Inhibitory Effects of Ailanthus altissima Alkaloids on Pathogenic Fungi
-
摘要:
目的 探索臭椿生物碱在植物病原真菌防治中的应用。 方法 以臭椿树皮为原料,通过乙醇浸提法提取臭椿粗生物碱,并利用真空液相色谱技术对臭椿粗生物碱进行分离。采用菌丝生长速率法测定臭椿生物碱对黄瓜枯萎病菌(Fusarium oxysporum f. sp. cucumerinum)、禾谷镰刀菌(Fusarium graminearum)、冬瓜枯萎病菌(Fusarium oxysporum f. sp. benincasae)、芍药灰霉病菌(Botrytis paeoniae)、牡丹炭疽病菌(Gloeosporium sp.)等5种供试植物病原真菌的抑制活性。 结果 除芍药灰霉病菌外,粗生物碱和单碱铁屎米-6-酮对其他4种供试真菌都产生较强的抑制作用,尤其对牡丹炭疽病菌、禾谷镰刀菌抑制效果明显。粗生物碱和单碱铁屎米-6-酮对禾谷镰刀菌的毒力都最强,EC50值分别为0.31 、20.32 μg·mL−1。 结论 臭椿生物碱对多种植物病原真菌有较强的抑制作用,单碱铁屎米-6-酮的抑菌效果要优于粗生物碱,在开发新型绿色植物抗菌剂方面具有一定的潜力。 Abstract:Objective Possibility of applying Ailanthus altissima alkaloids for controlling 5 plant pathogenic fungi was studied. Method Crude ethanol extract of alkaloids from the bark of A. altissima was obtained. Extract was separated using the vacuum liquid chromatography. Antifungal activities of the crude alkaloids and the elution fractions on Fusarium oxysporum f. sp. cucumerinum, F. graminearum, F. oxysporum f. sp. benincasae, Botrytis paeoniae, and Gloeosporium sp. were determined according to the fungal mycelium growth rate. Result The crude ethanol-extracted alkaloids and canthin-6-one fraction exhibited inhibitory effects on the tested fungi, except B. paeoniae. The antimicrobial effects were particularly strong on Gloeosporium sp. and F. graminearum and especially toxic toward the latter with EC50 values of 0.31 mg·mL−1 by the crude alkaloids and 20.32μg·mL−1 by canthin-6-one. Conclusion The ethanol-extracted alkaloids from A. altissima barks could inhibit the growth and/or be lethal toward a variety of plant pathogenic fungi. Although the antifungal effect was not as potent as that of canthin-6-one, the crude extract perse appeared promising to be a new source for the development of a plant-based biocontrol agent. -
Key words:
- Ailanthus altissima /
- alkaloids /
- plant pathogenic fungi /
- inhibition
-
表 1 臭椿粗提物对5种植物病原真菌的抑制效果
Table 1. Inhibitory effects of crude extracts of A. altissima on 5 plant pathogenic fungi
提取物
Extracts牡丹炭疽病菌
Gloeosporium sp.芍药灰霉病菌
Botrytis paeoniae禾谷镰刀菌
Fusarium graminearum黄瓜枯萎病菌
Fusarium oxysporum f. sp.
cucumerinum冬瓜枯萎病菌
Fusarium oxysporum f. sp.
