Research Progress on HD-ZIP Transcription Factors in Response to Pathogenic or Abiotic Stresses
-
摘要: 逆境条件通常影响植物生长发育,间接或直接导致作物减产甚至植物死亡。HD-ZIP转录因子则参与植物对不利环境条件的响应。Homeodomain-Leucine Zipper(HD-ZIP)转录因子是植物中特有的一类转录因子,属于同源异形盒(homeobox, HB)蛋白家族,由高度保守的同源异形结构域(Homeodomain)和亮氨酸拉链结构域(ZIP)紧密连接而成。通过LZ结构域介导的蛋白二聚体的形成使HD结构域与靶DNA结合,调控靶基因的表达。HD-ZIP转录因子不仅对植物生长发育发挥重要调控作用,并且对逆境抵抗中起关键作用。本文基于近年来HD-ZIP转录因子的最新研究成果,着重归纳HD-ZIP四个亚家族(Ⅰ-Ⅳ)对不同病菌和非生物胁迫例如干旱、高盐、极端温度、弱光、机械损伤、重金属胁迫做出的响应机制,以期揭示HD-ZIP转录因子如何通过整合激素和环境信号来改良植物生长特性的内在分子机制,从而为提升植物抗逆性奠定基础。Abstract: Adverse external conditions commonly affect plant growth and development which directly or indirectly cause decline on crop yield and even death of the plants. The homeodomain-leucine zipper (HD-ZIP) transcription factors have been known to involve in stress responses of plants. Belonging to the homeobox (HB) protein family, the factors are unique to plants and tightly connected by the highly conserved HD and ZIP. The formation of protein dimers mediated by the LZ domain allows HD to bind to the target DNA and regulate the expression of the target gene. The HD-ZIP transcription factors not only play an important role in regulating plant growth and development but also in responding to external stresses. This article focuses on the published reports of recent studies concerning the roles of the 4 subfamilies Ⅰ-Ⅳ of the HD-ZIP transcription factors in response to pathogenic attacks and/or abiotic stresses such as drought, salt, extreme temperature, wounding, low R/FR light, and heavy metals. Through the internal molecular response mechanisms initiated by HD-ZIP, a plant could ward off the imposed adversities. With an in-depth understanding of the functions, means to improve the growth and stress resistance of plants could be realized.
-
Key words:
- HD-ZIP /
- pathogenic stress /
- abiotic stress /
- stress resistance of plants
-
图 4 HD-ZIP避光反应调控通路
注:R/FR光的变化导致R光吸收模式(Pr)和FR光吸收模式(Pfr)之间的平衡向Pr转移,从而导致植物色素PhyB、PhyD、PhyE失活。植物色素失活有利于避光反应正调节因子PIFs的转录。PIF进而激活HD-ZIP Ⅱ和HFR1/SICS1基因的转录。HFR1/SICS1则会抑制PIF和ATHB2、ATHB4的活性。然而PhyB、PhyD、PhyE以及HD-ZIP Ⅲ亚家族成员可激活ATHB2、ATHB4的转录活性从而正调控避光反应。
Figure 4. Regulatory route of HD-ZIP in response to shading
Note: Changes in R/FR light cause equilibrium sift from FR light-absorbing photo-convertible isoform (Pfr) to R light-absorbing photo-convertible isoform (Pr) resulting in deactivations of phyB, phyD, and phyE. This, in turn, results in an enhanced stability and/or activity of several phytochrome-interacting transcription factors (PIFs). PIFs, within a brief moment, activate the transcription of HD-ZIPs II and HFR1/SICS1 genes. HFR1/SICS1 can inhibit activities of PIF, ATHB2, and ATHB4. But PhyB, PhyD, PhyE, and HD-ZIP Ⅲ subfamily members can activate the transcriptional activities of ATHB2 and ATHB4 to positively regulate the response to light-shielding.
