一, 侯旭光, 郭战胜, 等. 固定化小球藻对海水养殖废水氮磷的处理 [J]. 中国环境科学, 2019, 39(1):336−342. doi: 10.3969/j.issn.1000-6923.2019.01.039DING Y, HOU X G, GUO Z S, et al. Studies on the treatment of nitrogen and phosphorus in seawater aquaculture wastewater by immobilized Chlorella [J]. China Environmental Science, 2019, 39(1): 336−342.(in Chinese) doi: 10.3969/j.issn.1000-6923.2019.01.039 [11] 马航, 李之鹏, 柳峰, 等. 微藻膜反应器处理海水养殖废水性能及膜污染特性 [J]. 环境科学, 2019, 40(4):1865−1870.MA H, LI Z P, LIU F, et al. Pollutant removal performance and membrane fouling characteristics in marine aquaculture wastewater treatment by a microalgae membrane reactor [J]. Environmental Science, 2019, 40(4): 1865−1870.(in Chinese) [12] EL-KASSAS H Y, HENEASH A M M, HUSSEIN N R. Cultivation of Arthrospira (Spirulina) platensis using confectionary wastes for aquaculture feeding [J]. Journal, genetic engineering & biotechnology, 2015, 13(2): 145−155. [13] 马瑞阳, 葛成军, 王珺, 等. 藻–菌单一及共生系统对海水养殖尾水的净化作用 [J]. 中国水产科学, 2019, 26(6):1126−1135.MA R Y, GE C J, WANG J, et al. Purification of mariculture wastewater by utilizing single and sym-biotic systems of microalgae-bacteria treatment technology [J]. Journal of Fishery Sciences of China, 2019, 26(6): 1126−1135.(in Chinese) [14] 李水根. 福建省水产品质量安全现状与建议 [J]. 渔业研究, 2020, 42(2):172−178.LI S G. The status and proposal of quality safety management to aquatic products in Fujian Province [J]. Journal of Fisheries Research, 2020, 42(2): 172−178.(in Chinese) [15] 国家环保总局, 水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社, 2002. [16] DE-BASHAN L E, MORENO M, HERNANDEZ J P, et al. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense [J]. Water Research, 2002, 36(12): 2941−2948. doi: 10.1016/S0043-1354(01)00522-X [17] 刘林林, 黄旭雄, 危立坤, 等. 15株微藻对猪场养殖污水中氮磷的净化及其细胞营养分析 [J]. 环境科学学报, 2014, 34(8):1986−1994.LIU L L, HUANG X X, WEI L K, et al. Removal of nitrogen and phosphorus by 15 strains of microalgae and their nutritional values in piggery sewage [J]. Acta Scientiae Circumstantiae, 2014, 34(8): 1986−1994.(in Chinese) [18] 李昂. 污水处理优势微藻株的筛选及Desmodesmus sp.WC08扩培工艺与产物利用研究[D]. 海口: 海南大学, 2017.LI A. Screening of Microalgae Strains for Sewage Treatment and the Study on Enlarge Culture Technology, Biomass Utilization of Desmodesmus sp. WC08[D]. Haikou: Hainan university, 2017. (in Chinese) [19] WANG M Z, YANG Y, CHEN Z H, et al. Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae [J]. Bioresource Technology, 2016, 222: 130−138. doi: 10.1016/j.biortech.2016.09.128 [20] 张波, 崔梦瑶, 张安龙, 等. 适于生活废水中快速生长的微藻筛选及其培养条件优化 [J]. 陕西科技大学学报, 2019, 37(3):21−26. doi: 10.3969/j.issn.1000-5811.2019.03.004ZHANG B, CUI M Y, ZHANG A L, et al. Screening of microalgae strains with rapid growth ability in domestic wastewater and optimization of culture conditions [J]. Journal of Shaanxi University of Science & Technology, 2019, 37(3): 21−26.(in Chinese) doi: 10.3969/j.issn.1000-5811.2019.03.004 [21] PAN Y Y, WANG S T, CHUANG L T, et al. Isolation of thermo-tolerant and high lipid content green microalgae: Oil accumulation is predominantly controlled by photosystem efficiency during stress treatments in Desmodesmus [J]. Bioresource Technology, 2011, 102(22): 10510−10517. doi: 10.1016/j.biortech.2011.08.091 [22] 刘娥, 刘兴国, 王小冬, 等. 固定化藻菌净化水产养殖废水效果及固定化条件优选研究 [J]. 上海海洋大学学报, 2017, 26(3):422−431. doi: 10.12024/jsou.20160701837LIU E, LIU X G, WANG X D, et al. Study on efficiency of purifying the aquacultural waste water with immobilized alga-bacteria system and immobilization conditions optimization [J]. Journal of Shanghai Ocean University, 2017, 26(3): 422−431.(in Chinese) doi: 10.12024/jsou.20160701837 [23] 朱树峰, 于茵, 胡洪营. 混合培养对城市污水厂二级出水培养能源微藻的生长促进作用 [J]. 生态环境学报, 2014, 23(4):642−648. doi: 10.3969/j.issn.1674-5906.2014.04.016ZHU S F, YU Y, HU H Y. Effects on the growth characteristic by mixed culture of three energy microalgae species using domestic secondary effluent [J]. Ecology and Environment Sciences, 2014, 23(4): 642−648.(in Chinese) doi: 10.3969/j.issn.1674-5906.2014.04.016