• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

怀玉山三叶青2个栽培种块根的转录组分析

洪森荣 黄丹丹 黄诗慧 黄夏梦 蒋椰 李万平 蔡红 陈荣华

洪森荣,黄丹丹,黄诗慧,等. 怀玉山三叶青2个栽培种块根的转录组分析 [J]. 福建农业学报,2021,36(1):24−35 doi: 10.19303/j.issn.1008-0384.2021.01.004
引用本文: 洪森荣,黄丹丹,黄诗慧,等. 怀玉山三叶青2个栽培种块根的转录组分析 [J]. 福建农业学报,2021,36(1):24−35 doi: 10.19303/j.issn.1008-0384.2021.01.004
HONG S R, HUANG D D, HUANG S H, et al. Transcriptome Analysis on Tubers of Two Huaiyushan Cultivated Varieties of Tetrastigma hemsleyanum [J]. Fujian Journal of Agricultural Sciences,2021,36(1):24−35 doi: 10.19303/j.issn.1008-0384.2021.01.004
Citation: HONG S R, HUANG D D, HUANG S H, et al. Transcriptome Analysis on Tubers of Two Huaiyushan Cultivated Varieties of Tetrastigma hemsleyanum [J]. Fujian Journal of Agricultural Sciences,2021,36(1):24−35 doi: 10.19303/j.issn.1008-0384.2021.01.004

怀玉山三叶青2个栽培种块根的转录组分析

doi: 10.19303/j.issn.1008-0384.2021.01.004
基金项目: 国家自然科学基金项目(31960079);江西省科技厅重点研发计划一般项目(20192BBGL70050、20202BBG73010);江西省教育厅科学技术研究项目(GJJ201704);上饶市科技局重点研发计划一般项目(2020C002);上饶市科技局平台载体建设项目(2020J001);上饶市科技局平台载体建设项目(2019I017)
详细信息
    作者简介:

    洪森荣(1974−),男,教授,研究方向:植物生物技术(E-mail:864035356@qq.com

  • 中图分类号: S 646

Transcriptome Analysis on Tubers of Two Huaiyushan Cultivated Varieties of Tetrastigma hemsleyanum

  • 摘要:   目的  筛选怀玉山三叶青2个栽培种:怀玉1号(HY1组)和怀玉2号(HY2组)与黄酮类化合物合成相关差异表达基因。  方法  以怀玉山三叶青怀玉1号(HY1组)和怀玉2号(HY2组)的块根为试验材料进行转录组分析。  结果  HY1组和HY2组的Clean reads分别为42311662和41411202。2组样品Q30碱基百分比均不小于95.75%。HY1组和HY2组的转录因子家族多为MYB-superfamily、bHLH、AP2/ERF、NAC、C2C2、WRKY等。HY1组和HY2组表达量FPKM的对数值在0-2。HY1组和HY2组表达量密度在0-0.7。HY1组和HY2组表达的共有基因数为22367,HY1组单独表达的基因数为18196,HY2组单独表达的基因数为8137。HY1组和HY2组表达量的相关系数为0.913,样本间相关性好。HY1组和HY2组共产生差异表达基因12199 个。与HY1组比较,HY2组上调基因数为3551,下调基因数为8648。GO富集分析显示,差异基因主要注释到光合作用光系统I光捕获、光合作用捕获、叶绿素代谢过程、蛋白质发色团连锁、前体代谢产物和能量的产生、叶绿素生物合成过程、氧化应激反应、α-氨基酸代谢过程、光合作用、质体小叶、光系统I、光系统II、质体类核仁、光系统、叶绿素结合、单加氧酶活性、铁离子结合、血红素结合、裂解酶活性功能。KEGG富集分析显示,差异基因主要注释到光合作用-天线蛋白、核糖体、乙醛酸和二元酸代谢、苯丙酸生物合成、二苯乙烯类、二芳基庚烷类和姜辣素的生物合成、类黄酮生物合成、光合作用、光合生物的固碳作用、甘氨酸、丝氨酸和苏氨酸代谢、植物激素信号转导、谷胱甘肽代谢、丙酮酸代谢、苯丙氨酸代谢、植物昼夜节律、黄酮和黄酮醇的生物合成、半胱氨酸与蛋氨酸代谢、氰胺酸代谢、类胡萝卜素生物合成、α-亚麻酸代谢、卟啉与叶绿素代谢等代谢途径。  结论  与黄酮类化合物相关差异表达基因如芪合酶(stilbene synthase)、无色花色素双加氧酶(leucoanthocyanidin dioxygenase)、查尔酮异构酶蛋白(CHI protein)、查尔酮合酶2(chalcone synthase 2)、黄烷酮3-羟化酶(flavanone 3-hydroxylase)、无色花色素还原酶(1leucoanthocyanidin reductase 1)、类黄酮3'-羟化酶(flavonoid 3'-hydroxylase)基因在怀玉2号(HY2组)块根中上调,而查尔酮合酶(chalcone synthase)、黄酮醇合酶(flavonol synthase)、类黄酮3',5'-甲基转移酶(flavonoid 3', 5'-methyltransferase)基因在怀玉2号(HY2组)块根中下调,导致怀玉山三叶青怀玉1号(HY1组)和怀玉2号(HY2组)块根总黄酮含量的差异。
  • 图  1  HY1组和HY2组转录因子家族统计

