Optimized Application of Fe3O4 Nanoparticles for Pesticide Detection in Tea
-
摘要:
目的 建立高效液相色谱-串联质谱测定茶叶中7种农药的分析方法,提高检测效率、降低检测成本。 方法 以多菌灵、嘧霉胺、三环唑、吡虫啉、啶虫脒、灭多威、噻虫嗪等7种农药为目标物,纳米Fe3O4作为净化材料,考察其对茶叶中色素的去除效果,并进行方法评价。 结果 茶叶基质中纳米Fe3O4组的7种农药回收率明显高于石墨化碳黑(GCB)组,最佳用量为300 mg。通过Phenomenex Luna C8 (150 mm × 2.0 mm × 3.0 µm)色谱柱梯度洗脱,流动相A为含0.1 %甲酸和5 mmol·L−1乙酸铵的水,B为乙腈,多反应监测模式(MRM)监测。在0 ~ 50 µg·L−1方法线性良好,相关系数(R2)大于0.995;在5、10、50 ng·g−1添加水平下回收率为71.6%~107.7 %,相对标准偏差(RSD)为3.95%~13.62 %,检出限为0.15~0.60 µg·kg−1,定量限为0.5~2.0 µg·kg−1。 结论 基于纳米Fe3O4建立了高效液相色谱-串联质谱测定茶叶中农药残留的分析方法,该方法稳定、可靠,有效提高了茶叶中农药残留检测的回收率,降低了检测成本。 Abstract:Objective A newly modified analytical method for detecting pesticide residues in tea was developed to improve test efficiency and reduce cost. Method Fe3O4 nanoparticles were used to replace the conventional pigment-removing material prior to measurements on pesticide residues, including carbendazim, pyrimethanil, tricyclazol, imidachloprid, acetamiprid, methomyl, and thiamethoxam, in tea by liquid chromatography-tandem mass spectrometry. The methodology was evaluated according to its applicability and validated in a spiked residue test. Result The recovery rates on the 7 pesticides under the modified method using 300 mg Fe3O4 nanoparticles for pigment removal pretreatment were higher than graphitizing with carbon black (GCB). The pigment-removed tea extracts were separated with a Phenomenex Luna C8 (150 mm × 2.0 mm × 3.0 µm) by using 0.1 % formic acid and 5 mmol·L-1 ammonium acetate as Phase A and acetonitrile as Phase B for the mobile phase prior to the tandem mass spectrometric analysis under the multiple reaction monitoring mode with external standards. A linearity on the measurements by the new method was achieved within the pesticide concentrations of 0-50 µg·L-1 showing correlation coefficients (R2) greater than 0.995 for all 7 pesticides. On 5, 10, and 50 ng·g-1 spiked pesticide samples, average recovery rates of the new method ranged from 71.6 % to 107.7 % with relative standard deviations of 3.95%-13.62 %. The limits of detection (LOD) on the pesticides by the method were between 0.15 µg·kg-1 and 0.60 µg·kg-1, and the limits of quantitation (LOQ) between 0.5 µg·kg-1 and 2.0 µg·kg-1. Conclusion The newly developed pesticide detection method was stable, repeatable, and accurate for the designed purpose. -
图 2 不同净化材料对7种农药的回收率影响
注:A,吡虫啉;B,啶虫脒;C,多菌灵;D,灭多威;E,嘧霉胺;F,噻虫嗪;G,三环唑。
Figure 2. Recovery rate on 7 pesticides of newly developed method with pretreatment using different pigment-removing materials
Note: A: imidacloprid; B: acetamiprid; C: carbendazim; D: methomyl; E: pyrimethanil; F: thiamethoxam; G: tricyclazole. Same for Figs. 3 and 4.
图 5 50 µg·L−1 的7种农药的标准溶液的总离子流图
注:从左至右:峰1,多菌灵;峰2,噻虫嗪;峰3,灭多威;峰4,三环唑;峰5,啶虫脒;峰6,吡虫啉;峰7,嘧霉胺。
Figure 5. Total ion chromatograms on 50 μg·L−1 solutions of 7 pesticides
Note: Left to right: Peak 1: carbendazim; Peak 2: thiamethoxam; Peak 3: methomyl; Peak 4: tricyclazole; Peak 5: acetamiprid; Peak 6: imidacloprid; Peak 7: pyrimethanil.
