BSA-Seq Identification of Blast-resistance Genes in Gufeng B Rice
-
摘要:
目的 挖掘和鉴定谷丰B稻瘟病抗性基因,了解谷丰B稻瘟病抗性遗传模式。 方法 以谷丰B和日本晴杂交获得F1和F2代遗传群体,接种稻瘟菌不同生理小种并分析抗病遗传模式;在F2群体中挑选极端抗/感单株构建DNA混合池,利用群体分离分析法(BSA)定位关联区域。 结果 谷丰B对KJ201、RB22、CHNOS、RB6、2Y838-1、501-3和IR16-1等菌株均表现高抗性,表明谷丰B基因组可能携带了广谱高抗稻瘟病基因。谷丰B和日本晴杂交,F1群体表现抗501-3和IR16-1,F2群体的抗病/感病分离比不符合3 ∶ 1,推测谷丰B基因组存在多个位点影响稻瘟病抗性。对F2群体的极端抗病、感病混合池及亲本DNA进行全基因组测序,鉴定了1 756 964个单核苷酸多态性(SNPs)标记。分析子代△SNP-index,定位到2个与抗病性显著关联区间,分别为Chr.6: 10 082-11 397 kb和Chr.11: 120-266 kb。其中,6号染色体的关联区间与Pi2/9抗病位点等位,区间内含有4006个SNPs和623个插入缺失(InDels)标记;11号染色体的关联区间含有752个SNPs和195个InDels标记。 结论 谷丰B对强致病力501-3菌株抗性可能是由第6号和11号染色体上的基因共同控制。研究结果为谷丰B抗性基因的精细定位及基因克隆奠定了基础,并为水稻抗稻瘟病分子标记辅助选择提供标记资源。 Abstract:Objective The rice cultivar Gufeng B confers strong, broad-spectrum, durable resistance against various rice blast isolates. The present study was aim to identify and map the blast resistance gene(s) in Gufeng B. Method The F1 and F2 population were obtained by crossing Gufeng B and Nipponbare, and the genetic model of blast resistance was analyzed after inoculating with 7 strains of Magnaporthe grisea. Subsequently, F2 population was used to construct a resistant pool and a sensitive pool respectively, and to map the associated loci via the method of bulked segregation analysis. Result Gufeng B exhibited high resistance to all of the tested strains, such as KJ201, RB22, CHNOS, RB6, 2Y838-1, 501-3 and IR16-1, suggesting that Gufeng B may carry the broad-spectrum and high resistance genes. The F1 progenies from the cross between Gufeng B and Nipponbare conferred resistance against the strains 501-3 and IR16-1, and the segregation ratio of resistance and susceptibility among F2 progenies does not fit 3:1, assuming that the resistance against the strains 501-3 and IR16-1 were controlled by multiple locus in Gufeng B. Whole genome re-sequencing of the two parental lines Gufeng B and Nipponbare identified 1,756,964 SNPs. Calculation results of △SNP-index showed that there were two candidate loci conferring resistance to rice blast disease, which were located at Chr.6: 10,082-11,397Kb, corresponding to the Pi2/9 locus, and Chr.11: 120-266Kb. 4006 SNPs and 623 InDels markers were searched within the interval of Chromosome 6, 752 SNPs and 195 InDels within the corresponding region of Chromosome 11, respectively. Conclusion The resistance of Gufeng B to 501-3 strain may be controlled by two resistance genes on chromosomes 6 and 11. Our results laid the foundation for finely mapping and cloning the resistance genes in Gufeng B, and provided marker resources for molecular marker-assisted selection. -
Key words:
- Rice /
- blast disease /
- resistance gene /
- Gufeng B /
- bulked segregation analysis
-
表 1 水稻品种稻瘟病抗性鉴定
Table 1. Blast resistance of rice cultivars
