• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

本氏烟中与番茄斑萎病毒N蛋白互作的寄主因子的筛选

苗淑月 高晓晓 郑立敏 陈建斌 赵星月 程菊娥 陈莎 章松柏 刘勇

苗淑月,高晓晓,郑立敏,等. 本氏烟中与番茄斑萎病毒N蛋白互作的寄主因子的筛选 [J]. 福建农业学报,2021,36(2):221−227 doi: 10.19303/j.issn.1008-0384.2021.02.013
引用本文: 苗淑月,高晓晓,郑立敏,等. 本氏烟中与番茄斑萎病毒N蛋白互作的寄主因子的筛选 [J]. 福建农业学报,2021,36(2):221−227 doi: 10.19303/j.issn.1008-0384.2021.02.013
MIAO S Y, GAO X X, ZHENG L M, et al. Host Factors in Tobacco Interacting with N Protein of Tomato Spotted Wilt Virus [J]. Fujian Journal of Agricultural Sciences,2021,36(2):221−227 doi: 10.19303/j.issn.1008-0384.2021.02.013
Citation: MIAO S Y, GAO X X, ZHENG L M, et al. Host Factors in Tobacco Interacting with N Protein of Tomato Spotted Wilt Virus [J]. Fujian Journal of Agricultural Sciences,2021,36(2):221−227 doi: 10.19303/j.issn.1008-0384.2021.02.013

本氏烟中与番茄斑萎病毒N蛋白互作的寄主因子的筛选

doi: 10.19303/j.issn.1008-0384.2021.02.013
基金项目: 国家自然科学基金(31871935);国家重点研发计划政府间/港澳台重点专项项目(2018YFE0112600);湖南省农业科技创新资金项目(2020CX38);湖南省自然科学基金(2019JJ50143);湖南省教育厅科学研究项目(18C0491、20C0588);长沙市杰出创新青年培养计划
详细信息
    作者简介:

    苗淑月(1995−),女,硕士研究生,研究方向:植物病毒与分子生物学(E-mail:1724711842@qq.com

    通讯作者:

    章松柏(1978-),男,博士,副教授,研究方向:分子病毒学(E-mail:yangtze2008@126.com

    刘勇(1966-),男,博士,研究员,研究方向:主要从事蔬菜病害致害机制及绿色综合防控技术研究(E-mail:liuyong@hunaas.cn

  • 中图分类号: S 436.412.1+1

Host Factors in Tobacco Interacting with N Protein of Tomato Spotted Wilt Virus

  • 摘要:   目的  番茄斑萎病毒(Tomato spotted wilt virus, TSWV)是植物多分体负义链RNA病毒的代表性成员。TSWV的N蛋白在病毒感染的寄主植物内表达量高,可能调控病毒对寄主的感病,探究N蛋白通过影响哪些寄主蛋白的表达来完成病毒的侵染,以期为深入解析寄主蛋白调控病毒的分子机制提供理论基础,为后续有效的防控TSWV提供新的思路。  方法  以TSWV N蛋白作为诱饵蛋白,采用酵母双杂交(Yeast two-hybrid, Y2H)的方法筛选本氏烟内与TSWV N相互作用的寄主蛋白。  结果  共筛选获得15种与TSWV N相互作用的寄主蛋白。  结论  这些介体因子主要参与色素的生物合成、类囊体膜的组装、植物防御反应和核糖体生物发生的过程,调节脂质代谢和细胞功能,可能是翻译调控的辅助蛋白,在植物发育和对非生物胁迫的反应中发挥着重要作用。
  • 图  1  N蛋白在酵母细胞中的自激活验证

    注:a. 诱饵载体pGBKT7-N和空载体pGBKT7、阳性对照、阴性对照在SD/-Trp/-Leu营养缺陷型培养基上的生长情况。b. 诱饵载体pGBKT7-N和空载体pGBKT7、阳性对照、阴性对照在SD/-Trp/-Leu/-His/-Ade营养缺陷型培养基上的生长情况。c. 诱饵载体pGBKT7-N和空载体pGBKT7、阳性对照、阴性对照SD/-Trp/-Leu/-His/-Ade/X-ɑ-gal营养缺陷型培养基上的生长情况。A为pGBKT7-53和pGADT7-T;B为pGBKT7-N和pGADT7;C为pGBKT7-Lam和pGADT7-T。

    Figure  1.  Verification of self-activation of N protein in yeast cells

    Note: a: Growth of bait vector pGBKT7-N, empty vector pGBKT7, and positive and negative controls on SD/-Trp/-Leu nutrient-deficient medium. b: Growth of bait vector pGBKT7-N, empty vector pGBKT7, and positive and negative controls on SD/-Trp/-Leu/-His/-Ade nutrient-deficient medium. c: Growth of bait vector pGBKT7-N, empty vector pGBKT7, and positive and negative controls on SD/-Trp/-Leu/-His/-Ade/X-α-gal nutrient-deficient medium. A: pGBKT7-53 and pGADT7-T. B: pGBKT7-N and pGADT7. C: pGBKT7 Lam and pGADT7-T.