    Figure  1.  Statistics on transcription factor families of HY1 and HY2

    图  2  HY1组和HY2组表达量分布盒形图(A)和密度图(B)

    Figure  2.  Diagrams of box (A) and density (B) on quantitative distribution of gene expressions in HY1 and HY2

    图  3  HY1组和HY2组样本间Venn图

    Figure  3.  Venn diagram on samples of HY1 and HY2

    图  4  HY1组和HY2组表达量样本间相关性热图

    Figure  4.  Thermogram of correlation on expressions between HY1 and HY2

    图  5  HY1组和HY2组表达量差异统计柱状图(A)以及表达量差异火山图(B)和表达量差异散点图(C)

    Figure  5.  Statistic histogram on expression difference (A), volcano map (B), and scatter map (C) of HY1 and HY2

    图  6  HY1组和HY2组差异表达基因GO富集分析

    Figure  6.  Go enrichment analysis on differentially expressed genes in HY1 and HY2

    图  7  HY1组和HY2组差异表达基因KEGG富集分析柱形图(A)和气泡图(B)

    Figure  7.  KEGG enrichment column chart (A) and bubble chart (B) on differentially expressed genes in HY1 and HY2

    表  1  HY1组和HY2组前15个表达量差异基因(HY1 vs HY2)

    Table  1.   Top 15 genes in HY1 and HY2 with greatest differences on gene expression (HY1 vs. HY2)

