Genetic Diversity on Phenotypes of Blumea balsamifera Germplasms
-
摘要:
目的 分析艾纳香种质资源表型性状的多样性,为良种选育提供科学依据。 方法 以159份艾纳香种质资源为材料,进行9个数量性状和13个质量性状的测定,并采用遗传多样性分析、相关性分析、主成分分析和聚类分析等方法进行遗传多样性分析。 结果 数量性状中遗传多样性指数最高的是株高(2.072),变异系数最大的是花枝数(32.76%);质量性状中遗传多样性指数最高的是叶片形状(1.201)。相关性分析表明,在数量性状中,冠幅与株高、叶宽、叶柄长度、花枝长度、花枝开张角度呈极显著正相关(P<0.01);在质量性状中,叶脉花青苷显色强度与主茎花青苷显色强度、叶片边缘花青苷显色强度和叶柄花青苷显色强度呈极显著正相关(P<0.01)。前8个主成分的累计贡献率达到64.32%,根据各性状的载荷量大小将各因子依次命名为产量因子、显色因子、叶光滑度因子、叶片边缘因子、叶片形状因子、叶片绿色因子和花枝角度因子。基于表型性状,以离差平方和法在遗传距离为10处将供试材料分为3个类群,类群Ⅰ有39份材料,占总数的24.53%;类群Ⅱ有38份材料,占总数的23.90%;群Ⅲ有82份材料,占总数的51.57%。 结论 159份艾纳香种质资源的表型性状具有丰富的遗传多样性,叶片形状的变异类型较为丰富,叶宽可作为日后选育高产艾纳香种质的指导目标性状。 Abstract:Objective The diversified phenotypic characteristics of Blumea balsamifera (L.) DC. germplasms were classified to facilitate the breeding program. Method Nine quantifiable and 13 quality phenotypic traits of the plant were used to describe the 159 germplasm samples of B. balsamifera. Genetic diversity, correlation, principal component, and cluster analyses were applied for the study. Result The genetic diversity on phenotypic characteristics of the collected germplasms was rich. Among the quantifiable traits, plant height had the highest genetic diversity index of 2.072; and, number of flowering branches topped the coefficient of variation at 32.76%. The crown breadth of the plants was found significantly correlated with the height, leaf width, petiole length, length of flower branch, and opening angle of flower branch (P<0.01). On the quality traits, the highest genetic diversity index of 1.201 was the leaf shape. And, the color intensity of anthocyanin in leaf vein and that in main stem, as well as, those in leaf edge and petiole were significantly correlated. The cumulative contribution rate of the first eight principal components reached 64.32%. They included the factors associated with yield, color-intensity, leaf smoothness, leaf edge, leaf shape, leaf greenness, and flower-branch angle. Based on the phenotypic traits, the sum of squares deviations method using the genetic distance of 10 on the germplasms divided the 159 varieties into Group Ⅰ of 39 that accounted for 24.53% of the total, Group Ⅱ of 38 that accounted for 23.90% of the total, and Group Ⅲ of 82 that accounted for 51.57% of the total. Conclusion Genetically, the phenotypic characteristics of the 159 B. balsamifera germplasms appeared richly diversified. The leaf width of the plants could be the most outstanding trait for breeding selection of high-yield B. balsamifera varieties. -
表 1 供试材料来源地
Table 1. Source of germplasms
来源地点
Source location份数