    图  2  Western blot检测N蛋白在酵母内的表达情况

    注:M为17-180 kDa蛋白分子标记。

    Figure  2.  Expression of N protein in yeast as detected by Western blot

    Note: M: 17-180kDa protein molecular marker.

    图  3  酵母结合体

    Figure  3.  Yeast complexes

    图  4  酵母菌在四缺培养基上的生长情况

    注:a为酵母菌在SD/-Trp/-Leu/-His/-Ade营养缺陷型培养基上的生长情况;b为酵母菌在SD/-Trp/-Leu/-His/-Ade/X-α-Gal营养缺陷型培养基上的生长情况;c为酵母菌在SD/-Trp/-Leu/-His/-Ade/X-α-Gal/AbA营养缺陷型培养基上的生长情况。

    Figure  4.  Growth of yeast on 4 nutrient-deficient culture media

    Note: a: Growth of yeast on SD/-Trp/-Leu/-His/-Ade nutrient-deficient medium. b: Growth of yeast on SD/-Trp/- Leu/-His/-Ade/X-α-gal nutrient-deficient medium. C: Growth of yeast on SD/-Trp/-Leu/-His/-Ade/X-α-gal/AbA nutrient-deficient medium.

    图  5  阳性克隆的PCR检测

    注:M为DNA分子标记2K plus Ⅱ;1-14为酵母阳性克隆。

    Figure  5.  PCR detection of positive clones

    Note: M: DNA molecular marker, 2K plus Ⅱ. 1-14: Positive clones of yeast.