    序列编号
    Seq_id
    长度
    Length
    P
    P value
    校正 P
    P adjust
    显著性
    Significant
    调节
    Regulate
    基因名称
    Gene name
    TRINITY_DN2864_c0_g1 4161 6.01E-34 3.05E-29 是 yes 下调 down 未注释 No
    TRINITY_DN10874_c0_g1 1930 3.00E-27 7.61E-23 是 yes 上调 up 类核糖体失活蛋白
    SNAIfribosome-inactivating protein SNAIf-like
    TRINITY_DN4409_c0_g1 721 2.32E-26 2.94E-22 是 yes 下调 down LHCII类1型叶绿素 a-b结合蛋白
    chlorophyll a-b binding protein of LHCII type 1-like
    TRINITY_DN1538_c0_g1 562 3.20E-26 3.25E-22 是 yes 上调 up 未注释 No
    TRINITY_DN6900_c0_g1 1888 2.26E-26 3.82E-22 是 yes 下调 down 叶绿体核酮糖二磷酸羧化酶/加氧酶激活酶
    ARibulose bisphosphate carboxylase/oxygenase activase A, chloroplastic
    TRINITY_DN2027_c0_g1 1216 1.68E-25 1.42E-21 是 yes 下调 down 叶绿体产氧增强蛋白1
    oxygen-evolving enhancer protein 1, chloroplastic
    TRINITY_DN151_c0_g1 1068 3.65E-25 2.64E-21 是 yes 下调 down 核酮糖-1,5-二磷酸羧化酶/加氧酶小亚基
    ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit
    TRINITY_DN119_c0_g2 1489 8.14E-25 5.16E-21 是 yes 下调 down 叶绿体甘油醛-3-磷酸脱氢酶
    Aglyceraldehyde-3-phosphate dehydrogenase A, chloroplastic
    TRINITY_DN365_c0_g1 2576 1.08E-24 6.11E-21 是 yes 下调 down 叶绿体转酮酶
    transketolase, chloroplastic
    TRINITY_DN178_c0_g1 896 3.20E-24 1.48E-20 是 yes 下调 down 部分预测蛋白
    predicted protein, partial
    TRINITY_DN640_c0_g1 1411 3.11E-24 1.58E-20 是 yes 下调 down 叶绿体硫胺素噻唑合酶2
    thiamine thiazole synthase 2, chloroplastic
    TRINITY_DN5576_c0_g1 7575 3.75E-24 1.58E-20 是 yes 下调 down 转座子 Tf-2多蛋白
    Transposon Tf2-2 polyprotein [Vitis vinifera]
    TRINITY_DN757_c0_g1 1330 4.58E-24 1.79E-20 是 yes 下调 down 假定碳酸酐酶
    putative carbonic anhydrase
    TRINITY_DN75_c0_g2 1595 8.89E-24 3.22E-20 是 yes 下调 down 果糖-1,6-二磷酸醛缩酶8
    fructose-1,6-bisphosphate aldolase 8
    TRINITY_DN922_c0_g1 1199 9.98E-24 3.38E-20 是 yes 下调 down LHCIIⅢ型叶绿素 a-b结合蛋白
    chlorophyll a-b binding protein of LHCII type III, chloroplastic
    下载: 导出CSV

    表  2  HY1组和HY2组部分差异表达基因GO富集结果

    Table  2.   GO enrichment on certain differentially expressed genes in HY1 and HY2

    富集到该 GO term的
    基因/转录本数目
    Number of genes enriched
    to the GO term
    GO Term对
    应的编号
    ID corresponding
    to go term
    GO三大分类
    Three categories
    of GO
    GO功能描述
    Go function description
    该 GO在目标
    基因集中
    占有的
    比例
    Proportion of
    the GO
    in the target
    gene set/%
    该 GO在背景
    基因/转录
    本中占有
    的比例
    Proportion of
    the go
    in the
    background gene/%
    矫正后
    P
    P value_
    corrected
    46 GO:0009768 生物学过程 BP 光合作用光系统 I光捕获
    photosynthesis, light harvesting in photosystem I
    0.42 0.18 0.0009
    57 GO:0009765 生物学过程 BP 光合作用光捕获
    photosynthesis, light harvesting
    0.52 0.23 0.0009
    44 GO:0015994 生物学过程 BP 叶绿素代谢过程
    chlorophyll metabolic process
    0.40 0.21 0.0009
    65 GO:0018298 生物学过程 BP 蛋白质发色团连锁
    protein-chromophore linkage
    0.59 0.33 0.0009
    213 GO:0006091 生物学过程 BP 前体代谢产物和能量的产生
    generation of precursor metabolites and energy
    1.95 1.35 0.0009
    31 GO:0015995 生物学过程 BP 叶绿素生物合成过程
    chlorophyll biosynthetic process
    0.28 0.14 0.0009
    139 GO:0006979 生物学过程 BP 氧化应激反应
    response to oxidative stress
    1.27 0.90 0.0009
    227 GO:1901605 生物学过程 BP α-氨基酸代谢过程
    alpha-amino acid metabolic process
    2.08 1.57 0.0009
    87 GO:0015979 生物学过程 BP 光合作用
    photosynthesis
    0.80 0.52 0.0009
    69 GO:0010287 细胞组分 CC 质体小叶
    plastoglobule
    0.63 0.29 0.0009
    65 GO:0009522 细胞组分 CC 光系统 I
    photosystem I
    0.59 0.31 0.0009
    68 GO:0009523 细胞组分 CC 光系统 II
    photosystem II
    0.62 0.30 0.0009
    36 GO:0042646 细胞组分 CC 质体类核仁
    plastid nucleoid
    0.33 0.17 0.0009
    78 GO:0009521 细胞组分 CC 光系统
    photosystem
    0.71 0.39 0.0009
    61 GO:0016168 分子功能 MF 叶绿素结合
    chlorophyll binding
    0.56 0.29 0.0009
    188 GO:0004497 分子功能 MF 单加氧酶活性
    monooxygenase activity
    1.72 1.15 0.0009
    208 GO:0005506 分子功能 MF 铁离子结合
    iron ion binding
    1.90 1.39 0.0009
    228 GO:0020037 分子功能 MF 血红素结合
    heme binding
    2.08 1.53 0.0009
    276 GO:0016829 分子功能 MF 裂解酶活性
    lyase activity
    2.52 1.91 0.0009
    下载: 导出CSV