Accessions序号
Number来源地点
Source location份数
Accessions序号
Number广西隆林县 Longlin, Guangxi 1 139 贵州贞丰县 Zhenfeng, Guizhou 4 152~155 广西南宁市 Nanning, Guangxi 2 156、157 海南儋州市 Danzhou, Hainan 57 24~34、45~90 广西田林县 Tianlin, Guangxi 10 140~149 海南琼中县 Qiongzhong, Hainan 11 91~98、136~138 广西西林县 Xilin, Guangxi 2 150、151 海南屯昌县 Tunchang, Hainan 4 132~135 贵州罗甸县 Luodian, Guizhou 66 1~23、35~44、99~131 海南万宁市 Wanning, Hainan 2 158、159 表 2 艾纳香表型性状评价指标
Table 2. Evaluation criteria on phenotypes of B. balsamifera
性状
Traits评价标准
Evaluation criteria株高
Plant height(PH)地面根茎到植株最高点的垂直高度
The vertical height of the ground rhizome to the highest point of the plant冠幅
Crown breadth(CB)植株中心相互垂直的长径与短径,取平均值
The long and short diameters perpendicular to each other in the center of the plant, averaged叶长
Leaf length(LL)叶片基部与叶柄连接处至叶基之间的距离
The distance between the base of leaf and petiole junction to leaf base叶宽
Leaf width(LW)功能叶片的最宽处距离
The widest distance of the functional leaf叶片厚度
Leaf thickness(LT)用叶片厚度测量仪测量功能叶片的厚度
The thickness of the functional leaf was measured with a blade thickness gauge叶柄长度
Petiole length(PL)功能叶片的叶轴基部至叶片基部的距离
The distance from the base of rachis of a functional leaf to leaf base花枝数量
Number of flower-branches(NFB)在一个完整的聚伞圆锥花序上,着生在主花序轴上的花枝数量,取平均值
On a complete cymose panicle, the number of branches on the main inflorescence axis, averaged花枝长度
Length of flower branch(LFB)在一个完整的聚伞圆锥花序上,从第一枝小花枝着生处到花序顶端的垂直距离,取平均值
On a complete cymose panicle, the vertical distance from the first florets to the top of the inflorescence, averaged花枝开张角度
Opening angle of flower-branch(OAFB)在一个完整的聚伞圆锥花序的顶端着生的花枝间最大的夹角,取平均值
The largest Angle between the branches growing at the tip of a complete cymose panicle, averaged主茎花青苷显色强度
Color intensity of anthocyanin in main stem(CIAMS)无或极弱=1,弱=2,中=3
Absent or very weak=1, weak=2, medium=3叶片绿色程度
Leaf blade green color intensitiy(LBGCI)浅=1,中=2,深=3
Light=1, medium=2, dark=3叶片光滑度
Leaf smoothness(LSt)低=1,中=2,高=3
Low=1, medium=2, high=3叶片形状
Leaf shape(LS)披针形=1,长卵形=2,卵圆形=3,长椭圆形=4,椭圆形=5
Lanceolate=1, long onvate=2, obvate=3, oblong=4, elliptic=5叶基形状
Leaf base shape(LBS)楔形=1,渐狭形=2,偏斜形=3
Cuneate=1, attenuate=2, oblique=3叶片边缘花青苷显色强度
Color intensity of anthocyanin in leaf magrin(CIALM)无或极弱=1,弱=2,中=3
Absent or very weak=1, weak=2, medium=3叶片边缘缺刻程度
Leaf margin incision(LMI)浅=1,中=2,深=3
Shallow=1, medium=2, deep=3叶缘波缘状程度
Leaf margin undulation(LMU)低=1,中=2,高=3
Low=1, medium=2, high=3叶脉花青苷显色强度
Color intensity of anthocyanin in leaf vein(CIALV)无或极弱=1,弱=2,中=3
Absent or very weak=1, weak=2, medium=3侧脉明显程度
Degree of lateral veins(DLV)不明显=1,明显=2
Inconspicuous=1, conspicuous=2叶柄花青苷显色强度