品种 Varieties 菌株 Strains 501-3 KJ201 IR16-1 RB22 CHNOS RB6 2Y838-1 IR0462 S MR S R MR MS S 福恢838 Fuhui838 S MR S MS R S HS 甬优1号 Yongyou1 S MR S MS R S S 圭630 Gui630 HS S HS S R HS MS 福恢718 Fuhui718 MS R MS R R S S 谷丰B Gufeng B HR HR HR HR HR HR HR 日本晴Nipponbare HS HS HS HS S S HS 注: HR: 高抗; R: 抗病; MR: 中抗; MS: 中感; S: 感病; HS: 高感
Note: HR: Highly resistant; R: Resistant; MS: Moderately resistant; MS: Moderately susceptible; S: Susceptible; HS: Highly susceptible.表 2 谷丰B稻瘟病抗性遗传分析
Table 2. Genetic analysis on blast resistance of Gufeng B
群体
Population菌株
Strains总株数
Total number抗病株数
Number of resistant plants感病株数
Number of susceptible plants期望比
Expected rationχ2 F1(NPB×谷丰B) 501-3 30 30 0 — — IR16-1 30 30 0 — — F2(NPB×谷丰B) 501-3 407 255 152 3:1 33.09 IR16-1 430 275 155 3:1 27.98 注: NPB: 日本晴; χ2(0.05)=3.84
Note: NPB: Nipponbare; χ2 (0.05)=3.84.表 3 过滤后的数据统计表
Table 3. Statistics on data after screening
样本
Sample有效数据量
Clean Base/G准确度
Q30/%GC含量
GC content/%与参考基因组相同片段
Mapped reads匹配率
Mapped ratio/%覆盖度
Coverage/%谷丰 B 9.88 92.44 44.3 62,811,386 95.36 87.48 NPB ND ND ND 74,123,818 98.18 97.59 抗病池 R pool 12.177 92.44 47.26 77,601,474 95.59 97.69 感病池 S pool 10.417 91.52 47.59 66,943,380 96.39 96.94 表 4 SNPs和InDels在水稻12条染色体的分布
Table 4. Distribution of identified SNPs and InDelsk in 12 chromosomes of rice
染色体
Chromosome染色体
长度
Chr. LengthSNPs InDels 数量
Number密度
Density /
(个·kb−1)数量
Number密度
Density/
(个·kb−1)Chr.1 43270923 190273 4.397 46279 1.070 Chr.2 35937250 184278 5.128 42618 1.186 Chr.3 36413819 172550 4.739 42505 1.167 Chr.4 35502694 161349 4.545 31762 0.895 Chr.5 29958434 127664 4.261 30080 1.004 Chr.6 31248787 137688 4.406 35460 1.135 Chr.7 29697621 151268 5.094 34762 1.171 Chr.8 28443022 123316 4.336 28761 1.011 Chr.9 23012720 92893 4.037 22257 0.967 Chr.10 23207287 136960 5.902 30171 1.300 Chr.11 29021106 153785 5.299 33329 1.148 Chr.12 27531856 124940 4.538 31361 1.139 总计Total 373245519 1756964 4.707 409345 1.097 -
[1] DEAN R A, TALBOT N J, EBBOLE D J, et al. The genome sequence of the rice blast fungus Magnaporthe grisea [J]. Nature, 2005, 434(7036): 980−986. doi: 10.1038/nature03449 [2] 易怒安, 李魏, 戴良英. 水稻抗稻瘟病基因的克隆及其分子育种研究进展 [J]. 分子植物育种, 2015, 13(7):1653−1659.YI N A, LI W, DAI L Y. Advances in the cloning of rice blast resistance gene and its molecular breeding [J]. Molecular Plant Breeding, 2015, 13(7): 1653−1659.(in Chinese) [3] TIAN D G, CHEN Z J, CHEN Z Q, et al. Allele-specific marker-based assessment revealed that the rice blast resistance genes Pi2 and Pi9 have not been widely deployed in Chinese indica rice cultivars [J]. Rice (New York, N. Y.), 2016, 9(1): 19. [4] 杨德卫, 王莫, 韩利波, 等. 水稻稻瘟病抗性基因的克隆、育种利用及稻瘟菌无毒基因研究进展 [J]. 植物学报, 2019, 54(2):265−276. doi: 10.11983/CBB18194YANG D W, WANG M, HAN L B, et al. Progress of cloning and breeding application of blast resistance genes in rice and avirulence genes in blast fungi [J]. Chinese Bulletin of Botany, 2019, 54(2): 265−276.