    表  3  HY1组和HY2组差异表达基因KEGG富集分析(前20)

    Table  3.   KEGG enrichment on top 20 differentially expressed genes in HY1 and HY2

    数量
    Number
    途径编号
    Pathway ID
    描述
    Description
    KEGG在目标
    基因集中
    占有的比例
    Ratio in study/%
    KEGG在背景
    中占有
    的比例
    Ratio in pop/%
    校正后
    P
    P value
    corrected
    57 map00196 光合作用-天线蛋白
    Photosynthesis-antenna proteins
    1.00 0.46 0.0000
    306 map03010 核糖体
    Ribosome
    5.41 4.42 0.0002
    90 map00630 乙醛酸和二元酸代谢
    Glyoxylate and dicarboxylate metabolism
    1.59 1.08 0.0003
    100 map00940 苯丙酸生物合成
    Phenylpropanoid biosynthesis
    1.77 1.24 0.0003
    31 map00945 二苯乙烯类、二芳基庚烷类和姜辣素的生物合成
    Stilbenoid, diarylheptanoid and gingerol biosynthesis
    0.55 0.29 0.0003
    34 map00941 类黄酮生物合成
    Flavonoid biosynthesis
    0.60 0.35 0.0018
    64 map00195 光合作用
    Photosynthesis
    1.13 0.77 0.0019
    82 map00710 光合生物的固碳作用
    Carbon fixation in photosynthetic organisms
    1.45 1.04 0.0024
    71 map00260 甘氨酸、丝氨酸和苏氨酸代谢
    Glycine, serine and threonine metabolism
    1.26 0.89 0.0030
    132 map04075 植物激素信号转导
    Plant hormone signal transduction
    2.34 1.85 0.0075
    77 map00480 谷胱甘肽代谢
    Glutathione metabolism
    1.36 1.02 0.0119
    92 map00620 丙酮酸代谢
    Pyruvate metabolism
    1.63 1.25 0.0120
    41 map00360 苯丙氨酸代谢
    Phenylalanine metabolism
    0.73 0.49 0.0165
    50 map04712 植物昼夜节律
    Circadian rhythm - plant
    0.88 0.63 0.0187
    6 map00944 黄酮和黄酮醇的生物合成
    Flavone and flavonol biosynthesis
    0.11 0.04 0.0217
    89 map00270 半胱氨酸与蛋氨酸代谢
    Cysteine and methionine metabolism
    1.57 1.23 0.0221
    42 map00460 氰胺酸代谢
    Cyanoamino acid metabolism
    0.74 0.52 0.0222
    36 map00906 类胡萝卜素生物合成
    Carotenoid biosynthesis
    0.64 0.44 0.0343
    44 map00592 α-亚麻酸代谢
    alpha-Linolenic acid metabolism
    0.78 0.56 0.0398
    46 map00860 卟啉与叶绿素代谢
    Porphyrin and chlorophyll metabolism
    0.81 0.60 0.0445
    下载: 导出CSV