表 1 7种农药的液相色谱质谱分析参数
Table 1. LC-MS/MS testing parameters for 7 pesticides
序号
No.农药
Pesticide保留时间
Retention time/min离子碎片信息
Information of ion fragments/(m·z−1)碎裂电压
Fragmentor/V碰撞电压
Collision energy/eVA 吡虫啉 Imidacloprid 3.19 256>209*, 256>175 120 9, 12 B 啶虫脒 Acetamiprid 2.49 223.1>125.8*, 223.1>90 87 17, 36 C 多菌灵 Carbendazim 1.24 192>160*, 192>132 100 16, 33 D 灭多威 Methomyl 2.01 163>88*, 163>106 58 2, 5 E 嘧霉胺 Pyrimethanil 4.61 200>107*, 200>168 127 23, 30 F 噻虫嗪 Thiamethoxam 1.57 291.9>210.9*, 291.9>180.9 80 5, 18 G 三环唑 Tricyclazole 2.38 190>162.9*, 190>136 130 20, 30 注:* 为定量离子对。
Note: *is quantitative ion pairs.表 2 方法的线性回归方程、相关系数、检出限和定量限
Table 2. Linear equations, R2, LODs, and LOQs on detections of 7 pesticides by newly developed detection method
目标物 Component 回归方程 Regression equation 线性范围 Linear range/(µg·L−1) 相关系数 R2 LOD /(µg·kg−1) LOQ /(µg·kg−1) 多菌灵 Carbendazim y=20760x+8436.7 0~50 0.9986 0.15 0.5 噻虫嗪 Thiamethoxam y=2473.4x+1116.1 0~50 0.9989 0.3 1 灭多威 Methomyl y=1918.8x+1382.8 0~50 0.9992 0.6 2 三环唑 Tricyclazole y=14481x+6394.9 0~50 0.9992 0.15 0.5 啶虫脒 Acetamiprid y=11083x-2560.6 0~50 0.9997 0.15 0.5 吡虫啉 Imidacloprid y=1517.2x+571.3 0~50 0.9979 0.6 2 嘧霉胺 Pyrimethanil y=3576.5x+3143.3 0~50 0.9987 0.3 1 表 3 7种农药的加标回收率及精密度(n=6)
Table 3. Recovery rates and RSDs on spiked pesticides of newly developed detection method (n=6)
目标物 Component 添加水平 Spiked levels/(ng·g−1) 回收率 Recovery/% 相对标准偏差 RSD/% 多菌灵 Carbendazim 5, 10, 50 75.4, 71.6, 72.5 9.71, 6.69, 6.43 噻虫嗪 Thiamethoxam 5, 10, 50 94.5, 99.7, 104.0 10.75, 4.13, 5.79 灭多威 Methomyl 5, 10, 50 100.2, 102.8,107.7 8.65, 8.18, 6.10 三环唑 Tricyclazole 5, 10, 50 78.9, 74.1, 77.5 5.35, 8.13, 4.62 啶虫脒 Acetamiprid 5, 10, 50 104.6, 105.6, 102.3 6.17, 4.46, 3.95 吡虫啉 Imidacloprid 5, 10, 50 92.9, 94.8, 101.2 13.62, 8.58, 6.22 嘧霉胺 Pyrimethanil 5, 10, 50 100.8, 95.4, 98.6 7.97, 5.14, 5.03 -
[1] ZHOU P, HU O, FU H Y, et al. UPLC-Q-TOF/MS-based untargeted metabolomics coupled with chemometrics approach for Tieguanyin tea with seasonal and year variations [J]. Food Chemistry, 2019, 283: 73−82. doi: 10.1016/j.foodchem.2019.01.050 [2] ZHOU L, JIANG Y P, LIN Q, et al. Residue transfer and risk assessment of carbendazim in tea [J]. Journal of the Science of Food and Agriculture, 2018, 98(14): 5329−5334. doi: 10.1002/jsfa.9072 [3] 傅海霞, 郝伟, 李烨. 基于稀土元素判别茶叶原产地的研究进展 [J]. 昆明学院学报, 2015, 37(6):49−51, 59.FU H X, HAO W, LI Y. Research progress of distinguishing tea origin based on rare earth elements [J]. Journal of Kunming University, 2015, 37(6): 49−51, 59.