Optimized Preparation of Spray-dried Anthocyanins Microcapsules
-
摘要:
目的 优化玫瑰茄花色苷微胶囊喷雾干燥工艺,提高玫瑰茄花色苷的包埋率及稳定性。 方法 以阿拉伯树胶和麦芽糊精为壁材,玫瑰茄花色苷为芯材,采用单因素试验和响应面法优化玫瑰茄花色苷微胶囊制备工艺条件,用扫描电镜观察花色苷微胶囊的微观形貌,考察其对光、热及金属的稳定性。 结果 玫瑰茄花色苷微胶囊制备的最佳工艺参数为:麦芽糊精占总固形物质量分数70.0%,阿拉伯树胶占总固形物质量分数3.0%,玫瑰茄花色苷占总固形物质量分数7.0%,总固形物质量分数7.0%,喷雾干燥进风温度143℃,此条件下玫瑰茄花色苷的包埋率为97.11%。扫描电镜结果显示微胶囊呈圆球形,表面较光滑致密,无裂痕无孔洞。微胶囊玫瑰茄花色苷稳定性比较分析表明:在相同温度、相同光照条件下,玫瑰茄花色苷微胶囊稳定性均明显高于纯化物;微胶囊化后花色苷在Cu2+和Zn2+中的稳定性得到明显改善。且玫瑰茄花色苷微胶囊在4℃、避光以及避免与Cu2+和Zn2+接触的条件下稳定性最高。 结论 通过优化玫瑰茄花色苷微胶囊制备工艺,可有效提高玫瑰茄花色苷的稳定性。 Abstract:Objective TPreparation of an spray-dried encapsulated anthocyanins from Hibiscus sabdariffa was optimized. Method Single factor experiment and response surface method were employed for the process optimization. Structure of the microcapsules was characterized with scanning electron microscopy (SEM). Product stability under exposure of light, heat, and metal ions was determined. Results The optimum encapsulation used 7% total solids that consisted of 70% maltodextrin, 3% gum Arabic, and 7% H. sabdariffa anthocyanin, and the dehydration applied a spray-drying inlet-air temperature at 143 ℃. The resulting encapsulation rate reached 97.11%. Observed under SEM, the spherical microcapsules were smooth on the surface with no cracks or voids. Exposed to temperature or light, the microcapsules were significantly more stable than the purified anthocyanins. And, the product stability in the presence of Cu2+ or Zn2+ was also significantly improved by the process. A maximum shelf life of the product could be achieved by storing it at 4 ℃ in darkness and avoiding direct contact with Cu2+ or Zn2+. Conclusion H. sabdariffa anthocyanin microcapsules with a significantly improved shelf life were successfully prepared by the optimized microencapsulation and spray-drying. -
Key words:
- Spray-drying /
- Hibiscus sabdariffa anthocyanins /
- microcapsule /
- SEM /
- stability
-
表 1 响应面试验因素与水平
Table 1. Factors and levels of response surface design
水平
Level因素 Factor A阿拉伯胶占
总固形物
质量分数
Mass fraction of
gum arabic
in total solid/%B花色苷占
总固形物
质量分数
Mass fraction of
anthocyaninintotal
solid/%C 总固形物
质量分数
Total solid
mass fraction/
%D进风温度
Inlet-air
temperature/℃−1 2 3 7 140 0 3 5 9 160 1 4 7 11 180 表 2 响应面试验结果
Table 2. Results of response surface test
序号
No.A阿拉伯树胶
占总固形物
质量分数
Mass fraction
of gum
arabic in
total solid/%B花色苷占
总固形物
质量分数
Mass fraction
of anthocyanin
in total
solid/%C总固形
物质量
分数
Total
solid
mass
fraction/%D进风
温度
Inlet-air
temperature/
℃Y包埋率
Embedding
rate/%1 −1 −1 0 0 94.20 2 −1 0 0 1 95.14 3 1 0 1 0 95.84 4 0 0 1 −1 93.51 5 −1 1 0 0 96.26 6 −1 0 −1 0 95.34 7 0 0 0 0 96.73 8 0 0 0 0 96.89 9 1 1 0 0 96.29 10 0 1 0 −1 97.25 11 0 −1 −1 0 96.45 12 0 −1 0 1 95.44 13 0 0 0 0 97.35 14 −1 0 1 0 95.17 15 0 0 0 0 96.30 16 0 0 −1 1 95.44 17 0 1 0 1 96.26 18 0 0 0 0 97.12 19 0 0 1 1 96.41 20 1 0 −1 0 96.84 21 0 −1 1 0 94.29 22 1 −1 0 0 95.90 23 1 0 0 −1 94.72 24 −1 0 0 −1 95.54 25 0 1 1 0 96.23 26 0 1 −1 0 97.25 27 0 −1 0 −1 94.62 28 1 0 0 1 96.88 29 0 0 −1 −1 96.37 表 3 回归模型方差分析