    表  4  与次生代谢物合成相关差异基因的表达

    Table  4.   Expressions of differentially expressed genes related to secondary metabolites synthesis

    基因ID
    Gene id
    基因名称
    Gene name
    HY1HY2调节
    Regulate
    TRINITY_DN10561_c0_g1 芪合酶 stilbene synthase 4.64 23.15 上调 up
    TRINITY_DN12750_c0_g1 无色花色素双加氧酶 leucoanthocyanidin dioxygenase 14.07 50.17 上调 up
    TRINITY_DN1644_c0_g1 查尔酮异构酶蛋白 CHI protein 82.09 160.88 上调 up
    TRINITY_DN16981_c0_g4 查尔酮合酶 chalcone synthase 7.15 0 下调 down
    TRINITY_DN30140_c0_g1 黄酮醇合酶 flavonol synthase 5.44 2.92 下调 down
    TRINITY_DN43_c0_g1 查尔酮合酶2chalcone synthase 2 32.52 281.84 上调 up
    TRINITY_DN6146_c0_g1 黄烷酮3-羟化酶 flavanone 3-hydroxylase 54.15 64.75 上调 up
    TRINITY_DN6563_c0_g1 无色花色素还原酶1 leucoanthocyanidin reductase 1 4.91 25.68 上调 up
    TRINITY_DN22758_c0_g2 类黄酮3′,5′-甲基转移酶 flavonoid 3′,5′-methyltransferase 7.41 1.15 下调 down
    TRINITY_DN4109_c0_g1 类黄酮3′-羟化酶 flavonoid 3′-hydroxylase 18.35 82.99 上调 up
    下载: 导出CSV
  • [1] 叶子飘, 谢志亮, 段世华, 等. 设施栽培条件下三叶青叶片光合的气孔和非气孔限制 [J]. 植物生理学报, 2020, 56(1):41−48.

    YE Z P, XIE Z L, DUAN S H, et al. Stomatal and non-stomatal limitation of photosynthesis for Tetrastigma hemsleyanum under the condition of facility cultivation [J]. Plant Physiology Journal, 2020, 56(1): 41−48.(in Chinese)
    [2] SUN Y, LI H Y, HU J N, et al. Qualitative and quantitative analysis of phenolics in Tetrastigma hemsleyanum and their antioxidant and antiproliferative activities [J]. Journal of Agricultural and Food Chemistry, 2013, 61(44): 10507−10515. doi: 10.1021/jf4037547
    [3] ZHONG L R, ZHENG J X, SUN Q Q, et al. Radix tetrastigma hemsleyani flavone inhibits proliferation, migration, and invasion of human lung carcinoma A549 cells [J]. OncoTargets and Therapy, 2016, 9(1): 635−641.
    [4] FENG Z Q, HAO W R, LIN X Y, et al. Antitumor activity of total flavonoids from Tetrastigma hemsleyanum Diels et Gilg is associated with the inhibition of regulatory T cells in mice [J]. OncoTargets and Therapy, 2014, 7: 947−956.
    [5] PENG X, ZHANG Y Y, WANG J, et al. Ethylacetate extract from Tetrastigma hemsleyanum induces apoptosis via the mitochondrial caspase-dependent intrinsic pathway in HepG2 cells [J]. Tumor Biology, 2016, 37(1): 865−876. doi: 10.1007/s13277-015-3579-8
    [6] XU C J, DING G Q, FU J Y, et al. Immunoregulatory effects of ethyl-acetate fraction of extracts from Tetrastigma hemsleyanum Diels et. gilg on immune functions of ICR mice [J]. Biomedical and Environmental Sciences, 2008, 21(4): 325−331. doi: 10.1016/S0895-3988(08)60050-1
    [7] 李士敏, 李强, 孙崇鲁, 等. 基于多模式识别结合指纹图谱的三叶青产地鉴别比较研究 [J]. 中草药, 2020, 51(1):197−203. doi: 10.7501/j.issn.0253-2670.2020.01.026