benincasae菌落直径
Colony diameter/mm抑制率
Inhibition rate/%菌落直径
Colony diameter/mm抑制率
Inhibition rate/%菌落直径
Colony diameter/mm抑制率
Inhibition rate/%菌落直径
Colony diameter/mm抑制率
Inhibition rate/%菌落直径
Colony diameter/mm抑制率
Inhibition rate/%CK 38.73+0.53 a 24.57+0.67 ab 42.78+0.58 a 28.38 +0.35 a 28.71+1.53 a Ea 33.03+0.81 b 14.73 25.48+0.77 a −3.72 39.84+0.23 b 6.87 25.04+0.53 b 11.76 22.99+1.02 b 19.93 Eb 32.27+0.06 b 16.67 25.08+0.34 ab −2.08 39.85+0.54 b 6.85 24.59+0.38 b 13.35 23.99+0.38 b 16.43 Ec 30.36+1.03 c 21.60 23.53+0.29 b 4.25 33.64+0.61 c 21.37 23.98+0.75 b 15.50 22.47+0.74 b 21.75 Ed 3.71+0.56 d 90.43 18.63+1.03 c 24.18 3.30+0.28 d 92.29 11.68+0.32 c 58.86 4.18+0.10 c 85.43 注:菌落直径是平均值±标准差,同列不同字母表示差异显著(P<0.05)。表3同。
Note: Colony diameter were means±SD, and different letters in the same column mean significant difference (P<0.05)。The same as table 3.表 2 Ed对供试病原真菌的毒力
Table 2. Toxicity of Ed against tested fungi
供试真菌
Tested fungi毒力回归方程
Toxicity regression equation相关系数
Correlation coefficientEC50/
(mg·mL−1)黄瓜枯萎病菌 Fusarium oxysporum f. sp. cucumerinum y = 0.6577 x + 5.3921 0.996 3 0.55 牡丹炭疽病菌 Gloeosporium sp. y = 0.8492 x + 5.755 0.977 3 0.41 冬瓜枯萎病菌 Fusarium oxysporum f. sp. benincasae y = 0.6188 x + 5.6506 0.991 9 0.35 禾谷镰刀菌 Fusarium graminearum y = 1.1354 x + 6.3194 0.976 3 0.31 表 3 粗碱分离物对5种植物病原真菌的抑制效果
Table 3. Inhibitory effects of separated components on 5 plant pathogenic fungi
分离物
Separated
components菌落直径 Colony diameter/mm 黄瓜枯萎病菌
Fusarium oxysporum f. sp.
cucumerinum牡丹炭疽病菌
Gloeosporium sp.芍药灰霉病菌
Botrytis paeoniae冬瓜枯萎病菌
Fusarium oxysporum f. sp.
benincasae禾谷镰刀菌
Fusarium graminearumCK 36.45+0.35 a 40.89+5.27 a 26.02+0.57 ab 24.49+3.89 b 49.89+2.20 a S1 36.38+0.12 a 43.14+0.56 a 26.73+0.76 a 29.49+0.54 a 42.65+6.87 a S2 24.03+0.15 b 25.94+0.39 b 26.64+0.24 a 19.18+0.72 c 18.82+4.88 b S3 35.63+0.34 a 41.21+2.07 a 25.33+0.33 ab 28.37+0.66 ab 47.03+0.48 a S4 35.92+0.45 a 41.81+0.62 a 24.07+1.48 b 26.52+0.94 ab 46.70+1.03 a 表 4 S2对供试病原真菌的毒力
Table 4. Toxicity of S2 against tested fungi
供试真菌
Tested fungi毒力回归方程
Toxicity regression equation相关系数
Correlation coefficientEC50/(μg·mL−1) 黄瓜枯萎病菌 Fusarium oxysporum f. sp. cucumerinum y = 0.5298 x + 2.9071 0.9686 51.95 牡丹炭疽病菌 Gloeosporium sp. y = 0.5517 x + 2.9082 0.9108 44.33 冬瓜枯萎病菌 Fusarium oxysporum f. sp. benincasae y = 0.6198 x + 2.618 0.9642 46.67 禾谷镰刀菌 Fusarium graminearum y = 0.6606 x + 3.0105 0.9144 20.32 -
[1] 刘佳. 三种中药对植物病原真菌抑制作用研究[D]. 成都: 西华大学, 2013.LIU J. The inhibitory effect of three kinds of Chinese herbal medicine on plant pathogenic fungi[D]. Chengdu: Xihua University, 2013. (in Chinese). [2] 沈建国, 张正坤, 吴祖建, 等. 臭椿抗烟草花叶病毒活性物质的提取及其初步分离 [J]. 中国生物防治, 2007, 23(4):348−352.SHEN J G, ZHANG Z K, WU Z J, et al. Extraction and preliminary isolation of antiviral substances from Ailanthus altissima against TMV [J]. Chinese Journal of Biological Control, 2007, 23(4): 348−352.