(in Chinese) [4] CHEN H P, WANG Q H, JIANG Y, et al. Monitoring and risk assessment of 74 pesticide residues in Pu-erh tea produced in Yunnan, China [J]. Food Additives & Contaminants: Part B, 2015, 8(1): 56−62. [5] HOU R Y, HU J F, QIAN X S, et al. Comparison of the dissipation behaviour of three neonicotinoid insecticides in tea [J]. Food Additives & Contaminants: Part A, 2013, 30(10): 1761−1769. [6] WANG X R, ZHOU L, ZHANG X Z, et al. Transfer of pesticide residue during tea brewing: Understanding the effects of pesticide's physico-chemical parameters on its transfer behavior [J]. Food Research International, 2019, 121: 776−784. doi: 10.1016/j.foodres.2018.12.060 [7] 吴萍, 韩志华, 刘惠敏, 等. 浓硫酸净化-气相色谱法检测茶叶中α-硫丹和拟除虫菊酯类农药残留 [J]. 农药学学报, 2012, 14(6):612−618. doi: 10.3969/j.issn.1008-7303.2012.06.05WU P, HAN Z H, LIU H M, et al. Determinnation of the residues of α-endosulfan and pyrethriods in tea by gas chromatography with sulphuric acid clean-up [J]. Chinese Journal of Pesticide Science, 2012, 14(6): 612−618.(in Chinese) doi: 10.3969/j.issn.1008-7303.2012.06.05 [8] 刘松南, 赵新颖, 董晓倩, 等. QuEChERS净化-液相色谱-串联质谱法测定茶叶中氯噻啉 [J]. 色谱, 2015, 33(11):1205−1209. doi: 10.3724/SP.J.1123.2015.07006LIU S N, ZHAO X Y, DONG X Q, et al. Determination of imidaclothiz in tea by QuEChERS cleanup and liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2015, 33(11): 1205−1209.(in Chinese) doi: 10.3724/SP.J.1123.2015.07006 [9] 尹鹏, 陈红平, 刘新, 等. 5种分散吸附剂对茶叶乙腈提取液组分的吸附作用研究 [J]. 分析试验室, 2013, 32(6):54−58.YIN P, CHEN H P, LIU X, et al. Study on effect of five dispersive solid adsorbents on the components of tea extracts by acetonitrile [J]. Chinese Journal of Analysis Laboratory, 2013, 32(6): 54−58.(in Chinese) [10] 叶江雷, 金贵娥, 吴云辉, 等. QuEChERS法提取净化结合气-质联法快速检测茶叶中农药残留 [J]. 食品科学, 2013, 34(12):265−271. doi: 10.7506/spkx1002-6630-201312055YE J L, JIN G E, WU Y H, et al. Rapid determination of pesticide residues in tea by QuEChERS and gas chromatography-mass spectrometry (GC-MS) [J]. Food Science, 2013, 34(12): 265−271.(in Chinese) doi: 10.7506/spkx1002-6630-201312055 [11] 宋淑玲, 李重九, 马晓东, 等. 蔬菜中残留农药的石墨化碳黑净化和气相色谱-质谱检测方法 [J]. 分析化学, 2008, 36(11):1526−1530. doi: 10.3321/j.issn:0253-3820.2008.11.014SONG S L, LI C J, MA X D, et al. Adsorption and purification of pesticides in vegetables with graphitized carbon black and determination with gas chromatography-mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2008, 36(11): 1526−1530.(in Chinese) doi: 10.3321/j.issn:0253-3820.2008.11.014 [12] ZHAI Y H, DUAN S E, HE Q, et al. Solid phase extraction and preconcentration of trace mercury(Ⅱ) from aqueous solution using magnetic nanoparticles doped with 1, 5-diphenylcarbazide [J]. Microchimica Acta, 2010, 169(3/4): 353−360. [13] ESKANDARI H, KHOSHANDAM M. Sensitive and selective spectrophotometric determination of palladium(Ⅱ) ion following its preconcentration using modified magnetite nanoparticles and 3-phasic backextraction [J]. Microchimica Acta, 2011, 175(3/4): 291−299. [14] 刘冰, 王德平, 黄文旵. 