Color intensity of anthocyanin in petiole(CIAP)无或极弱=1,弱=2,中=3
Absent or very weak=1, weak=2, medium=3植株姿态
Plant attitude(PA)直立=1,开张=2,披散=3
Upright=1, spreading=2, loose=3花期:盛花期
Full-bloom stage(FBS)早=1,中=2,晚=3
Early=1, medium=2, late=3表 3 159份艾纳香数量性状的遗传变异分析
Table 3. Genetic variation on quantifiable traits of B. balsamifera
性状 Traits 最大值 Max 最小值 Min 平均值 Mean 标准差 SD 变异系数 CV/% 遗传多样性指数 H' 株高 PH/cm 295 81 188.15 43.98 23.37 2.072 冠幅 CB/cm 250 63 156.18 38.42 24.60 2.069 叶长 LL/cm 31.68 17.15 24.53 2.53 10.32 1.985 叶宽 LW/cm 13.52 4.07 9.25 1.54 16.60 1.930 叶片厚度 LT/mm 0.52 0.35 0.43 0.03 7.25 2.036 叶柄长度 PL/cm 5.07 2.38 3.24 0.50 15.34 1.976 花枝数量 NFB/个 10.17 1.17 5.68 1.86 32.76 2.028 花枝长度 LFB/cm 48.62 15.8 32.35 5.79 17.88 1.982 花枝开张角度 OAFB/° 145 115 133.75 4.63 3.46 1.928 表 4 159份艾纳香质量性状的遗传变异分析
Table 4. Genetic variation on quality traits of B. balsamifera
性状
Traits级别
Grade赋值标准
Evaluation分布频率/%
Frequency遗传多样性指数
H'主茎花青苷显色强度 CIAMS 无或极弱 Absent or very weak 1 73.58 0.607 弱 Weak 2 25.79 中 Medium 3 0.63 叶片绿色程度 LBGCI 浅 Light 1 14.47 0.781 中 Medium 2 72.33 深 Dark 3 13.21 叶片光滑度 LSt 低 Low 1 17.61 0.885 中 Medium 2 65.41 高 High 3 16.98 叶片形状 LS 披针形 Lanceolate 1 20.13 1.201 长卵形 Long obvate 2 58.49 卵圆形 Obvate 3 7.55 长椭圆形 Oblong 4 6.92 椭圆形 Elliptic 5 6.92 叶基形状 LBS 楔形 Cuneate 1 88.05 0.427 渐狭 Attenuate 2 9.43 偏斜形 Oblique 3 2.52 叶片边缘花青苷显色强度 CIALM 无或极弱 Absent or very weak 1 27.04 0.852 弱 Weak 2 64.15 中 Medium 3 8.81 叶片边缘缺刻程度 LMI 浅 Shallow 1 68.55 0.653 中 Medium 2 30.82 深 Deep 3 0.63 叶缘波缘状程度 LMU 低 Low 1 49.69 0.883 中 Medium 2 44.03 高 High 3 6.29 叶脉花青苷显色强度 CIALV 无或极弱 Absent or very weak 1 76.10 0.643 弱 Weak 2 20.75 中 Medium 3 3.14 侧脉明显程度 PLV 不明显 Inconspicuous 1 75.47 0.557 明显 Conspicuous 2 24.53 叶柄花青苷显色强度 CIAP 无或极弱 Absent or very weak 1 81.76 0.536 弱 Weak 2 16.35 中 Medium 3 1.89 植株姿态 PA 直立 Upright 1 62.26 0.924 开张 Spreading 2 18.87 披散 Loose 3 18.87 盛花期 FBS 早 Early 1 11.95 0.888 中 Medium 2 64.15 晚 Late 3 25.79 表 5 艾纳香9个数量性状的相关分析
Table 5. Correlation among 9 quantifiable traits of B. balsamifera
性状 Traits 株高 PH 冠幅 CB 叶长 LL 叶宽 LW 叶片厚度 LT 叶柄长度 PL 花枝数量 NFB 花枝长度 LFB 花枝开张角度 OAFB 株高 PH 1 冠幅 CB 0.670** 1 叶长 LL 0.002 0.022 1 叶宽 LW 0.302** 0.402** 0.541** 1 叶片厚度 LT 0.214** 0.092 0.095 0.254** 1 叶柄长度 PL 0.149 0.320** 0.446** 0.506** 0.021 1 花枝数量 NFB −0.172* −0.066 0.137 −0.05 0.03 −0.058 1 花枝长度 LFB 0.413** 0.531** −0.031 0.303** 0.173* 0.256** 0.083 1 花枝开张角度 OAFB 0.038 0.206** 0.007 0.134 0.071 0.06 −0.04 0.246** 1 注:**表示在0.01水平(双侧)上极显著相关。*表示在0.05水平(双侧)上显著相关,表6同。
Note:** was significantly correlated at the 0.01 level(bilateral). * significant correlation at the 0.05 level(bilateral). The same as table 6.表 6 艾纳香13个质量性状的相关分析