表 1 HD-ZIP在干旱胁迫下的不同表达模式
Table 1. Differential expressions of HD-ZIP transcription factors under drought stress
植物物种
Plant speciesHD-ZIP转
录因子
HD-ZIP TFs亚家族
Subfamily表达模式
Express patterns单子叶植物
monocotyledon玉米 Zea mays L. ZmHDZ4 Ⅰ 1 h时显著上调 up-regulated Significantly at 1 h Zmhdz10 Ⅰ 上调,12时达到峰值 up-regulated,peaked at 12 h 水稻 Oryza sativa L. OsHOX22 Ⅰ 显著上调 up-regulated Significantly OsHOX24 小麦 Triticum aestivum TaHDZipI-3 Ⅰ 微弱上调 Slightly up-regulated TaHDZipI-4 Ⅰ 较为显著上调 up-regulated TaHDZipI-5 Ⅰ 显著上调 up-regulated Significantly 双子叶植物
Dicotyledon拟南芥 Arabidopsis thaliana AtHB13 Ⅰ 上调,8天时达到5倍峰值 up-regulated,fivefold after 8 days AtHB7AtHB12 Ⅰ 显著上调 up-regulated Significantly HDG11 Ⅳ 上调 up-regulated 向日葵 Helianthus annuus L. HaHB4 Ⅰ 上调 up-regulated 鹰嘴豆 Cicer arietinum CaHDZ12 Ⅰ 根中48 h上调显著 up-regulated Significantly in roots after 48 h 番茄 Solanum lycopersicum SIHB2 Ⅰ 2 h后持续上调,保持高水平 Continue to up-regulatedand keep a high level after 2 h 表 2 HD-ZIP转录因子在盐胁迫下不同表达模式
Table 2. Differential expressions of HD-ZIP transcription factors under salt stress
项目
Items植物物种
Plant speciesHD-ZIP
TFs亚家族
Subfamily表达模式
Express patterns单子叶植物 monocotyledon 玉米 Zea mays L. ZmHDZ10 Ⅰ 上调,12 h达到峰值 up-regulated,peaked at 12 h ZmHDZ1 Ⅰ 1 h时显著上调 up-regulated Significantly at 1 h 双子叶植物 Dicotyledon 拟南芥 Arabidopsis thaliana ATHB17 Ⅰ 在叶中显著诱导 Induced Significantly in leaves HDG11 Ⅳ 上调 up-regulated 毛果杨 Populus trichocarpa PtrHox11 上调 up-regulated 大豆 Glycine max Gshdz4 Ⅰ 在根中显著上调 up-regulated Significantly in roots 鹰嘴豆 Cicerarietinum CaHDZ12 Ⅰ 在72 h、96 h显著上调 up-regulated Significantly at 72 h,96 h 番茄 Solanum lycopersicum SIHB2 Ⅰ 在2 h时显著上调 up-regulated Significantly at 2 h 麻风树 Jatropha curcas L. JcHDZ16 Ⅰ 所有时间点均被下调 Down-regulated at all pont 表 3 HD-ZIP转录因子在高温与低温胁迫中的不同表达模式
Table 3. Differential expressions of HD-ZIP transcription factors under high- and low-temp stresses
植物物种
Plant speciesHD-ZIP转
录因子
HD-ZIP TFs亚家族
Subfamily温度胁迫
Temperature stress表达模式
Expression Patterns黄瓜 Cucumis sativus L. CsHDZ02,33 Ⅰ 高温低温 显著上调 up-regulated Significantly CsHDZ08,22 Ⅱ CsHDZ11,37 Ⅳ 土豆 Solanum tuberosum L. StHOX20 Ⅱ 在根与叶中显著上调 up-regulated Significantly in leaves and roots 小麦 Triticum aestivum L. TaHDZipI-2TaHDZipI-3 Ⅰ 低温 下调 down-regulated TaHDZipI-4TaHDZipI-5 Ⅰ 上调 up-regulated 番茄 Solanum lycopersicum SIHZ17 Ⅰ 下调,且没有反弹 down-regulated without any rebound 黑麦草 Lolium perenne L. LpHOX6,8,24 Ⅰ 高温 在叶片和根中上调 up-regulated in leaves and roots LpHOX21 Ⅰ 在根和叶片中下调 down-regulated in leaves and roots 向日葵 Helianthus annuus L. HaHB4 Ⅰ 上调 up-regulated -
[1] PORTER S S, BANTAY R, FRIEL C A, et al. Beneficial microbes ameliorate abiotic and biotic sources of stress on plants [J]. Functional Ecology, 2020, 34(10): 2075−2086. doi: 10.1111/1365-2435.13499 [2] ARIEL F D, MANAVELLA P A, DEZAR C A, et al. The true story of the HD-Zip family [J]. Trends in Plant Science, 2007, 12(9): 419−426. doi: 10.1016/j.tplants.2007.08.003 [3] HARRIS J C, HRMOVA M, LOPATO S, et al. Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli [J]. New Phytologist, 2011, 190(4): 823−837. doi: 10.1111/j.1469-8137.2011.03733.x [4] BRANDT R, CABEDO M, XIE Y K, et al. Homeodomain leucine-zipper proteins and their role in synchronizing growth and development with the environment [J]. Journal of Integrative Plant Biology, 2014, 56(6): 518−526. doi: 10.1111/jipb.12185 [5] SHARIF R, XIE C, WANG J, et al. Genome wide identification, characterization and expression analysis of HD-ZIP gene family in Cucumis sativus L. under biotic and