• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水产养殖废水脱氮除磷微藻的筛选

贾纬 聂毅磊 陈宏 罗立津 乐占线 庄鸿 郑军荣

贾纬,聂毅磊,陈宏,等. 水产养殖废水脱氮除磷微藻的筛选 [J]. 福建农业学报,2021,36(2):243−248 doi: 10.19303/j.issn.1008-0384.2021.02.016
引用本文: 贾纬,聂毅磊,陈宏,等. 水产养殖废水脱氮除磷微藻的筛选 [J]. 福建农业学报,2021,36(2):243−248 doi: 10.19303/j.issn.1008-0384.2021.02.016
JIA W, NIE Y L, CHEN H, et al. Microalgae for Effective Nitrogen and Phosphorus Removal from Aquaculture Effluence [J]. Fujian Journal of Agricultural Sciences,2021,36(2):243−248 doi: 10.19303/j.issn.1008-0384.2021.02.016
Citation: JIA W, NIE Y L, CHEN H, et al. Microalgae for Effective Nitrogen and Phosphorus Removal from Aquaculture Effluence [J]. Fujian Journal of Agricultural Sciences,2021,36(2):243−248 doi: 10.19303/j.issn.1008-0384.2021.02.016

水产养殖废水脱氮除磷微藻的筛选

doi: 10.19303/j.issn.1008-0384.2021.02.016
基金项目: 福建省科技计划星火项目(2017S0006)
详细信息
    作者简介:

    贾纬(1976−),男,助理研究员;主要从事环境微生物研究(E-mail:3773475@qq.com

    通讯作者:

    聂毅磊(1976−),男,副研究员;主要从事微生物技术研究(E-mail:244701760@qq.com

  • 中图分类号: X 713

Microalgae for Effective Nitrogen and Phosphorus Removal from Aquaculture Effluence

  • 摘要:   目的  筛选对养殖废水具有脱氮除磷效果的微藻藻种。  方法  选取小球藻JY-1(Chlorella sp.JY-1)、小球藻SY-4(Chlorella sp.SY-4)以及链带藻SH-1(Desmodesmus sp. SH-1)等3株微藻为研究对象,研究其对水产养殖废水脱氮除磷的效果。  结果  培养5 d,JY-1、SY-4和SH-1在7‰±1‰盐度养殖废水中的细胞含量分别为1.56×107、1.47×107、6.62×106个·mL−1;JY-1、SY-4和SH-1对养殖废水中总氮的去除率分别为50.36%、41.51%和49.74%;氨态氮(NH4+-N)的去除率分别为96.29%、84.92%和96.65%;硝态氮(NO3-N)的去除率分别为15.84%、3.69%和12.56%;总磷(PO43-P)的去除率分别为93.51%、82.38%和94.25%;对亚硝态氮的去除效果不明显;3株藻在5‰、10‰、20‰和30‰盐度的培养基中均可以正常生长。JY-1在养殖废水中的生长能力和对水体净化能力均优于小球藻SY-4和链带藻SH-1。  结论  小球藻JY-1对水产养殖废水具有较好的脱氮除磷效果。本研究为应用微藻进行养殖废水脱氮除磷处理提供了参考数据。
  • 图  1  3种微藻在不同盐度培养基中生长的最终细胞含量

    注:不同藻种之间无相同小写字母者表示差异达到显著水平;无相同大写字母者表示差异达到极显著水平。表1~5同。

    Figure  1.  Final cell densities of microalgae in media of varied salinities

    Note: Data with different lowercase letters indicate significant difference; data with different uppercase letters indicate very significant difference.The same as table 1-5.

    图  2  3株微藻在水产养殖废水中的细胞含量曲线图

    Figure  2.  Growth of microalgae in aquaculture wastewater

    表  1  3株微藻对水产养殖废水中总氮的去除效果

    Table  1.   Efficiency of total nitrogen removal by various microalgae (单位: mg·L−1