Table 3. Analysis of variance on regression model
方差来源
Sources of variance平方和
Sum of squares自由度
df均方
Mean squareF值
F-valueP值
P-value显著性
Significance模型 <0.0001 <0.0001 1.84 9.87 <0.0001 ** A阿拉伯树胶占总固形物质量分数 0.0061 0.0061 1.94 10.38 0.0061 ** B花色苷占总固形物质量分数 <0.0001 <0.0001 6.22 33.35 <0.0001 ** C固形物质量分数 0.0009 0.0009 3.24 17.40 0.0009 ** D进风温度 0.0321 0.0321 1.06 5.66 0.0321 * AB 0.0737 0.0737 0.70 3.74 0.0737 AC 0.3529 0.3529 0.17 0.92 0.3529 AD 0.0103 0.0103 1.64 8.78 0.0103 * BC 0.2081 0.2081 0.32 1.74 0.2081 BD 0.0548 0.0548 0.82 4.39 0.0548 CD 0.0006 0.0006 3.67 19.66 0.0006 ** A2 0.0016 0.0016 2.82 15.10 0.0016 ** B2 0.0472 0.0472 0.88 4.74 0.0472 * C2 0.0073 0.0073 1.83 9.82 0.0073 ** D2 0.0008 0.0008 3.42 18.36 0.0008 ** 残差 2.61 14 0.19 失拟项 1.97 10 0.20 1.24 0.4521 净误差 0.64 4 0.16 总离差 28.39 28 决定系数R2=0.9080 校正系数0.8446 表 4 不同样品理化指标测定结果
Table 4. Physiochemical properties of samples
样品
Sample理化指标 Physical and chemical indexes 水分含量
Moisture content/%堆密度
Heap density/(g·mL−1)花色苷纯化物 10.42±0.82 0.52 花色苷微胶囊 3.49±0.07 0.89 -
[1] 黄琼, 何燕萍. Box-Behnken响应面法优化超声波-微波协同提取玫瑰茄多糖工艺 [J]. 福建农业学报, 2018, 33(12):1324−1329.HUANG Q, HE Y P. Optimization of ultrasound/microwave-assisted extraction of polysaccharides from Hibiscus sabdariffa L. by box-behnken response surface methodology [J]. Fujian Journal of Agricultural Sciences, 2018, 33(12): 1324−1329.(in Chinese) [2] SINDI H A, MARSHALL L J, MORGAN M R A. Comparative chemical and biochemical analysis of extracts of Hibiscus sabdariffa [J]. Food Chemistry, 2014, 164: 23−29. doi: 10.1016/j.foodchem.2014.04.097 [3] 李玉珠, 龙谋, 汤艳燕, 等. 玫瑰茄浸提及其发酵酒工艺优化及发酵前后有机酸和酚酸的比较 [J]. 食品科学, 2018, 39(4):66−75.LI Y Z, LONG M, TANG Y Y, et al. Optimization of preparation of water extract from Roselle and fermentation of Roselle wine and variations in organic acids and phenolic acids concentrations [J]. Food Science, 2018, 39(4): 66−75.(in Chinese) [4] GRADINARU G, BILIADERIS C G, KALLITHRAKA S, et al. Thermal stability of Hibiscus sabdariffa L. anthocyanins in solution and in solid state: Effects of copigmentation and glass transition [J]. Food Chemistry, 2003, 83(3): 423−436. doi: 10.1016/S0308-8146(03)00125-0 [5] SCSR D M, BERLING C L, SPM G, et al. Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: pigment stability during storage of microparticles [J]. Food Chemistry, 2018, 241: 317−327. doi: 10.1016/j.foodchem.2017.08.095 [6] SUGANYA V, ANURADHA V. Microencapsulation and nanoencapsulation: areview [J]. International Journal of Pharmaceutical & Clinical Research, 2017, 9(3): 233−239. [7] GUNDOGDU M, MURADOGLU F, GAZIOGLU S R I, et al. Determination of fruit chemical properties of Morus nigra L., Morus alba L. and Morus rubra L. by hplc [J]. Scientia Horticulturae, 2011, 132(1): 37−41. [8] 王振斌, 邵淑萍, 孙平. 喷雾干燥法制备蜂巢多酚微胶囊的研究 [J]. 食品工业科技, 2013, 34(21):202−205.WANG Z B, SHAO S P, SUN P. Study on processing of honeycomb polyphenol microencapsulation by spray-drying method [J]. Science and Technology of Food Industry, 2013, 34(21): 202−205.