various abiotic stresses [J]. International Journal of Biological Macromolecules, 2020, 158: 502−520. doi: 10.1016/j.ijbiomac.2020.04.124 [6] SHEN W, LI H, TENG R M, et al. Genomic and transcriptomic analyses of HD-Zip family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis) [J]. Genomics, 2019, 111(5): 1142−1151. doi: 10.1016/j.ygeno.2018.07.009 [7] LIU Z W, WU Z J, LI X H, et al. Identification, classification, and expression profiles of heat shock transcription factors in tea plant (Camellia sinensis) under temperature stress [J]. Gene, 2016, 576(1): 52−59. doi: 10.1016/j.gene.2015.09.076 [8] WEI M Y, LIU A L, ZHANG Y J, et al. Genome-wide characterization and expression analysis of the HD-Zip gene family in response to drought and salinity stresses in sesame [J]. BMC Genomics, 2019, 20: 748. doi: 10.1186/s12864-019-6091-5 [9] MOU S L, LIU Z Q, GAO F, et al. CaHDZ27, a homeodomain-leucine zipper I protein, positively regulates the resistance to Ralstonia solanacearum infection in pepper [J]. Molecular Plant-Microbe Interactions®, 2017, 30(12): 960−973. doi: 10.1094/MPMI-06-17-0130-R [10] TANG Y H, WANG J, BAO X X, et al. Genome-wide identification and expression profile of HD-ZIP genes in physic nut and functional analysis of the JcHDZ16 gene in transgenic rice [J]. BMC Plant Biology, 2019, 19: 298. doi: 10.1186/s12870-019-1920-x [11] SASAKI K, IDA Y, KITAJIMA S, et al. Overexpressing the HD-Zip class II transcription factor EcHB1 from Eucalyptus camaldulensis increased the leaf photosynthesis and drought tolerance of Eucalyptus [J]. Scientific Reports, 2019, 9: 14121. doi: 10.1038/s41598-019-50610-5 [12] WANG J, ZHUANG L L, ZHANG J, et al. Identification and characterization of novel homeodomain leucine zipper (HD-Zip) transcription factors associated with heat tolerance in perennial ryegrass [J]. Environmental and Experimental Botany, 2019, 160: 1−11. doi: 10.1016/j.envexpbot.2018.12.023 [13] DING Z H, FU L L, YAN, et al. Genome-wide characterization and expression profiling of HD-Zip gene family related to abiotic stress in cassava [J]. PLoS One, 2017, 12(3): e0173043. doi: 10.1371/journal.pone.0173043 [14] SEN S, CHAKRABORTY J, GHOSH P, et al. Chickpea WRKY70 regulates the expression of a homeodomain-leucine zipper (HD-zip) I transcription factor CaHDZ12, which confers abiotic stress tolerance in transgenic tobacco and chickpea [J]. Plant and Cell Physiology, 2017, 58(11): 1934−1952. doi: 10.1093/pcp/pcx126 [15] MUKHERJEE K, BROCCHIERI L, BURGLIN T R. A comprehensive classification and evolutionary analysis of plant homeobox genes [J]. Molecular Biology and Evolution, 2009, 26(12): 2775−2794. doi: 10.1093/molbev/msp201 [16] DÖRING P, TREUTER E, KISTNER C, et al. The role of Aha motifs in the activator function of Toma toHeat stress transcription factors HsfA1 and HsfA2 [J]. The Plant Cell, 2000, 12(2): 265−278. doi: 10.1105/tpc.12.2.265 [17] COMELLI R N, GONZALEZ D H. Conserved homeodomain cysteines confer redox sensitivity and influence the DNA binding properties of plant class III HD-Zip proteins [J]. Archives of Biochemistry and Biophysics, 2007, 467(1): 41−47. doi: 10.1016/j.abb.2007.08.003 [18] REINHART B J, LIU T, NEWELL N R, et al. Establishing a framework for the ad/abaxial regulatory network of Arabidopsis: ascertaining targets of class III HOMEODOMAIN LEUCINE ZIPPER and KANADI regulation [J]. The Plant Cell, 2013, 25(9): 3228−3249. doi: 10.1105/tpc.113.111518 [19] MAGNANI E, BARTON