    表  1  与TSWV N蛋白互作的15个候选蛋白

    Table  1.   Fifteen candidate proteins that interacted with N protein of TSWV

    蛋白种类
    Protein types
    蛋白大小/aa
    Length of protein
    GeneBank登录号
    GeneBank No.
    叶绿素a-b结合蛋白16 Chlorophyll a-b binding protein 16 266 XP_016448384.1
    叶绿素a-b结合蛋白Chlorophyll a-b binding protein 270 XP_016501042.1
    叶绿素a-b结合蛋白50 Chlorophyll a-b binding protein 50, 267 XP_016445667.1
    叶绿素a-b结合蛋白CP 26 Chlorophyll a-b binding protein CP 26 285 NP_001312267.1
    二磷酸核酮糖羧化加氧酶小链Rubisco ribulose-1,5-bisphosphate carboxylase oxygenase small chain Rubisco 123 1RLC_S
    叶绿素a-b结合蛋白21 Chlorophyll a-b binding protein 21 265 XP_016487828.1
    30S核糖体蛋白S6 30S ribosomal protein S6 alpha 199 XP_016444523.1
    光系统I反应中心亚基II Photosystem I reaction center subunit II 214 XP_016455922.1
    酰基辅酶A结合蛋白Acyl-coa-binding protein 89 XP_016464154.1
    脂质转移蛋白Lipid transfer protein 120 AAA21437.1
    非特异性脂转移蛋白2 Non-specific lipid-transfer protein 2-like 121 XP_016490998.1
    多蛋白桥接因子1b Multiprotein-bridging factor 1b-like 140 XP_016470347.1
    衰减核糖体生物发生蛋白BRX1同源物Ribosome biogenesis protein BRX1 homolog 315 XP_016510339.1
    细胞分裂周期蛋白48同源物Cell division cycle protein 48 homolog 811 XP_009782020.1
    硫胺噻唑合酶Thiamine thiazole synthase 359 XP_016477305.1
    下载: 导出CSV
  • [1] DAVISON A, SIDDELL S, MUSHEGIAN A, et al. Virus Taxonomy[S]. International Committee on Taxonomy of Viruse, 2019.
    [2] PARRELLA G, GOGNALONS P, GEBRE-SELASSIE K, et al. An update of the host range of tomato spotted wilt virus [J]. Journal of Plant Pathology, 2003, 85(4): 227−264.
    [3] SCHOLTHOF K B G, ADKINS S, CZOSNEK H, et al. Top 10 plant viruses in molecular plant pathology [J]. Molecular Plant Pathology, 2011, 12(9): 938−954. doi: 10.1111/j.1364-3703.2011.00752.x
    [4] PRINS M, GOLDBACH R. The emerging problem of Tospovirus infection and nonconventional methods of control [J]. Trends in Microbiology, 1998, 6(1): 31−35. doi: 10.1016/S0966-842X(97)01173-6
    [5] CULBREATH A K, CSINOS A S, BERTRAND P F, et al. Tomato spotted wilt virus epidemic in fluecured tobacco in Georgia [J]. Plant Disease, 1991, 75: 483−485. doi: 10.1094/PD-75-0483
    [6] HU Z Z, FENG Z K, ZHANG Z J, et al. Complete genome sequence of a tomato spotted wilt virus isolate from China and comparison to other TSWV isolates of different geographic origin [J]. Archives of Virology, 2011, 156(10): 1905−1908. doi: 10.1007/s00705-011-1078-9
    [7] LIAN S, LEE J S, CHO W K, et al. Phylogenetic and recombination analysis of tomato spotted wilt virus [J]. PLoS One, 2013, 8(5): e63380. doi: 10.1371/journal.pone.0063380
    [8] SIVPRASAD B J, GUBBA A. Isolation and molecular characterization of Tomato spotted wilt virus (TSWV) isolates occurring in South Africa [J]. African Journal of Agricultural Research, 2008(3): 428−434.
    [9] NAGATA T, INOUE-NAGATA A K, PRINS M, et al. Impeded Thrips Transmission of Defective Tomato spotted wilt virus Isolates [J]. Phytopathology, 2000, 90(5): 454−459. doi: 10.1094/PHYTO.2000.90.5.454
    [10] TURINA M, KORMELINK R, RESENDE R O. Resistance to tospoviruses in vegetable crops: Epidemiological and molecular aspects [J]. Annual Review of Phytopathology, 2016, 54: 347−371. doi: 10.1146/annurev-phyto-080615-095843
    [11] WHITFIELD A E, KUMAR N K K, ROTENBERG D, et al. A soluble form of the Tomato spotted wilt virus (TSWV) glycoprotein G(N) (G(N)-S) inhibits transmission of TSWV by Frankliniella occidentalis [J]. Phytopathology, 2008, 98(1): 45−50. doi: 10.1094/PHYTO-98-1-0045
    [12] GUO Y, LIU B C, DING Z Z, et al. Distinct mechanism for the formation of the ribonucleoprotein complex of tomato spotted wilt virus [J]. Journal of Virology, 2017, 91(23): e00892. doi: 10.1128/jvi.00892-17
    [13] RICHMOND K E, CHENAULT K, SHERWOOD J L, et al. Characterization of the nucleic acid binding properties of tomato spotted wilt virus nucleocapsid protein [J]. Virology, 1998, 248(1): 6−11. doi: 10.1006/viro.1998.9223
    [14] SOELLICK T R, UHRIG J F, BUCHER G L, et al. The movement protein NSm of tomato spotted wilt Tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins [J]. PNAS, 2000, 97(5): 2373−2378. doi: 10.1073/pnas.030548397
    [15] RIBEIRO D, BORST J W, GOLDBACH R, et al. Tomato spotted wilt virus nucleocapsid protein interacts with both viral glycoproteins Gn and Gc in planta [J]. Virology, 2009, 383(1): 121−130. doi: 10.1016/j.virol.2008.09.028
    [16] KORMELINK R, STORMS M, VAN LENT J, et al. Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein [J]. Virology, 1994, 200(1): 56−65. doi: 10.1006/viro.1994.1162
    [17] FENG Z K, CHEN X J, BAO Y Q, et al. Nucleocapsid of Tomato spotted wilt Tospovirus forms mobile particles that traffic on an actin/endoplasmic Reticulum network driven by myosin XI-K [J]. The New Phytologist, 2013, 200(4): 1212−1224. doi: 10.1111/nph.12447
    [18] MARIS P C, JOOSTEN N N, GOLDBACH R W, et al. Restricted Spread of Tomato spotted wilt virus in Thrips-Resistant Pepper [J]. Phytopathology, 2003, 93(10): 1223−1227. doi: 10.1094/PHYTO.2003.93.10.1223
    [19] JAN F J, FAGOAGA C, PANG S Z, et al. A minimum length of N gene sequence in transgenic plants is required for RNA-mediated Tospovirus resistance [J]. The Journal of General Virology, 2000, 81(1): 235−242.
    [20] DE BUCK E, LEBEAU I, VAN MELLAERT L, et al. The use of the cMyc epitope tag can be problematic for protein detection in Legionella pneumophila [J]. Journal of Microbiological Methods, 2004, 59(1): 131−134. doi: 10.1016/j.mimet.2004.05.010
    [21] GREEN B R, PICHERSKY E, KLOPPSTECH K. Chlorophyll a/b-binding proteins: An extended family [J]. Trends in Biochemical Sciences, 1991, 16(5): 181−186.
    [22] CROCE R, CANINO G, ROS F, et al. Chromophore organization in the higher-plant photosystem II antenna protein CP26 [J]. Biochemistry, 2002, 41(23): 7334−7343. doi: 10.1021/bi0257437
    [23] SCHWARTE S, TIEDEMANN R. A gene duplication/loss event in the ribulose-1,5-bisphosphate-carboxylase/oxygenase (rubisco) small subunit gene family among accessions of Arabidopsis thaliana [J]. Molecular Biology and Evolution, 2011, 28(6): 1861−1876. doi: 10.1093/molbev/msr008
    [24] 欧志远. 叶绿素含量与植物抗病性的关系 [J]. 安徽农学通报, 2007, 13(6):134−135. doi: 10.3969/j.issn.1007-7731.2007.06.075