    LI S M, LI Q, SUN C L, et al. Comparative study on multiple chemical pattern recognition combined with fingerprint ofTetrastigma hemsleyanum from different habitats [J]. Chinese Traditional and Herbal Drugs, 2020, 51(1): 197−203.(in Chinese) doi: 10.7501/j.issn.0253-2670.2020.01.026
    [8] SUN Y, HUI Q R, CHEN R, et al. Apoptosis in human hepatoma HepG2 cells induced by the phenolics of Tetrastigma hemsleyanum leaves and their antitumor effects in H22 tumor-bearing mice [J]. Journal of Functional Foods, 2018, 40: 349−364. doi: 10.1016/j.jff.2017.11.017
    [9] SUN Y, QIN Y, LI H Y, et al. Rapid characterization of chemical constituents in Radix Tetrastigma, a functional herbal mixture, before and after metabolism and their antioxidant/antiproliferative activities [J]. Journal of Functional Foods, 2015, 18: 300−318. doi: 10.1016/j.jff.2015.07.009
    [10] SUN Y, TSAO R, CHEN F, et al. The phytochemical composition, metabolites, bioavailability and in vivo antioxidant activity of Tetrastigma hemsleyanum leaves in rats [J]. Journal of Functional Foods, 2017, 30: 179−193. doi: 10.1016/j.jff.2017.01.004
    [11] SUN Y, TSAO R, CHEN F, et al. The phenolic profiles of Radix tetrastigma after solid phase extraction (SPE) and their antitumor effects and antioxidant activities in H22 tumor-bearing mice [J]. Food & Function, 2017, 8(11): 4014−4027.
    [12] LU T, LU G, FAN D, et al. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq [J]. Genome Research, 2010, 20(9): 1238−1249. doi: 10.1101/gr.106120.110
    [13] WANG Z Y, FANG B P, CHEN J Y, et al. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas) [J]. BMC Genomics, 2010, 14: 125−135.
    [14] ZHANG J N, LIANG S, DUAN J L, et al. De novo assembly and Characterisation of the Transcriptome during seed development, and generation of genic-SSR markers in Peanut (Arachis hypogaea L.) [J]. BMC Genomics, 2012, 13(1): 90−95. doi: 10.1186/1471-2164-13-90
    [15] 魏俊雯, 张声祥, 施圆圆, 等. 基于转录组测序的牛蒡木质素类物质生物合成途径及关键酶基因分析 [J]. 中草药, 2020, 51(16):4300−4307. doi: 10.7501/j.issn.0253-2670.2020.16.026

    WEI J W, ZHANG S X; SHI Y Y. Transcriptome analysis reveals key enzyme genes involved in lignin biosynthesis pathway in Arctium lappa [J]. Chinese Traditional and Herbal Drugs, 2020, 51(16): 4300−4307.(in Chinese) doi: 10.7501/j.issn.0253-2670.2020.16.026
    [16] 孙健, 沈晓霞, 陈加红, 等. 药用植物三叶青种质多样性与栽培管理的研究进展 [J]. 科技通报, 2018, 34(1):13−17.