Table 6. Correlation among 13 quality traits of B. balsamifera
性状
Traits主茎
花青苷
显色
强度
CIAMS叶片
绿色
程度
LBGCI叶片
光滑度
LSt叶片
形状
LS叶基
形状
LBS叶片
边缘
花青苷
显色
强度
CIALM叶片
边缘
缺刻程度
LMI叶缘波
缘状
程度
LMU叶脉
花青苷
显色
强度
CIALV侧脉
明显
程度
PLV叶柄
花青苷
显色
强度
CIAP植株
姿态
PA盛花期
FBS主茎花青苷显色强度 CIAMS 1 叶片绿色程度 LBGCI 0.014 1 叶片光滑度 LSt −0.157* 0.061 1 叶片形状 LS 0.097 −0.063 −0.320** 1 叶基形状 LBS −0.073 −0.020 −0.150 −0.001 1 叶片边缘花青苷显色强度 CIALM −0.052 −0.029 −0.022 −0.110 −0.101 1 叶片边缘缺刻程度 LMI 0.063 −0.034 −0.127 0.182* 0.020 0.007 1 叶缘波缘状程度 LMU 0.037 0.003 −0.148 −0.066 0.098 0.152 0.089 1 叶脉花青苷显色强度 CIALV 0.333** 0.083 −0.141 −0.040 −0.095 0.213** −0.02 0.276** 1 侧脉明显程度 PLV 0.238** 0.041 −0.218** 0.240** 0.048 −0.023 0.106 0.070 0.300** 1 叶柄花青苷显色强度 CIAP 0.627** 0.091 −0.091 0.013 0.046 −0.128 −0.096 0.067 0.452** 0.103 1 植株姿态 PA −0.145 0.047 −0.209** −0.036 0.210** 0.048 0.085 −0.143 −0.021 −0.038 −0.145 1 盛花期 FBS −0.045 0.085 −0.051 0.120 0.071 −0.276** −0.089 −0.163* −0.267** 0.112 −0.034 0.074 1 表 7 表型性状主成分分析
Table 7. Principal components of phenotypic traits
性状
Traits主成分 Principal component 1 2 3 4 5 6 7 8 冠幅 CB 0.772 −0.101 0.243 0.042 −0.144 −0.080 −0.039 0.062 叶宽 LW 0.701 −0.226 −0.260 0.003 0.387 0.129 0.012 −0.025 花枝长度 LFB 0.677 −0.065 0.248 0.091 −0.236 −0.345 −0.005 −0.106 株高 PH 0.667 −0.166 0.248 0.169 −0.308 0.162 −0.072 0.264 叶柄长度 PL 0.594 −0.084 −0.294 −0.115 0.329 0.001 0.198 −0.009 叶长 LL 0.351 −0.099 −0.497 0.029 0.591 −0.018 0.067 0.040 叶片厚度 LT 0.308 0.011 0.069 0.303 0.089 0.367 −0.194 0.089 花枝开张角度 OAFB 0.300 0.210 0.334 −0.026 0.144 0.001 0.086 −0.700 叶脉花青苷显色强度 CIALV 0.223 0.658 −0.238 −0.267 −0.228 0.073 0.099 0.106 主茎花青苷显色强度 CIAMS 0.196 0.732 −0.015 0.236 −0.067 0.142 0.003 0.032 叶片边缘花青苷显色强度 CIALM 0.176 −0.050 −0.149 −0.570 −0.381 0.144 −0.199 0.123 叶柄花青苷显色强度 CIAP 0.140 0.736 −0.140 0.313 −0.166 −0.081 0.261 0.016 植株姿态 PA 0.070 −0.194 0.474 −0.298 0.041 −0.020 0.399 0.164 叶缘波缘状程度 LMU 0.024 0.315 −0.233 −0.531 0.055 −0.182 0.084 −0.278 侧脉明显程度 PLV 0.020 0.496 0.195 −0.049 0.231 0.221 −0.130 0.366 叶基形状 LBS −0.038 −0.012 0.173 −0.079 0.192 −0.500 0.445 0.484 花枝数量 NFB −0.054 0.236 −0.308 0.433 0.075 −0.535 −0.142 0.056 叶片形状 LS −0.059 0.246 0.413 0.011 0.437 0.126 −0.416 0.071 叶片边缘缺刻程度 LMI −0.099 0.124 0.065 −0.317 0.389 −0.133 −0.360 0.147 叶片光滑度 LSt −0.137 −0.375 −0.555 0.337 −0.205 0.135 −0.020 0.071 叶片绿色程度 LBGCI −0.138 0.067 −0.103 −0.048 0.091 0.595 0.513 0.035 花期:盛花期 FBS −0.262 −0.064 0.421 0.395 0.238 0.076 0.261 −0.108 主成分特征根 Eigenvalue 2.922 2.331 1.910 1.635 1.585 1.386 1.249 1.133 贡献率Contribution rate/% 13.28 10.59 8.68 7.43 7.21 6.30 5.68 5.15 累计贡献率 Cumulative contribution rate/% 13.28 23.88 32.56 39.99 47.20 53.50 59.17 64.32 表 8 3个类群表型性状的平均值与特征