(in Chinese) [9] 徐晶, 刘欢, 夏光辉, 等. β-环糊精包埋柠檬醛微胶囊工艺优化及其缓释性能 [J]. 食品科学, 2014, 35(14):82−86.XU J, LIU H, XIA G H, et al. Optimized microencapsulation in β-cyclodextrin and sustained-release properties of citral [J]. Food Science, 2014, 35(14): 82−86.(in Chinese) [10] 朱晓路, 谢岩黎, 邹军军, 等. 壁材对微胶囊物化性质的影响 [J]. 食品科技, 2015, 40(7):99−102.ZHU X L, XIE Y L, ZOU J J, et al. Effect of wall material on the physicochemical properties of microcapsules [J]. Food Science and Technology, 2015, 40(7): 99−102.(in Chinese) [11] 唐璐, 李延辉, 薛晓丽. 黑果腺肋花楸花色苷微胶囊化的研究 [J]. 食品研究与开发, 2020, 41(5):121−126.TANG L, LI Y H, XUE X L. Study on microencapsulation of anthocyanins from Aronia melanocarpa [J]. Food Research and Development, 2020, 41(5): 121−126.(in Chinese) [12] MEHDI M, SAEED M, MOHAMMADREZA M. Microencapsulation of Mentha spicata essential oil by spray drying: Optimization, characterization, release kinetics of essential oil from microcapsules in food models[J]. Industrial Crops & Products, 2020: 112694. DOI: 10.1016/j.indcrop.2020.112694. [13] MANSOUR M, SALAH M, XU X Y. Effect of microencapsulation using soy protein isolate and gum Arabic as wall material on red raspberry anthocyanin stability, characterization, and simulated gastrointestinal conditions [J]. Ultrasonics Sonochemistry, 2020, 63: 104927. doi: 10.1016/j.ultsonch.2019.104927 [14] 刘艳杰, 张健, 宋晓秋. 大孔树脂纯化紫薯花色苷的研究 [J]. 上海应用技术学院学报(自然科学版), 2012, 12(1):13−17.LIU Y J, ZHANG J, SONG X Q. Purification of anthocyanin from purple sweet potato by macroporous resin [J]. Journal of Shanghai Institute of Technology (Natural Science), 2012, 12(1): 13−17.(in Chinese) [15] 倪勤学, 高前欣, 霍艳荣, 等. 紫山药色素的提取工艺及抗氧化性能研究 [J]. 天然产物研究与开发, 2012, 24(2):229−233.NI Q X, GAO Q X, HUO Y R, et al. Extraction and antioxidant activity of pigment from purple yam [J]. Natural Product Research and Development, 2012, 24(2): 229−233.(in Chinese) [16] GOLMOHAMADI A, MÖLLER G, POWERS J, et al. Effect of ultrasound frequency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree [J]. Ultrasonics Sonochemistry, 2013, 20(5): 1316−1323. doi: 10.1016/j.ultsonch.2013.01.020 [17] 李颖畅, 吕春茂, 孟宪军, 等. 蓝莓花色苷的微胶囊化 [J]. 食品与发酵工业, 2010, 36(6):71−75.LI Y C, LV C M, MENG X J, et al. Study on the microencapsualtion of blueberry anthocyanins [J]. Food and Fermentation Industries, 2010, 36(6): 71−75.(in Chinese) [18] DESOBRY S A, NETTO F M, LABUZA T P. Comparison of spray-drying, drum-drying and freeze-drying for beta-carotene encapsulation and preservation [J]. Journal of Food Science, 1997, 62(6): 1158−1162. doi: 10.1111/j.1365-2621.1997.tb12235.x [19] MARA RIGHETTO A, MARIA NETTO F. Effect of encapsulating materials on water sorption, glass transition and stability of juice from immature acerola [J]. International Journal of Food Properties, 2005, 8(2): 337−346. doi: 10.1081/JFP-200060262 [20] 刘云海, 曹小红, 刘瑛. 天然色素花青素的微胶囊化研究 [J]. 食品科技, 2004, 29(11):18−20.LIU Y H, CAO X H, LIU Y. Study on microencapsulation of anthocyanins [J]. Food Science and Technology, 2004, 29(11): 18−20.