M K. A per-ARNT-sim-like sensor domain uniquely regulates the activity of the homeodomain leucine zipper transcription factor REVOLUTA in Arabidopsis [J]. The Plant Cell, 2011, 23(2): 567−582. doi: 10.1105/tpc.110.080754 [20] ZOU L J, DENG X G, HAN X Y, et al. Role of Transcription Factor HAT1 in Modulating Arabidopsis thaliana Response to Cucumber mosaic virus [J]. Plant and Cell Physiology, 2016, 57(9): 1879−1889. doi: 10.1093/pcp/pcw109 [21] ALAZEM M, LIN K Y, LIN N S. The abscisic acid pathway has multifaceted effects on the accumulation of bamboo mosaic virus [J]. Molecular Plant-Microbe Interactions®, 2014, 27(2): 177−189. doi: 10.1094/MPMI-08-13-0216-R [22] ALAZEM M, LIN N S. Roles of plant hormones in the regulation of host-virus interactions [J]. Molecular Plant Pathology, 2015, 16(5): 529−540. doi: 10.1111/mpp.12204 [23] HE X, WANG T Y, ZHU W, et al. GhHB12, a HD-ZIP I transcription factor, negatively regulates the cotton resistance to Verticillium dahliae [J]. International Journal of Molecular Sciences, 2018, 19(12): 3997. doi: 10.3390/ijms19123997 [24] MANAVELLA P A, DEZAR C A, BONAVENTURE G, et al. HAHB4, a sunflower HD-Zip protein, integrates signals from the jasmonic acid and ethylene pathways during wounding and biotic stress responses [J]. The Plant Journal, 2008, 56(3): 376−388. doi: 10.1111/j.1365-313X.2008.03604.x [25] DEZAR C A, GIACOMELLI J I, MANAVELLA P A, et al. HAHB10, a sunflower HD-Zip II transcription factor, participates in the induction of flowering and in the control of phytohormone-mediated responses to biotic stress [J]. Journal of Experimental Botany, 2011, 62(3): 1061−1076. doi: 10.1093/jxb/erq339 [26] GAO D L, APPIANO M, HUIBERS R P, et al. Activation tagging of ATHB13 in Arabidopsis thaliana confers broad-spectrum disease resistance [J]. Plant Molecular Biology, 2014, 86(6): 641−653. [27] WANG H, LIN J, LI X G, et al. Genome-wide identification of pear HD-Zip gene family and expression patterns under stress induced by drought, salinity, and pathogen [J]. Acta Physiologiae Plantarum, 2015, 37(9): 189. doi: 10.1007/s11738-015-1933-5 [28] YU H, CHEN X, HONG Y Y, et al. Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density [J]. The Plant Cell, 2008, 20(4): 1134−1151. doi: 10.1105/tpc.108.058263 [29] YU L, CHEN X, WANG Z, et al. Arabidopsis enhanced drought Tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty [J]. Plant Physiology, 2013, 162(3): 1378−1391. doi: 10.1104/pp.113.217596 [30] YU L H, WU S J, PENG Y S, et al. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field [J]. Plant Biotechnology Journal, 2016, 14(1): 72−84. doi: 10.1111/pbi.12358 [31] ZHU Z S, XU X X, CAO B H, et al. Pyramiding of AtEDT1/HDG11 and Cry2Aa2 into pepper (Capsicum annuum L.) enhances drought tolerance and insect resistance without yield decrease [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2015, 120(3): 919−932. doi: 10.1007/s11240-014-0600-7 [32] ZHU Z S, SUN B M, XU X X, et al. Overexpression of AtEDT1/HDG11 in Chinese kale (Brassica oleracea var. alboglabra) enhances drought and osmotic stress tolerance [J]. Frontiers in Plant Science, 2016, 7: 1285. doi: 10.3389/fpls.2016.01285 [33] GUO X Y, WANG Y, ZHAO P X, et al. AtEDT1/HDG11 regulates stomatal density and water-use efficiency via ERECTA and E2Fa [J]. New Phytologist, 2019, 223(3): 1478−1488. doi: 10.1111/nph.15861 [34] RÉ D A, CAPELLA M, BONAVENTURE G, et al. Arabidopsis AtHB7 and AtHB12 evolved divergently