    SUN J, SHEN X X, CHEN J H, et al. Germplasm diversity and cultural management of the medicinal plant Tetrastigma hemsleyanum [J]. Bulletin of Science and Technology, 2018, 34(1): 13−17.(in Chinese)
    [17] 林国卫, 闻静, 石光禹, 等. 侵染怀玉山三叶青的病毒 RT-PCR 鉴定 [J]. 分子植物育种, 2020, 18(3):968−975.

    LIN G W, WEN J, SHI G Y, et al. Identification of Viruses Infecting Huaiyushan Tetrastigma hemsleyanum Diels et Gilg by RT-PCR [J]. Molecular Plant Breeding, 2020, 18(3): 968−975.(in Chinese)
    [18] 张雪松, 裴建军, 赵林果, 等. 不同品种桂花转录组分析及桂花精油成分差异的初步探讨 [J]. 天然产物研究与开发, 2016, 28(4):529−535.

    ZHANG X S, PEI J J, ZHAO L G, et al. Transcriptome analysis of different Osmanthus reveals insight into the difference of Osmanthus oil components [J]. Natural Product Research and Development, 2016, 28(4): 529−535.(in Chinese)
    [19] 张驰, 高振蕊, 董友魁, 等. 四个大豆栽培种的花序转录组分析 [J]. 生态学杂志, 2015, 34(12):3391−3396.

    ZHANG C, GAO Z R, DONG Y K, et al. Transcriptome analysis of inflorescences from four soybean cultivars [J]. Chinese Journal of Ecology, 2015, 34(12): 3391−3396.(in Chinese)
    [20] 成启明, 格根图, 撒多文, 等. 不同品种紫花苜蓿转录组分析及营养品质差异的探讨 [J]. 草业学报, 2019, 28(10):199−208. doi: 10.11686/cyxb2018721

    CHENG Q M, GE G T, SA D W, et al. Transcriptome analyses provide insights into differences in nutritional quality in different alfalfa varieties [J]. Acta Prataculturae Sinica, 2019, 28(10): 199−208.(in Chinese) doi: 10.11686/cyxb2018721
    [21] 王宇, 陈 楠, 袁启凤, 等. 3个不同品种百香果转录组分析 [J]. 种子, 2019, 38(5):1−7.

    WANG Y, CHEN N, YUAN Q F, et al. Transcriptome analysis of three different varieties of passion fruit [J]. Seed, 2019, 38(5): 1−7.(in Chinese)
    [22] ZHANG J, SUBRAMANIAN S, STACEY G, et al. Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti [J]. The Plant Journal, 2009, 57(1): 171−183. doi: 10.1111/j.1365-313X.2008.03676.x
    [23] TREUTTER D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis [J]. Plant Biology, 2005, 7(6): 581−591. doi: 10.1055/s-2005-873009
    [24] FOWLER Z L, KOFFAS M A G. Biosynthesis and biotechnological production of flavanones: current state and perspectives [J]. Applied Microbiology and Biotechnology, 2009, 83(5): 799−808. doi: 10.1007/s00253-009-2039-z
    [25] HAIN R, REIF H J, KRAUSE E, et al. Disease resistance results from foreign phytoalexin expression in a novel plant [J]. Nature, 1993, 361(6408): 153−156. doi: 10.1038/361153a0
    [26] POULSEN M M, FJELDBORG K, ORNSTRUP M J, et al. Resveratrol and inflammation: Challenges in translating pre-clinical findings to improved patient outcomes [J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2015, 1852(6): 1124−1136. doi: 10.1016/j.bbadis.2014.12.024
    [27] HOLME A L, PERVAIZ S. Resveratrol in cell fate decisions [J]. Journal of Bioenergetics and Biomembranes, 2007, 39(1): 59−63. doi: 10.1007/s10863-006-9053-y
    [28] AHUJA I, KISSEN R, BONES A M. Phytoalexins in defense against pathogens [J]. Trends in Plant Science, 2012, 17(2): 73−90. doi: 10.1016/j.tplants.2011.11.002
    [29] CHONG J L, POUTARAUD A, HUGUENEY P. Metabolism and roles of stilbenes in plants [J]. Plant Science, 2009, 177(3): 143−155. doi: 10.1016/j.plantsci.2009.05.012
    [30] 吴凤颖, 刘梦琦, 王跃进, 等. 中国野生毛葡萄芪合酶基因抗白粉病功能分析 [J]. 园艺学报, 2020, 47(2):205−219.