Table 8. Mean and characteristics of phenotypic traits of 3 classified groups
性状
Traits类群Ⅰ
Groups Ⅰ类群Ⅱ
Groups Ⅱ类群Ⅲ
Groups Ⅲ株高 PH/cm 191.49 192.74 184.44 冠幅 CB/cm 156.15 166.61 151.35 叶长 LL/cm 24.49 24.45 24.59 叶宽 LW/cm 9.03 9.25 9.35 叶片厚度 LT/mm 0.43 0.42 0.42 叶柄长度 PL/cm 3.25 3.30 3.22 花枝数量 NFB/个 5.76 4.94 5.98 花枝长度 LFB/cm 31.29 33.71 32.23 花枝开张角度 OAFB/° 134.08 134.30 133.34 主茎花青苷显色强度 CIAMS 无或极弱,弱
no or very weak, weak多为无或极弱
Most are no or very weak多为无或极弱
Most are no or very weak叶片绿色程度 LBGCI 多为中 Most are medium 多为中 Most are medium 多为中 Most are medium 叶片光滑度 LSt 多为中,次为低
Most are medium, next is low多为中,次为低
Most are medium, next is low多为中,次为高
Most are medium, next is high叶片形状 LS 多为长卵形,次为卵圆形
Most are oblong, next is ovoid in shape多为长卵形,次为披针形
Most are long obvate, next is lanceolate多为长卵形,次为披针形
Most are long obvate, next is lanceolate叶基形状 LBS 多为楔形 Most are wedge 多为楔形 Most are wedge 多为楔形 Most are wedge 叶片边缘花青苷显色强度 CIALM 多为弱 Most are weak 多为弱 Most are weak 多为弱 Most are weak 叶片边缘缺刻程度 LMI 多为浅 Most are shallow 多为浅 Most are shallow 多为浅 Most are shallow 叶缘波缘状程度 LMU 多为中 Most are medium 多为低 Most are low 多为低 Most are low 叶脉花青苷显色强度 CIALV 多为极弱 Most are very weak 多为极弱 Most are very weak 多为极弱 Most are very weak 侧脉明显程度 PLV 均为明显 All are conspicuous 均为不明显 All are inconspicuous 均为不明显 All are inconspicuous 叶柄花青苷显色强度 CIAP 多为极弱 Most are very weak 多为极弱 Most are very weak 多为极弱,但含中等
Most are very weak, but have medium植株姿态 PA 多为直立 Most are upright 多为披散,次为开张
Most are loose, next is spreading多为直立 Most are upright 花期:盛花期 FBS 多为中 Most are medium 多为中 Most are medium 多为中 Most are medium -
[1] 官玲亮, 庞玉新, 王丹, 等. 中国民族特色药材艾纳香研究进展 [J]. 植物遗传资源学报, 2012, 13(4):695−698. doi: 10.3969/j.issn.1672-1810.2012.04.033GUAN L L, PANG Y X, WANG D, et al. Research progress on Chinese minority medicine of Blumea balsamifera L. DC [J]. Journal of Plant Genetic Resources, 2012, 13(4): 695−698.(in Chinese) doi: 10.3969/j.issn.1672-1810.2012.04.033 [2] 荆玲侠, 卜朝阳, 李春牛, 等. 25份素馨属种质资源的表型性状遗传多样性研究 [J]. 热带作物学报, 2020, 41(9):1762−1769. doi: 10.3969/j.issn.1000-2561.2020.09.006JING L X, BU Z Y, LI C N, et al. Study on genetic diversity of phenotypic traits in 25 Jasminum germplasm resources [J]. Chinese Journal of Tropical Crops, 2020, 41(9): 1762−1769.(in Chinese) doi: 10.3969/j.issn.1000-2561.2020.09.006 [3] 陈策, 于福来, 庞玉新, 等. 艾纳香分株苗左旋龙脑稳定性及其优良单株筛选 [J]. 贵州农业科学, 2016, 44(5):124−126. doi: 10.3969/j.issn.1001-3601.2016.05.032CHEN C, YU F L, PANG Y X, et al. Stability analysis of L-borneol and selection of optimum individual plant in the divided plants of Blumea balsamifera [J]. Guizhou Agricultural Sciences, 2016, 44(5): 124−126.