• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

闽江河口湿地植物根际土壤氨氧化细菌群落结构分析

陈丽华 吕新 刘兰英 黄薇 李玥仁

陈丽华,吕新,刘兰英,等. 闽江河口湿地植物根际土壤氨氧化细菌群落结构分析 [J]. 福建农业学报,2020,35(12):1368−1375 doi: 10.19303/j.issn.1008-0384.2020.12.010
引用本文: 陈丽华,吕新,刘兰英,等. 闽江河口湿地植物根际土壤氨氧化细菌群落结构分析 [J]. 福建农业学报,2020,35(12):1368−1375 doi: 10.19303/j.issn.1008-0384.2020.12.010
CHEN L H, LYU X, LIU L Y, et al. Ammonia-oxidizing Bacteria Community in Rhizosphere Soils of Minjiang Estuary Wetlands [J]. Fujian Journal of Agricultural Sciences,2020,35(12):1368−1375 doi: 10.19303/j.issn.1008-0384.2020.12.010
Citation: CHEN L H, LYU X, LIU L Y, et al. Ammonia-oxidizing Bacteria Community in Rhizosphere Soils of Minjiang Estuary Wetlands [J]. Fujian Journal of Agricultural Sciences,2020,35(12):1368−1375 doi: 10.19303/j.issn.1008-0384.2020.12.010

闽江河口湿地植物根际土壤氨氧化细菌群落结构分析

doi: 10.19303/j.issn.1008-0384.2020.12.010
基金项目: 福建省科技计划公益类专项(2015R1025-7)
详细信息
    作者简介:

    陈丽华(1981−),女,硕士,助理研究员,研究方向:微生物生态学(Email:417510412@qq.com

    通讯作者:

    李玥仁(1966−),男,博士,研究员,研究方向:微生物生态学(Email:yuerenli@yeah.net

  • 中图分类号: Q 938

Ammonia-oxidizing Bacteria Community in Rhizosphere Soils of Minjiang Estuary Wetlands

  • 摘要:   目的  研究闽江河口湿地不同植物根际土壤中氨氧化细菌群落多样性及结构组成,为阐明湿地植物根际土壤脱氮功能微生物类群研究提供科学数据。  方法  多点混合采样法采集不同季节不同土层闽江河口湿地芦苇、互花米草和红树林根际的土壤样品共24个,通过高通量测序技术测定样品氨单加氧酶编码基因amoA序列,生物信息学方法分析土壤样品氨氧化细菌的群落结构及多样性。  结果  24个样品中共检测到300 527条有效序列,2 794个OTU。多样性分析结果表明,芦苇、互花米草和红树林根际土壤样品Chao指数差别不大,Shannon指数平均值表现为红树林>芦苇>互花米草;芦苇和红树林根际土壤样品Chao指数和Shannon指数均表现为春季最低;不同土层芦苇、互花米草和红树林根际土壤样品Chao指数和Shannon指数均未呈现出明显的变化趋势。群落结构分析结果表明,闽江河口湿地土壤样品中存在着较多分类地位未确定的氨氧化细菌,而分类地位确定的氨氧化细菌中,优势菌门为变形菌门(Proteobacteria),优势菌属包括亚硝化单胞菌属(Nitrosomonas)、硫杆菌属(Thiobacillus)、Caldimonas属等。  结论  闽江河口湿地植物根际土壤中氨氧化细菌的主要优势菌群大多是亚硝化单胞菌属(Nitrosomonas),硫杆菌属(Thiobacillus)和Caldimonas属为个别样品的优势菌群。
  • 图  1  闽江河口湿地植物根际土壤氨氧化细菌OTUs Venn图

    注:样品名称中的LW代表芦苇,HHMC代表互花米草,HSL代表红树林;数字1、2、3、4分别代表春、夏、秋、冬4个季节。

    Figure  1.  OTUs Venn diagrams of ammonia-oxidizing bacteria in rhizosphere soils of Minjiang estuary wetlands

    Note: LW, HHMC, and HSL are soil specimens collected from rhizosphere of reeds, smooth cordgrasses, and mangroves, respectively. Numbers 1, 2, 3, and 4 represent spring, summer, autumn, and winter, respectively.