    藻种
    Species
    0 d 1 d 2 d 3 d 4 d 5 d5 d去除率
    removal rate/%
    SH-1 10.757±0.06 a 8.290±0.06 Dd 7.230±0.07 Cc 5.693±0.06 Cc 5.530±0.03 Cc 5.407±0.06 Cc 49.74
    JY-1 10.730±0.06 a 8.690±0.03 Cc 7.323±0.03 Cc 5.707±0.08 Cc 5.593±0.08 Cc 5.327±0.07 Cc 50.36
    SY-4 10.760±0.07 a 9.853±0.06 Bb 8.877±0.09 Bb 7.160±0.09 Bb 6.530±0.07 Bb 6.293±0.06 Bb 41.51
    CK 10.743±0.06 a 10.550±0.07 Aa 10.430±0.08 Aa 10.363±0.08 Aa 10.307±0.05 Aa 10.210±0.05 Aa 4.96
    下载: 导出CSV

    表  2  3株微藻对水产养殖废水中氨氮的去除效果

    Table  2.   Efficiency of NH4+-N removal by various microalgae (单位: mg·L−1

    藻种
    Species
    0 d 1 d 2 d 3 d 4 d 5 d5 d去除率
    removal rate/%
    SH-1 2.790±0.02 a 1.037±0.03 Dd 0.357±0.03 Cc 0.127±0.00 Cc 0.103±0.00 Cc 0.093±0.00 Cc 96.65
    JY-1 2.787±0.02 ab 1.347±0.05 Cc 0.310±0.03 Cc 0.127±0.01 Cc 0.117±0.00 Cc 0.103±0.00 Cc 96.29
    SY-4 2.763±0.02 ab 1.967±0.03 Bb 1.180±0.03 Bb 0.777±0.03 Bb 0.543±0.03 Bb 0.417±0.02 Bb 84.92
    CK 2.733±0.02 b 2.677±0.02 Aa 2.603±0.03 Aa 2.477±0.02 Aa 2.397±0.02 Aa 2.347±0.02 Aa 14.15
    下载: 导出CSV

    表  3  3株微藻对水产养殖废水中硝态氮的去除效果

    Table  3.   Efficiency of NO3-N removal by various microalgae (单位: mg·L−1

    藻种
    species
    0 d 1 d 2 d 3 d 4 d 5 d5 d去除率
    removal rate/%
    SH-1 3.980±0.03 a 3.937±0.02 a 3.870±0.03 b 3.723±0.02 Bc 3.623±0.02 Cc 3.480±0.03 Cc 12.56
    JY-1 3.977±0.02 a 3.920±0.02 a 3.850±0.03 b 3.587±0.03 Cd 3.457±0.02 Dd 3.347±0.02 Dd 15.84
    SY-4 3.937±0.02 a 3.950±0.02 a 3.910±0.01 ab 3.877±0.02 Ab 3.850±0.01 Bb 3.827±0.01 Bb 3.69
    CK 3.957±0.01 a 3.957±0.02 a 3.940±0.01 a 3.943±0.02 Aa 3.937±0.02 Aa 3.933±0.01 Aa 0.59
    下载: 导出CSV

    表  4  3株微藻对水产养殖废水中亚硝态氮的去除效果

    Table  4.   Efficiency of NO2-N removal by various microalgae (单位: mg·L−1

    藻种
    species
    0 d 1 d 2 d 3 d 4 d 5 d5 d去除率
    removal rate/%
    SH-1 0.100±0.00 a 0.103±0.00 a 0.110±0.00 a 0.130±0.01 Ab 0.143±0.00 Bb 0.163±0.00 Ab −63.33
    JY-1 0.100±0.00 a 0.107±0.00 a 0.107±0.00 ab 0.143±0.00 Aa 0.157±0.00 Aa 0.177±0.00 Aa −76.67
    SY-4 0.097±0.00 a 0.100±0.00 a 0.100±0.00 b 0.107±0.00 Bc 0.107±0.00 Cc 0.117±0.00 Bc −20.69
    CK 0.097±0.00 a 0.100±0.00 a 0.103±0.00 ab 0.100±0.00 Bc 0.103±0.00 Cc 0.103±0.00 Bd −6.90
    下载: 导出CSV

    表  5  3株微藻对水产养殖废水中总磷的去除效果

    Table  5.   Efficiency of total phosphate removal by various microalgae (单位: mg·L−1