to fine tune processes associated with growth and responses to water stress [J]. BMC Plant Biology, 2014, 14(1): 150. doi: 10.1186/1471-2229-14-150 [35] ZHOU C, ZHU L, MA Z Y, et al. A homolog of Class IV HD-Zip transcription factors, EsHdzip1, confers drought resistance in tobacco via enhanced the capacity of water conserving and absorbing [J]. Acta Physiologiae Plantarum, 2015, 37(7): 124. doi: 10.1007/s11738-015-1863-2 [36] BHATTACHARJEE A, KHURANA J P, JAIN M. Characterization of rice homeobox genes, OsHOX22 and OsHOX24, and over-expression of OsHOX24 in transgenic Arabidopsis suggest their role in abiotic stress response [J]. Frontiers in Plant Science, 2016, 7: 627. doi: 10.3389/fpls.2016.00627 [37] BHATTACHARJEE A, SHARMA R, JAIN M. Over-expression of OsHOX24 confers enhanced susceptibility to abiotic stresses in transgenic rice via modulating stress-responsive gene expression [J]. Frontiers in Plant Science, 2017, 8: 628. doi: 10.3389/fpls.2017.00628 [38] WU J D, ZHOU W, GONG X F, et al. Expression of ZmHDZ4, a maize homeodomain-leucine zipper I gene, confers tolerance to drought stress in transgenic rice [J]. Plant Molecular Biology Reporter, 2016, 34(4): 845−853. doi: 10.1007/s11105-015-0970-y [39] ZHAO Y, MA Q, JIN X L, et al. A novel maize homeodomain-leucine zipper (HD-Zip) I gene, Zmhdz10, positively regulates drought and salt tolerance in both rice and Arabidopsis. [J]. Plant & cell physiology, 2014, 55(6): 1142−1156. [40] CAI X T, XU P, WANG Y, et al. Activated expression of AtEDT1/HDG11 promotes lateral root formation in Arabidopsis mutant edt1 by upregulating jasmonate biosynthesis [J]. Journal of Integrative Plant Biology, 2015, 57(12): 1017−1030. doi: 10.1111/jipb.12347 [41] XU P, CAI X T, WANG Y, et al. HDG11 upregulates cell-wall-loosening protein genes to promote root elongation in Arabidopsis [J]. Journal of Experimental Botany, 2014, 65(15): 4285−4295. doi: 10.1093/jxb/eru202 [42] LI W Q, ZHANG M J, GAN P F, et al. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice [J]. The Plant Journal: for Cell and Molecular Biology, 2017, 92(5): 904−923. doi: 10.1111/tpj.13728 [43] BANG S W, LEE D K, JUNG H, et al. Overexpression of OsTF1L, a rice HD-Zip transcription factor, promotes lignin biosynthesis and stomatal closure that improves drought tolerance [J]. Plant Biotechnology Journal, 2019, 17(1): 118−131. doi: 10.1111/pbi.12951 [44] EBRAHIMIAN-MOTLAGH S, RIBONE P A, THIRUMALAIKUMAR V P, et al JUNGBRUNNEN1 confers drought tolerance downstream of the HD-zip I transcription factor AtHB13 [J]. Frontiers in Plant Science, 2017, 8: 2118. doi: 10.3389/fpls.2017.02118 [45] YANG Y, AL-BAIDHANI H. H. J, HARRIS J, et al DREB/CBF expression in wheat and barley using the stress-inducible promoters of HD-Zip I genes: impact on plant development, stress tolerance and yield [J]. Plant Biotechnol. J, 2019. doi: 10.1111/pbi.13252 [46] HARRIS J, SORNARAJ P, TAYLOR M, et al. Molecular interactions of the γ-clade homeodomain-leucine zipper class I transcription factors during the wheat response to water deficit [J]. Plant Molecular Biology, 2016, 90(4/5): 435−452. [47] YANG Y F, LUANG S, HARRIS J, et al. Overexpression of the class I homeodomain transcription factor TaHDZipI-5 increases drought and frost tolerance in transgenic wheat [J]. Plant Biotechnology Journal, 2018, 16(6): 1227−1240. doi: 10.1111/pbi.12865 [48] GONZÁLEZ F G, CAPELLA M, RIBICHICH K F. Wheat transgenic plants expressing the sunflower gene HaHB4 significantly outyielded their controls in field trials [J]. Journal of Experimental Botany,, 2019, 70: 1669−1681. doi: 10.1093/jxb/erz037 [49] BAI Y L, KISSOUDIS C, YAN Z, et al. Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress [J]. The Plant Journal, 2018, 93(4): 781−793. doi: 10.1111/tpj.13800 [50] JULKOWSKA M M, TESTERINK C. Tuning plant signaling and growth to survive salt [J]. Trends in Plant Science, 2015, 20(9): 586−594. doi: 10.1016/j.tplants.2015.06.008 [51] CAO Y J, WEI Q, LIAO Y, et al. Ectopic overexpression of AtHDG11 in tall fescue resulted in enhanced tolerance to drought and salt stress [J]. Plant Cell Reports, 2009, 28(4): 579−588. doi: 10.1007/s00299-008-0659-x [52] 李亚博. 毛果杨PtrHox11基因耐盐功能分析[D]. 哈尔滨: 东北林业大学, 2019.LI Y B. Analysis of salt tolerance function of PtrHox11 gene of Populus tomentosa[D]. Harbin: Northeast Forestry University, 2019. (in Chinese) [53] ZHANG C J, OUYANG B, YANG C X, et al. Reducing AsA leads to leaf lesion and defence response in knock-down of the AsA biosynthetic enzyme GDP-D-mannose pyrophosphorylase gene in Toma toPlant [J]. PLoS One, 2013, 8(4): e61987. doi: 10.1371/journal.pone.0061987 [54] HU T X, YE J, TAO P W, et al. The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of thed-mannose/l-galactose pathway [J]. The Plant Journal, 2016, 85(1): 16−29. doi: 10.1111/tpj.13085 [55] ZHAO P, CUI R, XU P, et al. ATHB17 enhances stress tolerance by coordinating photosynthesis associated nuclear gene and ATSIG5 expression in response to abiotic stress [J]. Scientific Reports, 2017, 7: 45492. doi: 10.1038/srep45492 [56] CAO L, YU Y, DUANMU H Z, et al. A novel Glycine soja homeodomain-leucine zipper (HD-Zip) I gene, Gshdz4, positively regulates bicarbonate tolerance and responds to osmotic stress in Arabidopsis [J]. BMC Plant Biology, 2016, 16: 184. doi: 10.1186/s12870-016-0872-7 [57] HU J T, CHEN G P, YIN W C, et al. Silencing of SlHB2 improves drought, salt stress tolerance, and induces stress-related gene expression in tomato [J]. Journal of Plant Growth Regulation, 2017, 36(3): 578−589. doi: 10.1007/s00344-017-9664-z [58] WANG Q Q, ZHA K Y, CHAI W B, et al. Functional analysis of the HD-Zip I gene ZmHDZ1 in ABA-mediated salt tolerance in rice [J]. Journal of Plant Biology, 2017, 60(2): 207−214. doi: 10.1007/s12374-016-0413-9 [59] LI W, DONG J Y, CAO M X, et al. Genome-wide identification and characterization of HD-ZIP genes in potato [J]. Gene, 2019, 697: 103−117. doi: 10.1016/j.gene.2019.02.024 [60] ZHANG Z Z, CHEN X L, GUAN X, et al. A genome-wide survey of homeodomain-leucine zipper genes and analysis of cold-responsive HD-Zip I members’ expression in tomato [J]. Bioscience, Biotechnology, and Biochemistry, 2014, 78(8): 1337−1349. doi: 10.1080/09168451.2014.923292 [61] KOVALCHUK N, CHEW W, SORNARAJ P, et al. The homeodomain transcription factor Ta HDZ ipI-2 from wheat regulates frost tolerance, flowering time and spike development in transgenic barley [J]. New Phytologist, 2016, 211(2): 671−687. doi: 10.1111/nph.13919 [62] RIBICHICH K F, CHIOZZA M, ÁVALOS-BRITEZ S C Z, et al. Successful field performance in dry-warm environments of soybean expressing the sunflower transcription factor HaHB4 [J]. Journal of Experimental Botany, 2020, 71(10): 3142−3156. doi: 10.1093/jxb/eraa064 [63] FRANKLIN K A, PRAEKELT U, STODDART W M, et al. Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis [J]. Plant Physiology, 2003, 131(3): 1340−1346. doi: 10.1104/pp.102.015487 [64] CARABELLI M, TURCHI L, RUZZA V, et al. Homeodomain-Leucine zipper II family of transcription factors to the limelight [J]. Plant Signaling & Behavior, 2013, 8(9): e25447. doi: 10.4161/psb.25447 [65] CAPELLA M, RIBONE P A, ARCE A L, et al. Arabidopsis thaliana HomeoBox 1 (At HB 1), a Homedomain-Leucine Zipper I (HD -Zip I) transcription factor, is regulated by PHYTOCHROME-INTERACTING FACTOR 1 to promote hypocotyl elongation [J]. New Phytologist, 2015, 207(3): 669−682. doi: 10.1111/nph.13401 [66] GONZÁLEZ-GRANDÍO E, PAJORO A, FRANCO-ZORRILLA J M, et al. Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(2): E245−E254. doi: 10.1073/pnas.1613199114 [67] SESSA G, CARABELLI M, POSSENTI M, et al. Multiple Pathways in the Control of the Shade Avoidance Response [J]. Plants (Basel, Switzerland), 2018, 7(4). [68] RUZZA V, SESSA G, SASSI M, et al. Auxin coordinates shoot and root development during shade avoidance response[M]//Auxin and Its Role in Plant Development. Vienna: Springer Vienna, 2014: 389-412. [69] WANG H, WU G X, ZHAO B B, et al. Regulatory modules controlling early shade avoidance response in maize seedlings [J]. BMC Genomics, 2016, 17: 269. doi: 10.1186/s12864-016-2593-6 [70] CHITWOOD D H, KUMAR R, RANJAN A, et al. Light-induced indeterminacy alters shade-avoiding Toma toLeaf morphology [J]. Plant Physiology, 2015, 169(3): 2030−2047. [71] CARABELLI M, POSSENTI M, SESSA G, et al. Arabidopsis HD-Zip II proteins regulate the exit from proliferation during leaf development in canopy shade [J]. Journal of Experimental Botany, 2018, 69(22): 5419−5431. [72] TURCHI L, BAIMA S, MORELLI G, et al. Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development [J]. Journal of Experimental Botany, 2015, 66(16): 5043−5053. doi: 10.1093/jxb/erv174 [73] PARVEEN S, GUPTA D B, DASS S, et al. Chickpea ferritin CaFer1 participates in oxidative stress response and promotes growth and development [J]. Scientific Reports, 2016, 6: 31218. doi: 10.1038/srep31218 [74] PARVEEN S, PANDEY A, JAMEEL N, et al. Transcriptional regulation of chickpea ferritin CaFer1 influences its role in iron homeostasis and stress response [J]. Journal of Plant Physiology, 2018, 222: 9−16. doi: 10.1016/j.jplph.2017.12.015 [75] ZHOU C P, LI C P, LIANG W W, et al. Identification of manganese-toxicity-responsive genes in roots of two Citrus species differing in manganese tolerance using cDNA-AFLP [J]. Trees, 2017, 31(3): 813−831. doi: 10.1007/s00468-016-1507-1 [76] 刘周萍. 长江流域稻米重金属污染及水杨酸调控镉积累的分子生理机制[D]. 杭州: 中国计量大学, 2016.LIU Z P. Heavy metal pollution of rice in the Yangtze River Basin and the molecular physiological mechanism of salicylic acid regulating cadmium accumulation[D]. Hangzhou: China University of Metrology, 2016. (in Chinese) [77] KOVALCHUK N, WU W, BAZANOVA N, et al. Wheat wounding-responsive HD-Zip IV transcription factor GL7 is predominantly expressed in grain and activates genes encoding defensins [J]. Plant Molecular Biology, 2019, 101(1/2): 41−61. [78] KOVALCHUK N, LI M, WITTEK F, et al. Defensin promoters as potential tools for engineering disease resistance in cereal grains [J]. Plant Biotechnology Journal, 2010, 8(1): 47−64. doi: 10.1111/j.1467-7652.2009.00465.x [79] WANG H J, JIANG Y H, QI Y W, et al. Identification and functional characterization of the MdHB-1 gene promoter sequence from Malus×domestica [J]. Journal of Integrative Agriculture, 2017, 16(8): 1730−1741. doi: 10.1016/S2095-3119(16)61548-4