    WU F Y, LIU M Q, WANG Y J, et al. Function analysis of the stilbene synthase genes VqSTS12 and VqSTS25 of the resistance to powdery mildew in vitis quinquangularis [J]. Acta Horticulturae Sinica, 2020, 47(2): 205−219.(in Chinese)
    [31] 李娟, 刘海峰, 曹芳芳, 等. 山葡萄无色花色素双加氧酶基因(LDOX)cDNA的克隆与表达 [J]. 西北农业学报, 2016, 25(1):103−108. doi: 10.7606/j.issn.1004-1389.2016.01.014

    LI J, LIU H F, CAO F F, et al. Cloning and Analysis of Leucoanthocyanidin Dioxygenase(LDOX)inVitis amurensis Rupr [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(1): 103−108.(in Chinese) doi: 10.7606/j.issn.1004-1389.2016.01.014
    [32] APPELHAGEN I, JAHNS O, BARTELNIEWOEHNER L, et al. Leucoanthocyanidin Dioxygenase in Arabidopsis thaliana: Characterization of mutant alleles and regulation by MYB-BHLH-TTG1 transcription factor complexes [J]. Gene, 2011, 484(1/2): 61−68.
    [33] TANNER G J, FRANCKI K T, ABRAHAMS S, et al. Proanthocyanidin biosynthesis in plants [J]. Journal of Biological Chemistry, 2003, 278(34): 31647−31656. doi: 10.1074/jbc.M302783200
    [34] HOLTON T A, CORNISH E C. Genetics and biochemistry of anthocyanin biosynthesis [J]. The Plant Cell, 1995: 1071−1083.
    [35] 蔡建平, 侯和胜. 葡萄查耳酮合酶基因克隆及其进化分析 [J]. 天津农业科学, 2015, 21(1):6−8. doi: 10.3969/j.issn.1006-6500.2015.01.002

    CAI J P, HOU H S. Cloning and Evolution Analysis of Chalcone Synthase from Vitis vinifera [J]. Tianjin Agricultural Sciences, 2015, 21(1): 6−8.(in Chinese) doi: 10.3969/j.issn.1006-6500.2015.01.002
    [36] CHENG H, LI L L, CHENG S Y, et al. Molecular cloning and function assay of a Chalcone isomerase gene (GbCHI) from Ginkgo biloba [J]. Plant Cell Reports, 2011, 30(1): 49−62. doi: 10.1007/s00299-010-0943-4
    [37] 尹峰, 龙月红, 冯若宣, 等. 多穗柯黄酮 3-羟化酶基因的克隆与序列分析 [J]. 中草药, 2017, 48(24):5085−5089. doi: 10.7501/j.issn.0253-2670.2017.24.005

    YIN F, LONG Y H, FENG R X, et al. Cloning of flavanone 3-hydroxylase gene from Lithocarpus polystachyus and its sequence analysis [J]. Chinese Traditional and Herbal Drugs, 2017, 48(24): 5085−5089.(in Chinese) doi: 10.7501/j.issn.0253-2670.2017.24.005
    [38] YANG H, AHN J H, IBRAHIM R K, et al. The three-dimensional structure of Arabidopsis thaliana O-methyltransferase predicted by homologybased modelling [J]. Journal of Molecular Graphics & Modelling, 2004, 23(1): 77−87.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1184
  • HTML全文浏览量:  281
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-30
  • 修回日期:  2020-11-07
  • 网络出版日期:  2020-11-24
  • 刊出日期:  2021-01-31

目录

    /

    返回文章
    返回