柠檬酸在磁性纳米粒子上的吸附及性能表征 [J]. 功能材料, 2007, 38(7):1074−1077. doi: 10.3321/j.issn:1001-9731.2007.07.010LIU B, WANG D, HUANG W. The absorption and characterization of citric acid on magnetic nanoparticles [J]. Journal of Functional Materials, 2007, 38(7): 1074−1077.(in Chinese) doi: 10.3321/j.issn:1001-9731.2007.07.010 [15] 马琳, 陈建波, 赵莉, 等. 固相萃取-超高效液相色谱-串联质谱法同时测定果蔬中6种酰胺类农药残留量 [J]. 色谱, 2015, 33(10):1019−1025. doi: 10.3724/SP.J.1123.2015.05013MA L, CHEN J B, ZHAO L, et al. Determination of six amide pesticide residues in vegetables and fruits by solid phase extraction-ultra high performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2015, 33(10): 1019−1025.(in Chinese) doi: 10.3724/SP.J.1123.2015.05013 [16] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 实验室质量控制规范 食品理化检测: GB/T 27404—2008[S]. 北京: 中国标准出版社, 2008. [17] 余璐, 宋伟, 吕亚宁, 等. 超高效液相色谱-四极杆-飞行时间质谱法快速筛查茶叶中的204种农药残留 [J]. 色谱, 2015, 33(06):597−612. doi: 10.3724/SP.J.1123.2015.02056YU L, SONG W, LYU Y N, et al. Rapid determination of 204 pesticide residues in tea by ultra performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry [J]. Chinese Journal of Chromatography, 2015, 33(06): 597−612.(in Chinese) doi: 10.3724/SP.J.1123.2015.02056 [18] AOAC International. Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Tandem Mass Spectrometry: AOAC Official Method 2007.01[S]. U.S.A: AOAC International, 2007. [19] British Standards Institution. Foods of plant origin-Determination of pesticide residues using GC-MS and/or LC-MS/MS following acetonitrile extraction/partitioning and cleanup by dispersive SPE-QuEChERS-method: BS EN 15662: 2008[S]. London: Standards Policy and Strategy Committee, 2008. [20] 胡雄飞, 许勇泉, 钟小玉, 等. 钙离子对不同发酵程度茶汤沉淀形成的影响 [J]. 茶叶科学, 2014, 34(5):458−464. doi: 10.3969/j.issn.1000-369X.2014.05.006HU X F, XU Y Q, ZHONG X Y, et al. Effect of Ca2+ on sediment formation in the tea infusion under different fermentation degree [J]. Journal of Tea Science, 2014, 34(5): 458−464.(in Chinese) doi: 10.3969/j.issn.1000-369X.2014.05.006 [21] 张芬, 张新忠, 罗逢健, 等. QuEChERS净化GC/ECD测定茶叶与土壤中噻虫嗪、虫螨腈及高效氯氟氰菊酯残留 [J]. 分析测试学报, 2013, 32(4):393−400. doi: 10.3969/j.issn.1004-4957.2013.04.001ZHANG F, ZHANG X Z, LUO F J, et al. Residue analysis of thiamethoxam, chlorfenapyr and lambda-cyhalothrin in tea and soil by GC/ECD after QuEChERS clean-up [J]. Journal of Instrumental Analysis, 2013, 32(4): 393−400.(in Chinese) doi: 10.3969/j.issn.1004-4957.2013.04.001 [22] 李燕莹, 周庆琼, 陈羽中, 等. 磁固相萃取在食品分析中的研究进展 [J]. 食品工业科技, 2019, 40(8):323−330, 336.LI Y Y, ZHOU Q Q, CHEN Y Z, et al. Research progress of magnetic solid phase extraction in food analysis [J]. Science and Technology of Food Industry, 2019, 40(8): 323−330, 336.(in Chinese)