    图  2  门水平氨氧化细菌群落的相对丰度

    Figure  2.  Relative abundance of ammonia-oxidizing bacteria community at phylum level

    图  3  属水平Top 20优势氨氧化细菌群落的相对丰度

    Figure  3.  Relative abundance of top 20 ammonia-oxidizing bacteria community at genus level

    表  1  高通量测序有效数据统计

    Table  1.   Filtered valid data from high-throughput sequencing

    样品名称
    Samples
    原始序列
    Raw tags/条
    优质序列
    Clean tags/条
    最终序列
    Final tags/条
    OTUs/
    LW1a 23 148 6 290 5 446 163
    LW1b 41257 26130 24864 315
    LW2a 32053 14607 12276 539
    LW2b 36627 17348 15295 556
    LW3a 40246 17897 15598 474
    LW3b 41435 10144 8707 406
    LW4a 38718 19722 17352 524
    LW4b 36911 12376 10754 499
    HHMC1a 40228 17800 15776 429
    HHMC1b 35002 13091 11649 404
    HHMC2a 36520 10868 9459 470
    HHMC2b 38414 16536 14322 536
    HHMC3a 39430 11740 10271 468
    HHMC3b 37391 12534 11365 362
    HHMC4a 44997 43330 40818 90
    HHMC4b 37943 12801 11441 535
    HSL1a 36184 11429 10253 115
    HSL1b 32530 11192 9682 289
    HSL2a 33604 8413 4422 454
    HSL2b 34211 13402 11695 328
    HSL3a 26488 3697 2282 259
    HSL3b 33368 11522 10244 498
    HSL4a 34230 8480 7061 460
    HSL4b 36005 10866 9495 481
    注:下机数据去除barcode和primer并拼接后得到原始序列,再经进一步去除嵌合体、短序列后得到优质序列;最终序列指OTU表中每个样本对应的序列数目;OTUs为每个样本最终得到的OTU数目。表中,LW代表芦苇,HHMC代表互花米草,HSL代表红树林;数字1、2、3、4分别代表春、夏、秋、冬四个季节;字母a和b分别代表0~20 cm土层和20~40 cm土层。表2同。
    Note: Raw tags are results after filtering low-quality fastq data and splicing; clean tags, after further removing chimeric and short sequences; final tags, sequence corresponding to OTUs of individual sample; and, OTUs, final OTUs of individual sample. LW, HHMC, and HSL are soil specimens collected from rhizosphere of reeds, smooth cordgrasses, and mangroves, respectively. Numbers 1, 2, 3, and 4 represent spring, summer, autumn, and winter, respectively. “a” after name of specimen indicates soil sampled at depth from 0 to 20cm; and, “b” from 20 to 40cm. Same for below.
    下载: 导出CSV

    表  2  土壤样品氨氧化细菌的Alpha多样性指数

    Table  2.   Alpha diversity indices of ammonia-oxidizing bacteria in soil specimens

    样品名称
    Samples
    观测到的OTU数
    Observed species
    覆盖率
    Coverage/%
    ChaoShannon
    LW1a11397.61171.273.20
    LW1b10897.39193.643.04
    LW2a24794.23416.685.71
    LW2b27593.74449.415.89
    LW3a25194.70379.345.66
    LW3b24395.15352.095.77
    LW4a25794.15411.495.83
    LW4b29094.06418.036.15
    HHMC1a21995.74327.275.64
    HHMC1b20695.48330.744.77
    HHMC2a26793.71446.535.50
    HHMC2b23393.99422.844.93
    HHMC3a25694.05419.285.36
    HHMC3b22296.04301.325.79
    HHMC4a2099.5231.960.31
    HHMC4b27193.48459.075.74
    HSL1a6899.02104.454.24
    HSL1b19196.43269.714.88
    HSL2a38094.49477.937.42
    HSL2b20096.35276.895.36
    HSL3a25195.99329.875.53
    HSL3b26394.02428.095.78
    HSL4a32393.90452.826.50
    HSL4b28794.33417.085.98
    下载: 导出CSV
  • [1] 惠丽华, 赵吉, 武琳慧, 等. 辉腾锡勒草原干涸湖泊中氨氧化微生物群落结构分析 [J]. 微生物学报, 2012, 52(1):104−113.

    HUI L H, ZHAO J, WU L H, et al. Community structure of ammonia-oxidizing prokaryotes at the dry-up lake in Huitengxile Grassland [J]. Acta Microbiologica Sinica, 2012, 52(1): 104−113.(in Chinese)
    [2] MYERS N, MITTERMEIER R A, MITTERMEIER C G, et al. Biodiversity hotspots for conservation priorities [J]. Nature, 2000, 403(6772): 853−858. doi: 10.1038/35002501
    [3] 贺惠, 陈阳阳, 王勋功, 等. 海洋沉积物氨氧化菌群落结构的测序分析 [J]. 海洋科学, 2018, 42(8):22−29. doi: 10.11759/hykx20171215002

    HE H, CHEN Y Y, WANG X G, et al. Analysis of ammonia-oxidizing bacteria community structure in marine sediments using different sequencing technologies [J]. Marine Sciences, 2018, 42(8): 22−29.(in Chinese) doi: 10.11759/hykx20171215002
    [4] 王翠华, 武菲, 胡文革, 等. 艾比湖湿地三种植物根际土壤氨氧化细菌群落的多样性 [J]. 微生物学报, 2015, 55(9):1190−1200.