(in Chinese) doi: 10.11983/CBB18194 [5] 梁廷敏, 郭新睿, 陈子强, 等. 水稻材料IR65482抗稻瘟病基因鉴定与定位 [J]. 分子植物育种, 2018, 16(13):4308−4313.LIANG T M, GUO X R, CHEN Z Q, et al. Identification and mapping of a blast disease resistance gene in rice line IR65482 [J]. Molecular Plant Breeding, 2018, 16(13): 4308−4313.(in Chinese) [6] SALUNKHE A S, POORNIMA R, PRINCE K S, et al. Fine mapping QTL for drought resistance traits in rice (Oryza sativa L.) using bulk segregant analysis [J]. Molecular Biotechnology, 2011, 49(1): 90−95. doi: 10.1007/s12033-011-9382-x [7] SUN J, YANG L M, WANG J G, et al. Identification of a cold-tolerant locus in rice (Oryza sativa L.) using bulked segregant analysis with a next-generation sequencing strategy [J]. Rice (New York, N. Y.), 2018, 11(1): 24. [8] 张柱坚, 林艳, 田大刚, 等. 水稻细胞质雄性不育系谷丰A稻瘟病抗性基因分子鉴定及遗传分析 [J]. 分子植物育种, 2019, 17(5):1411−1416.ZHANG Z J, LIN Y, TIAN D G, et al. Molecular identification and genetic analysis of rice blast resistant gene in rice cytoplasmic male sterility line GuFeng A [J]. Molecular Plant Breeding, 2019, 17(5): 1411−1416.(in Chinese) [9] IRRI. Standard evaluation system for rice[M]. Manila: International Rice Research Institute, 1996: 17-18. [10] LIANG T M, CHI W C, HUANG L K, et al. Bulked segregant analysis coupled with whole-Genome sequencing (BSA-Seq) mapping identifies a novel pi21 haplotype conferring basal resistance to rice blast disease [J]. International Journal of Molecular Sciences, 2020, 21(6): 2162. doi: 10.3390/ijms21062162 [11] DENG Y W, ZHAI K R, XIE Z, et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance [J]. Science, 2017, 355(6328): 962−965. doi: 10.1126/science.aai8898 [12] 卓晓轩, 樊琳琳, 安星宇, 等. 云南地方品种子预44中一个新的抗稻瘟病基因的定位 [J]. 中国水稻科学, 2019, 33(1):12−19.ZHUO X X, FAN L L, AN X Y, et al. Mapping of a new rice blast resistance gene in Ziyu 44, a rice Landrace from Yunnan Province, China [J]. Chinese Journal of Rice Science, 2019, 33(1): 12−19.(in Chinese) [13] 张柱坚, 陈子强, 顾建强, 等. 稻瘟病抗性基因Pi-d2、Pi-d3和Pigm不同敲除突变体的抗性评价 [J]. 福建农业学报, 2018, 33(12):1231−1236.ZHANG Z J, CHEN Z Q, GU J Q, et al. Resistance on rice blast of knockout mutants of pi-d2, pi-d3 and pigm [J]. Fujian Journal of Agricultural Sciences, 2018, 33(12): 1231−1236.(in Chinese) [14] 华丽霞, 汪文娟, 陈深, 等. 抗稻瘟病Pi2/9/z-t基因特异性分子标记的开发 [J]. 中国水稻科学, 2015, 29(3):305−310. doi: 10.3969/j.issn.1001-7216.2015.03.010HUA L X, WANG W J, CHEN S, et al. Development of Specific DNA Markers for Detecting the Rice Blast Resistance Gene Alleles Pi2/9/z-t [J]. Chinese Journal of Rice Science, 2015, 29(3): 305−310.(in Chinese) doi: 10.3969/j.issn.1001-7216.2015.03.010 [15] SU J, WANG W J, HAN J L, et al. Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus [J]. Theoretical and Applied Genetics, 2015, 128(11): 1−13.