    OU Z Y. Relationship of chlorophyll contents and plant disease-resistance [J]. Auhui Agricultural Science Bulletin, 2007, 13(6): 134−135.(in Chinese) doi: 10.3969/j.issn.1007-7731.2007.06.075
    [25] TILLER N, WEINGARTNER M, THIELE W, et al. The plastid-specific ribosomal proteins of Arabidopsis thaliana can be divided into non-essential proteins and genuine ribosomal proteins [J]. The Plant Journal, 2012, 69(2): 302−316. doi: 10.1111/j.1365-313X.2011.04791.x
    [26] BOGENGRUBER E, BRIZA P, DOPPLER E, et al. Functional analysis in yeast of the Brix protein superfamily involved in the biogenesis of ribosomes [J]. FEMS Yeast Research, 2003, 3(1): 35−43. doi: 10.1016/S1567-1356(02)00193-9
    [27] COHEN Y, STEPPUHN J, HERRMANN R G, et al. Insertion and assembly of the precursor of subunit II into the photosystem I complex may precede its processing [J]. The EMBO Journal, 1992, 11(1): 79−85. doi: 10.1002/j.1460-2075.1992.tb05030.x
    [28] LUNG S C, CHYE M L. The binding versatility of plant acyl-CoA-binding proteins and their significance in lipid metabolism [J]. Biochimica et Biophysica Acta, 2016, 1861(9 Pt B): 1409−1421.
    [29] SAFI H, SAIBI W, ALAOUI M M, et al. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana [J]. Plant Physiology and Biochemistry, 2015, 89: 64−75. doi: 10.1016/j.plaphy.2015.02.008
    [30] ZHAO J, WANG S S, QIN J J, et al. The lipid transfer protein OsLTPL159 is involved in cold tolerance at the early seedling stage in rice [J]. Plant Biotechnology Journal, 2020, 18(3): 756−769. doi: 10.1111/pbi.13243
    [31] ZHANG L L, WANG Y X, ZHANG Q K, et al. Overexpression of HbMBF1a, encoding multiprotein bridging factor 1 from the halophyte Hordeum brevisubulatum, confers salinity tolerance and ABA insensitivity to transgenic Arabidopsis thaliana [J]. Plant Molecular Biology, 2020, 102(1/2): 1−17.
    [32] LIANG K, PAREDES R, CARMODY R, et al. Human TRIB2 oscillates during the cell cycle and promotes ubiquitination and degradation of CDC25C [J]. International Journal of Molecular Sciences, 2016, 17(9): 1378. doi: 10.3390/ijms17091378
    [33] FENG X X, YANG S X, TANG K Q, et al. GmPGL1, a thiamine thiazole synthase, is required for the biosynthesis of thiamine in soybean [J]. Frontiers in Plant Science, 2019, 10: 1546. doi: 10.3389/fpls.2019.01546
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1478
  • HTML全文浏览量:  289
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 修回日期:  2020-12-02
  • 网络出版日期:  2021-02-08
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回