    藻种
    species
    0 d 1 d 2 d 3 d 4 d 5 d5 d去除率
    removal
    rate/%
    SH-1 0.870±0.01 a 0.430±0.02 Cc 0.143±0.01 Dd 0.053±0.00 Cc 0.050±0.01 Cc 0.050±0.00 Cc 94.25
    JY-1 0.873±0.02 a 0.427±0.02 Cc 0.187±0.01 Cc 0.057±0.00 Cc 0.053±0.00 Cc 0.057±0.00 Cc 93.51
    SY-4 0.870±0.02 A 0.627±0.02 Bb 0.433±0.01 Bb 0.243±0.02 Bb 0.197±0.01 Bb 0.153±0.00 Bb 82.38
    CK 0.847±0.00 a 0.847±0.00 Aa 0.843±0.00 Aa 0.847±0.01 Aa 0.843±0.01 Aa 0.843±0.00 Aa 0.39
    下载: 导出CSV
  • [1] 中华人民共和环境保护部. 2016中国近岸海域环境质量公报[R]. 2017, 5.
    [2] 孙娟, 赵丹, 刘轶韵, 等. 富营养化水体的氮磷脱除技术进展 [J]. 金属世界, 2009(z1):83−87. doi: 10.3969/j.issn.1000-6826.2009.z1.025

    SUN J, ZHAO D, LIU Y Y, et al. Water eutrophication and the progress of nitrogen and phosphorus removal [J]. Metal World, 2009(z1): 83−87.(in Chinese) doi: 10.3969/j.issn.1000-6826.2009.z1.025
    [3] SAMORÌ G, SAMORÌ C, GUERRINI F, et al. Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: Part I [J]. Water Research, 2013, 47(2): 791−801. doi: 10.1016/j.watres.2012.11.006
    [4] NIRBHAY K S, DOLLY W D. Microalgal Remediation of Sewage Effluent [J]. Proceedings of the Indian National Science Academy, 2010, 76(4): 209−221.
    [5] 冯思然, 朱顺妮, 王忠铭. 微藻污水处理研究进展 [J]. 环境工程, 2019, 37(4):57−62, 6.

    FENG S R, ZHU S N, WANG Z M. Microalgal wastewater treatment: A review [J]. Environmental Engineering, 2019, 37(4): 57−62, 6.(in Chinese)
    [6] 蔡卓平, 段舜山, 朱红惠. “污水-微藻-能源”串联技术新进展 [J]. 生态环境学报, 2012, 21(7):1380−1386.

    CAI Z P, DUAN S S, ZHU H H. Recent advance on sewage-microalga-biofuel coupling technology [J]. Ecology and Environmnet, 2012, 21(7): 1380−1386.(in Chinese)
    [7] BARBOSA M, VALENTÃO P, ANDRADE P B. Bioactive compounds from macroalgae in the new millennium: Implications for neurodegenerative diseases [J]. Marine Drugs, 2014, 12(9): 4934−4972. doi: 10.3390/md12094934
    [8] CHRISTENSON L, SIMS R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts [J]. Biotechnology Advances, 2011, 29(6): 686−702. doi: 10.1016/j.biotechadv.2011.05.015
    [9] GHOSH A, KHANRA S, MONDAL M, et al. Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value added chemicals: A review [J]. Energy Conversion and Management, 2016, 113: 104−118. doi: 10.1016/j.enconman.2016.01.050
    [10] 丁一, 侯旭光, 郭战胜, 等. 固定化小球藻对海水养殖废水氮磷的处理 [J]. 中国环境科学, 2019, 39(1):336−342. doi: 10.3969/j.issn.1000-6923.2019.01.039

    DING Y, HOU X G, GUO Z S, et al. Studies on the treatment of nitrogen and phosphorus in seawater aquaculture wastewater by immobilized Chlorella [J]. China Environmental Science, 2019, 39(1): 336−342.(in Chinese) doi: 10.3969/j.issn.1000-6923.2019.01.039
    [11] 马航, 李之鹏, 柳峰, 等. 微藻膜反应器处理海水养殖废水性能及膜污染特性 [J]. 环境科学, 2019, 40(4):1865−1870.

    MA H, LI Z P, LIU F, et al. Pollutant removal performance and membrane fouling characteristics in marine aquaculture wastewater treatment by a microalgae membrane reactor [J]. Environmental Science, 2019, 40(4): 1865−1870.(in Chinese)
    [12] EL-KASSAS H Y, HENEASH A M M, HUSSEIN N R. Cultivation of Arthrospira (Spirulina) platensis using confectionary wastes for aquaculture feeding [J]. Journal, genetic engineering & biotechnology, 2015, 13(2): 145−155.
    [13] 马瑞阳, 葛成军, 王珺, 等. 藻–菌单一及共生系统对海水养殖尾水的净化作用 [J]. 中国水产科学, 2019, 26(6):1126−1135.