(in Chinese) [3] NGUVO K J, GAO X Q. Weapons hidden underneath: Bio-control agents and their potentials to activate plant induced systemic resistance in controlling crop Fusarium diseases [J]. Journal of Plant Diseases and Protection, 2019, 126(3): 177−190. doi: 10.1007/s41348-019-00222-y [4] LEHMANN S, HERRMANN F, KLEEMANN K, et al. Extract and the quassinoid ailanthone from Ailanthus altissima inhibit nematode reproduction by damaging germ cells and Rachis in the model organism Caenorhabditis elegans [J]. Fitoterapia, 2020, 146: 104651. doi: 10.1016/j.fitote.2020.104651 [5] 吕建华, 华志鹏. 臭椿树皮提取物对锈赤扁谷盗的毒杀作用 [J]. 河南农业大学学报, 2011, 45(1):71−74, 126.LYU J H, HUA Z P. The controlling effect of Ailanthus altissima bark extract on Cryptolestes ferrugineus [J]. Journal of Henan Agricultural University, 2011, 45(1): 71−74, 126.(in Chinese) [6] 周佳民, 黄文坤, 崔江宽, 等. 不同药用植物提取液对大豆孢囊线虫的控制作用 [J]. 植物保护, 2015, 41(5):225−228. doi: 10.3969/j.issn.0529-1542.2015.05.044ZHOU J M, HUANG W K, CUI J K, et al. Effects of different plant extracts on controlling Heterodera glycines [J]. Plant Protection, 2015, 41(5): 225−228.(in Chinese) doi: 10.3969/j.issn.0529-1542.2015.05.044 [7] DEMASI S, CASER M, VANARA F, et al. Ailanthone from Ailanthus altissima (Mill.) Swingle as potential natural herbicide [J]. Scientia Horticulturae, 2019, 257: 108702. doi: 10.1016/j.scienta.2019.108702 [8] CASER M, DEMASI S, CALDERA F, et al. Activity of Ailanthus altissima (mill.) swingle extract as a potential bioherbicide for sustainable weed management in horticulture [J]. Agronomy, 2020, 10(7): 965. doi: 10.3390/agronomy10070965 [9] 周江鸿, 夏菲, 车少臣. 16种园林植物粗提物对黄栌枯萎病菌的抑制作用 [J]. 园林科技, 2015, 138(4):30−34.ZHOU J H, XIA F, CHE S C. Inhibitory Effects of Crude Extract of 16 Garden Plants against Verticillium dahlia [J]. Science & Technology of Landscape Architecture, 2015, 138(4): 30−34.(in Chinese) [10] 潘漫, 盛园园, 程傲星, 等. 8种中药提取物对植物病原真菌的抑制活性 [J]. 资源开发与市场, 2011, 27(5):394−396. doi: 10.3969/j.issn.1005-8141.2011.05.004PAN M, SHENG Y Y, CHENG A X, et al. Study on inhibition of 8 kinds of Chinese herbs extract to phytopathogenic fungi [J]. Resource Development & Market, 2011, 27(5): 394−396.(in Chinese) doi: 10.3969/j.issn.1005-8141.2011.05.004 [11] 谭庆伟, 吴祖建, 欧阳明安. 臭椿化学成分及生物活性研究进展 [J]. 天然产物研究与开发, 2008, 20(4):748−755. doi: 10.3969/j.issn.1001-6880.2008.04.044TAN Q W, WU Z J, OUYANG M G. Research progress in chemical constituents and bioactivities of Ailanthus altissima [J]. Natural Product Research and Development, 2008, 20(4): 748−755.(in Chinese) doi: 10.3969/j.issn.1001-6880.2008.04.044 [12] 胡苗芬, 宋新波, 张丽娟. 臭椿吲哚生物碱成分及其生物活性研究进展 [J]. 药物评价研究, 2012, 35(6):469−472.HU M F, SONG X B, ZHANG L J. Research progress in indole alkaloids from Ailanthus altissima and their bioactivities [J]. Drug Evaluation Research, 2012, 35(6): 469−472.(in Chinese) [13] CHO S K, JEONG M, JANG D S, et al. Anti-inflammatory effects of canthin-6-one alkaloids from Ailanthus altissima [J]. Planta Medica, 2018, 84(8): 527−535. doi: 10.1055/s-0043-123349 [14] 胡苗芬, 宋新波, 张丽娟, 等. 椿皮中铁屎米酮的分离及其体外抗菌活性研究 [J]. 辽宁中医药大学学报, 2013, 15(12):75−77.HU M F, SONG X B, ZHANG L J, et al. Isolation of canthin-6-one from bark of Ailanthus altissima and its antibiotic tests in vitro [J]. Journal of Liaoning University of Traditional Chinese Medicine, 2013, 15(12): 75−77.(in Chinese) [15] 施瑶, 李定祥, 闵知大. 花椒属植物对口腔致病菌的抗菌活性 [J]. 