(in Chinese) [21] 邵信儒, 孙海涛, 姜瑞平, 等. 短梗五加果花色苷微球的制备及其缓释效果评价 [J]. 食品科学, 2015, 36(22):40−45.SHAO X R, SUN H T, JIANG R P, et al. Preparation of anthocyanins microspheres from Acanthopanax sessiliflorus (Rupr. Et maxim.) seem fruits and evaluation of their sustained release performance [J]. Food Science, 2015, 36(22): 40−45.(in Chinese) [22] 孟宪军, 赵婧, 李斌. 正交试验优化树莓花色苷的微胶囊化工艺 [J]. 食品科学, 2013, 34(14):173−177.MENG X J, ZHAO J, LI B. Orthogonal array design for the optimization of microencapsulation of raspberry anthocyanins [J]. Food Science, 2013, 34(14): 173−177.(in Chinese) [23] 慈美琳, 陈燕, 张潇, 等. 响应曲面法优化蓝莓花青素提取工艺及其抗氧化活性 [J]. 食品工业, 2014, 35(4):39−44.CI M L, CHEN Y, ZHANG X, et al. Optimization of extraction process of blueberry anthocyanin by response surface methodology and its antioxidant activity [J]. The Food Industry, 2014, 35(4): 39−44.(in Chinese) [24] TAO Y, WANG P, WANG J, et al. Combining various wall materials for encapsulation of blueberry anthocyanin extracts: Optimization by artificial neural network and genetic algorithm and a comprehensive analysis of anthocyanin powder properties [J]. Powder Technology,, 2017, 311: 77−87. doi: 10.1016/j.powtec.2017.01.078 [25] 王琦, 高慧颖, 郑亚凤, 等. 响应面法优化有机溶剂提取火龙果花精油工艺的研究 [J]. 福建农业学报, 2014, 29(1):72−77.WANG Q, GAO H Y, ZHENG Y F, et al. The optimization of extraction technology of pitaya flower essential oil with organic solvent by response surface method [J]. Fujian Journal of Agricultural Sciences, 2014, 29(1): 72−77.(in Chinese) [26] 黄琪, 李丽丽, 吴德玲, 等. 响应面法优选知母须根总黄酮提取工艺及其解热作用研究 [J]. 天然产物研究与开发, 2018, 30(12):2157−2165.HUANG Q, LI L L, WU D L, et al. Optimization of extraction technology by response surface methodology and antipyretic effect of total flavonoids from the fibrous root of Anemarrhena rhizome [J]. Natural Product Research and Development, 2018, 30(12): 2157−2165.(in Chinese) [27] 范方宇, 常艳琼, 董选刚, 等. 响应面分析法优化茶油微胶囊喷雾干燥工艺 [J]. 食品工业科技, 2014, 35(11):184−187.FAN F Y, CHANG Y Q, DONG X G, et al. Optimization of spray drying conditions for microencapsulated Camellia seed oil by response surface methodology [J]. Science and Technology of Food Industry, 2014, 35(11): 184−187.(in Chinese) [28] 毛莹, 帅晓艳, 王惠玲, 等. 基于内源乳化法和喷雾干燥优化制备花色苷微胶囊及其稳定性分析 [J]. 食品科学, 2020, 41(2):267−275.MAO Y, SHUAI X Y, WANG H L, et al. Preparation and stability evaluation of anthocyanin microcapsules by emulsification/internal gelation with optimized spray drying [J]. Food Science, 2020, 41(2): 267−275.(in Chinese) [29] 周亚杰, 郭原, 冯鹏, 等. 番茄红素提取、纯化和稳定性提高技术研究 [J]. 中国卫生产业, 2019, 16(32):83−85.ZHOU Y J, GUO Y, FENG P, et al. Study on extraction, purification and stability improvement of lycopene [J]. China Health Industry, 2019, 16(32): 83−85.(in Chinese) [30] KANAKDANDE D, BHOSALE R, SINGHAL R S. Stability of cumin oleoresin microencapsulated in different combination of gum arabic, maltodextrin and modified starch [J]. Carbohydrate Polymers, 2007, 67(4): 536−541. doi: 10.1016/j.carbpol.2006.06.023