    MA R Y, GE C J, WANG J, et al. Purification of mariculture wastewater by utilizing single and sym-biotic systems of microalgae-bacteria treatment technology [J]. Journal of Fishery Sciences of China, 2019, 26(6): 1126−1135.(in Chinese)
    [14] 李水根. 福建省水产品质量安全现状与建议 [J]. 渔业研究, 2020, 42(2):172−178.

    LI S G. The status and proposal of quality safety management to aquatic products in Fujian Province [J]. Journal of Fisheries Research, 2020, 42(2): 172−178.(in Chinese)
    [15] 国家环保总局, 水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社, 2002.
    [16] DE-BASHAN L E, MORENO M, HERNANDEZ J P, et al. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense [J]. Water Research, 2002, 36(12): 2941−2948. doi: 10.1016/S0043-1354(01)00522-X
    [17] 刘林林, 黄旭雄, 危立坤, 等. 15株微藻对猪场养殖污水中氮磷的净化及其细胞营养分析 [J]. 环境科学学报, 2014, 34(8):1986−1994.

    LIU L L, HUANG X X, WEI L K, et al. Removal of nitrogen and phosphorus by 15 strains of microalgae and their nutritional values in piggery sewage [J]. Acta Scientiae Circumstantiae, 2014, 34(8): 1986−1994.(in Chinese)
    [18] 李昂. 污水处理优势微藻株的筛选及Desmodesmus sp.WC08扩培工艺与产物利用研究[D]. 海口: 海南大学, 2017.

    LI A. Screening of Microalgae Strains for Sewage Treatment and the Study on Enlarge Culture Technology, Biomass Utilization of Desmodesmus sp. WC08[D]. Haikou: Hainan university, 2017. (in Chinese)
    [19] WANG M Z, YANG Y, CHEN Z H, et al. Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae [J]. Bioresource Technology, 2016, 222: 130−138. doi: 10.1016/j.biortech.2016.09.128
    [20] 张波, 崔梦瑶, 张安龙, 等. 适于生活废水中快速生长的微藻筛选及其培养条件优化 [J]. 陕西科技大学学报, 2019, 37(3):21−26. doi: 10.3969/j.issn.1000-5811.2019.03.004

    ZHANG B, CUI M Y, ZHANG A L, et al. Screening of microalgae strains with rapid growth ability in domestic wastewater and optimization of culture conditions [J]. Journal of Shaanxi University of Science & Technology, 2019, 37(3): 21−26.(in Chinese) doi: 10.3969/j.issn.1000-5811.2019.03.004
    [21] PAN Y Y, WANG S T, CHUANG L T, et al. Isolation of thermo-tolerant and high lipid content green microalgae: Oil accumulation is predominantly controlled by photosystem efficiency during stress treatments in Desmodesmus [J]. Bioresource Technology, 2011, 102(22): 10510−10517. doi: 10.1016/j.biortech.2011.08.091
    [22] 刘娥, 刘兴国, 王小冬, 等. 固定化藻菌净化水产养殖废水效果及固定化条件优选研究 [J]. 上海海洋大学学报, 2017, 26(3):422−431. doi: 10.12024/jsou.20160701837

    LIU E, LIU X G, WANG X D, et al. Study on efficiency of purifying the aquacultural waste water with immobilized alga-bacteria system and immobilization conditions optimization [J]. Journal of Shanghai Ocean University, 2017, 26(3): 422−431.(in Chinese) doi: 10.12024/jsou.20160701837
    [23] 朱树峰, 于茵, 胡洪营. 混合培养对城市污水厂二级出水培养能源微藻的生长促进作用 [J]. 生态环境学报, 2014, 23(4):642−648. doi: 10.3969/j.issn.1674-5906.2014.04.016

    ZHU S F, YU Y, HU H Y. Effects on the growth characteristic by mixed culture of three energy microalgae species using domestic secondary effluent [J]. Ecology and Environment Sciences, 2014, 23(4): 642−648.(in Chinese) doi: 10.3969/j.issn.1674-5906.2014.04.016
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  801
  • HTML全文浏览量:  294
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-29
  • 修回日期:  2020-10-27
  • 网络出版日期:  2020-11-24
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回