中国天然药物, 2005, 3(4):248−251.SHI Y, LI D X, MIN Z D. Activity of Zanthoxylum species and their compounds against oral pathogens [J]. Chinese Journal of Natural Medicines, 2005, 3(4): 248−251.(in Chinese) [16] 朱奇奇, 张杰, 谢平, 等. 八角多酚提取物对植物病原真菌的抑制作用研究 [J]. 中国调味品, 2017, 42(5):5−8. doi: 10.3969/j.issn.1000-9973.2017.05.002ZHU Q Q, ZHANG J, XIE P, et al. Research on antibacterial effect of total polyphenols from anise on plant pathogenic fungi [J]. China Condiment, 2017, 42(5): 5−8.(in Chinese) doi: 10.3969/j.issn.1000-9973.2017.05.002 [17] 冯小飞, 赵宁, 杨品辉, 等. 红花夹竹桃萃取物对植物病原真菌的抑菌活性 [J]. 福建农业学报, 2018, 33(8):849−854.FENG X F, ZHAO N, YANG P H, et al. Antimicrobial activities of Nerium indicum mill extracts on fungal pathogens [J]. Fujian Journal of Agricultural Sciences, 2018, 33(8): 849−854.(in Chinese) [18] 陈业高, 张燕, 冯丽萍. 真空液相层析及其在生物活性天然产物分离中的应用 [J]. 云南化工, 2000, 27(5):19−20, 21. doi: 10.3969/j.issn.1004-275X.2000.05.008CHEN Y G, ZHANG Y, FENG L P. Vacuum liquid chromatography and its application in the isolation of bioactive natural products [J]. Yunan Chemical Technology, 2000, 27(5): 19−20, 21.(in Chinese) doi: 10.3969/j.issn.1004-275X.2000.05.008 [19] 张玉军, 刘星. 天然产物化学[M]. 北京: 化学工业出版社, 2015: 29-30. [20] 李永春, 赵美荣, 张智. HPLC法测定椿皮中铁屎米-6-酮生物碱的含量 [J]. 赤峰学院学报(自然科学版), 2020, 36(3):39−40.LI Y C, ZHAO M R, ZHANG Z. HPLC determination of canthin-6-one from bark of Ailanthus altissima (Mill.) Swingle [J]. Journal of Chifeng University (Natural Science Edition), 2020, 36(3): 39−40.(in Chinese) [21] BALKAN B, BALKAN S, AYDOGDU H, et al. Antifungal activities of Ailanthus altissima Swingle and Juglans regia L. leaves against some cereal fungi [J]. Journal of Applied Environmental and Biological Sciences, 2014, 8(1): 76−79. [22] 张燕宁, 雷敏, 孙伟, 等. 56种植物对植物病原菌的生物活性 [J]. 农药, 2010, 49(4):290−292. doi: 10.3969/j.issn.1006-0413.2010.04.019ZHANG Y N, LEI M, SUN W, et al. Antifungal activities of 56 kinds of plant [J]. Agrochemicals, 2010, 49(4): 290−292.(in Chinese) doi: 10.3969/j.issn.1006-0413.2010.04.019 [23] 刘继梅, 张中伟, 姚佳, 等. 臭椿树枝化学成分研究 [J]. 林产化学与工业, 2013, 33(4):121−127. doi: 10.3969/j.issn.0253-2417.2013.04.023LIU J M, ZHANG Z W, YAO J, et al. Chemical constituents of the branches of Ailanthus altissima swingle [J]. Chemistry and Industry of Forest Products, 2013, 33(4): 121−127.(in Chinese) doi: 10.3969/j.issn.0253-2417.2013.04.023 [24] ANDERSON L A, HARRIS A, PHILLIPSON J D. Production of cytotoxic canthin-6-one alkaloids by Ailanthus altissima plant cell cultures [J]. Journal of Natural Products, 1983, 46(3): 374−378. doi: 10.1021/np50027a014 [25] 赵春超. 凤眼草和蓬子菜化学成分及生物活性研究[D]. 沈阳: 沈阳药科大学, 2007.ZHAO C C. Studies on the Chemical Constituents and Biological Activities of Fruits of Ailanthus altissima Swingle and Galium verum L.[D]. Shenyang: Shengyang Pharmaceutical University, 2007. (in Chinese). [26] 王乐飞, 赵军, 唐文照, 等. 臭椿根皮中1个新的达玛烷型三萜 [J]. 中草药, 2014, 45(2):161−163. doi: 10.7501/j.issn.0253-2670.2014.02.003WANG L F, ZHAO J, TANG W Z, et al. a new dammatane-type triterpene from root barks of Ailanthus altissima [J]. Chinese Traditional and Herbal Drugs, 2014, 45(2): 161−163.(in Chinese) doi: 10.7501/j.issn.0253-2670.2014.02.003