(in Chinese) doi: 10.3969/j.issn.1001-3601.2016.05.032 [4] 卫亚丽, 汤洪敏, 莫珊凤, 等. 不同产地黔艾纳香中左旋龙脑含量测定 [J]. 中华中医药杂志, 2015, 30(1):278−280.WEI Y L, TANG H M, MO S F, et al. Determination of L-borneol in Blumea balsamifera (Linn.) DC of different areas in Guizhou [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2015, 30(1): 278−280.(in Chinese) [5] 庞玉新, 胡雄飞, 王凯, 等. 艾纳香叶片干燥前后的左旋龙脑含量比较 [J]. 中国药房, 2014, 25(39):3673−3675. doi: 10.6039/j.issn.1001-0408.2014.39.09PANG Y X, HU X F, WANG K, et al. Comparison of the content of L-borneol in Blumea balsamifera before and after drying [J]. China Pharmacy, 2014, 25(39): 3673−3675.(in Chinese) doi: 10.6039/j.issn.1001-0408.2014.39.09 [6] 王鸿发, 元超, 庞玉新. 艾纳香中的黄酮类化合物及其抗菌活性 [J]. 热带作物学报, 2019, 40(9):1810−1816.WANG H F, YUAN C, PANG Y X. Antibacterial activity of flavonoids from Blumea balsamifera [J]. Chinese Journal of Tropical Crops,, 2019, 40(9): 1810−1816.(in Chinese) [7] 鞠志刚, 孙世宇, 申鹏, 等. 黔产艾纳香黄酮醇合酶基因的克隆及其生物信息学分析 [J]. 分子植物育种, 2018, 16(21):7004−7008.JU Z G, SUN S Y, SHEN P, et al. Cloning and bioinformatics analysis of FLS in Blumea balsamifera from Guizhou [J]. Molecular Plant Breeding, 2018, 16(21): 7004−7008.(in Chinese) [8] 夏奇峰, 赵致, 刘红昌, 等. 艾纳香黄酮类物质生物合成途径分析 [J]. 中国中药杂志, 2016, 41(19):3630−3636.XIA Q F, ZHAO Z, LIU H C, et al. Metabolic pathway of flavonoids in Blumea balsamifera [J]. China Journal of Chinese Materia Medica, 2016, 41(19): 3630−3636.(in Chinese) [9] 胡璇, 江芊, 元超, 等. 艾纳香残渣总黄酮提取工艺的优化 [J]. 贵州农业科学, 2018, 46(12):116−121. doi: 10.3969/j.issn.1001-3601.2018.12.026HU X, JIANG Q, YUAN C, et al. Extraction process optimization of total flavonoids from Blumea balsamifera residue [J]. Guizhou Agricultural Sciences, 2018, 46(12): 116−121.(in Chinese) doi: 10.3969/j.issn.1001-3601.2018.12.026 [10] 何元农, 丁映, 冼福荣, 等. 贵州艾纳香种质变异结构的观察及初选 [J]. 贵州农业科学, 2005, 33(4):33−36. doi: 10.3969/j.issn.1001-3601.2005.04.013HE Y N, DING Y, XIAN F R, et al. Observation on germplasm variation structure and selection of Blumea balsamifera [J]. Guizhou Agricultural Sciences, 2005, 33(4): 33−36.(in Chinese) doi: 10.3969/j.issn.1001-3601.2005.04.013 [11] 庞玉新, 王文全, 张影波, 等. 艾纳香野生种群克隆多样性及克隆结构研究 [J]. 广西植物, 2010, 30(2):209−214. doi: 10.3969/j.issn.1000-3142.2010.02.013PANG Y X, WANG W Q, ZHANG Y B, et al. Clonal diversity and structure in natrual populations of Blumea balsamifera [J]. Guihaia, 2010, 30(2): 209−214.(in Chinese) doi: 10.3969/j.issn.1000-3142.2010.02.013 [12] 张影波, 袁媛, 庞玉新, 等. 艾纳香遗传多样性的SRAP和AFLP对比分析 [J]. 南方农业学报, 2016, 47(8):1261−1267. doi: 10.3969/j:issn.2095-1191.2016.08.1261ZHANG Y B, YUAN Y, PANG Y X, et al. Comparative analysis of SRAP and AFLP markers for genetic diversity of Blumea balsamifera D C [J]. Journal of Southern Agriculture, 2016, 47(8): 1261−1267.(in Chinese) doi: 10.3969/j:issn.2095-1191.2016.08.1261 [13] 王海平, 李锡香, 沈镝, 等. 基于表型性状的中国大蒜资源遗传多样性分析 [J]. 植物遗传资源学报, 2014, 15(1):24−31.WANG H P, LI X X, SHEN D, et al. Evaluation on genetic diversity of garlic (Allium sativum L.)clones in China based on morphological characters [J]. Journal of Plant Genetic Resources, 2014, 15(1): 24−31.(in Chinese) [14] 黄莉娟, 唐华江, 赵丽丽, 等. 基于表型性状的毛花雀稗遗传多样性分析 [J]. 北方园艺, 2020(8):60−66.HUANG L J, TANG H J, ZHAO L L, et al. Analysis of genetic diversity of Paspalum dilatatum germplasms based on phenotypic traits [J]. Northern Horticulture, 2020(8): 60−66.(in Chinese) [15] 赵孟良, 王丽慧, 任延靖, 等. 257份菊芋种质资源表型性状的遗传多样性 [J]. 作物学报, 2020, 46(5):712−724. doi: 10.3724/SP.J.1006.2020.94098ZHAO M L, WANG L H, REN Y J, et al. Genetic diversity of phenotypic traits in 257 Jerusalem artichoke accessions [J]. Acta Agronomica Sinica, 2020, 46(5): 712−724.(in Chinese) doi: 10.3724/SP.J.1006.2020.94098 [16] 王黎明, 焦少杰, 姜艳喜, 等. 不同来源甜高粱种质资源的表型遗传多样性分析 [J]. 植物遗传资源学报, 2014, 15(2):411−416.WANG L M, JIAO S J, JIANG Y X, et al. Genetic diversity analysis on sweet Sorghum germplasm resources of different origins based on agronomical traits [J]. Journal of Plant Genetic Resources, 2014, 15(2): 411−416.(in Chinese) [17] 吕伟, 韩俊梅, 文飞, 等. 不同来源芝麻种质资源的表型多样性分析 [J]. 植物遗传资源学报, 2020, 21(1):234−242, 251.LYU W, HAN J M, WEN F, et al. Phenotypic diversity analysis of Sesame germplasm resources [J]. Journal of Plant Genetic Resources, 2020, 21(1): 234−242, 251.(in Chinese) [18] 郝曦煜, 杨涛, 梁杰, 等. 160份外引鹰嘴豆种质主要农艺性状的遗传多样性分析 [J]. 植物遗传资源学报, 2020, 21(4):875−883.HAO X Y, YANG T, LIANG J, et al. Genetic diversity analysis of major agronomic traits in 160 introduced chickpea(Cicer arietinum L.) germplasm resources [J]. Journal of Plant Genetic Resources, 2020, 21(4): 875−883.(in Chinese) [19] 苏群, 杨亚涵, 田敏, 等. 49份睡莲资源表型多样性分析及综合评价 [J]. 西南农业学报, 2019, 32(11):2670−2681.SU Q, YANG Y H, TIAN M, et al. Phenotypic diversity analysis and comprehensive evaluation of 49 Waterlily resources [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(11): 2670−2681.(in Chinese) [20] 罗夫来, 吴垒, 谢丙质, 等. 艾纳香主要形态指标比较及其相互关系研究 [J]. 中药材, 2016, 39(3):463−468.LUO F L, WU L, XIE B Z, et al. Comparative analysis of main morphological characters and interrelationship in Blumea balsamifera [J]. Journal of Chinese Medicinal Materials, 2016, 39(3): 463−468.(in Chinese)