    WANG C H, WU F, HU W G, et al. Community diversity of ammonia-oxidizing bacteria of three plants rhizosphere in Ebinur Lake wetland [J]. Acta Microbiologica Sinica, 2015, 55(9): 1190−1200.(in Chinese)
    [5] 陈伟, 季秀玲, 李建凯, 等. 纳帕海高原湿地氨氧化微生物群落结构及多样性研究 [J]. 昆明理工大学学报(自然科学版), 2019, 44(1):74−84.

    CHEN W, JI X L, LI J K, et al. Community and diversity of ammonia oxidation microbial in Napahai plateau wetland [J]. Journal of Kunming University of Science and Technology (Natural Science), 2019, 44(1): 74−84.(in Chinese)
    [6] MING H X, ZHANG H Z, CHEN Q R, et al. Abundance and community structure of ammonium monooxygenase (AmoA) genes in the wet season of Liaohe estuary sediments [J]. Continental Shelf Research, 2020, 209: 104253. doi: 10.1016/j.csr.2020.104253
    [7] 郝永俊, 吴松维, 吴伟祥, 等. 好氧氨氧化菌的种群生态学研究进展 [J]. 生态学报, 2007, 27(4):1573−1582. doi: 10.3321/j.issn:1000-0933.2007.04.038

    HAO Y J, WU S W, WU W X, et al. Research progress on the microbial ecology of aerobic ammonia-oxidizing bacteria [J]. Acta Ecologica Sinica, 2007, 27(4): 1573−1582.(in Chinese) doi: 10.3321/j.issn:1000-0933.2007.04.038
    [8] CHANG Y K, FAN J F, SU J, et al. Spatial abundance, diversity, and activity of ammonia-oxidizing bacteria in coastal sediments of the Liaohe estuary [J]. Current Microbiology, 2017, 74(5): 632−640. doi: 10.1007/s00284-017-1226-x
    [9] 唐修峰, 秦华, 匡璐, 等. 基于宏基因组学的酸性森林土壤氨氧化微生物群落特征研究 [J]. 土壤学报, 2020. doi: 10.11766/trxb202002020040

    TANG X F, QIN H, KUANG L, et al. Metagenomics based study on community characteristics of ammonia-oxidizing microorganisms in acid forest soil [J]. Acta Pedologica Sinica, 2020.(in Chinese) doi: 10.11766/trxb202002020040
    [10] 王蓉, 朱杰, 金涛, 等. 稻虾共作模式下稻田土壤氨氧化微生物丰度和群落结构的特征 [J]. 植物营养与肥料学报, 2019, 25(11):1887−1899. doi: 10.11674/zwyf.18414

    WANG R, ZHU J, JIN T, et al. Characteristics of ammonia oxidation microbial abundance and community structure in paddy soils of rice-crayfish symbiosis farming system [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1887−1899.(in Chinese) doi: 10.11674/zwyf.18414
    [11] ISLAM G M, VI P, GILBRIDE K A. Functional relationship between ammonia-oxidizing bacteria and ammonia-oxidizing Archaea populations in the secondary treatment system of a full-scale municipal wastewater treatment plant [J]. Journal of Environmental Sciences, 2019, 86: 120−130. doi: 10.1016/j.jes.2019.04.031
    [12] 郑洁, 刘金福, 吴则焰, 等. 闽江河口红树林土壤微生物群落对互花米草入侵的响应 [J]. 生态学报, 2017, 37(21):7293−7303.

    ZHENG J, LIU J F, WU Z Y, et al. Soil microbial community of mangrove forests and its responses to the invasion of Spartina alterniflora in the Minjiang River Estuary [J]. Acta Ecologica Sinica, 2017, 37(21): 7293−7303.(in Chinese)
    [13] 赵紫檀, 郑洁, 吴则焰, 等. 互花米草入侵下红树林土壤微生物群落特征 [J]. 森林与环境学报, 2017, 37(2):169−173.

    ZHAO Z T, ZHENG J, WU Z Y, et al. Features of Mangrove soil microbial community with Spartina alterniflora invaded [J]. Journal of Forest and Environment, 2017, 37(2): 169−173.(in Chinese)
    [14] 佘晨兴, 仝川. 闽江口芦苇沼泽湿地土壤产甲烷菌群落结构的垂直分布 [J]. 生态学报, 2012, 32(17):5299−5308. doi: 10.5846/stxb201203050299

    SHE C X, TONG C. Vertical distribution of methanogen community structures in Phragmites australis marsh soil in the Min River estuary [J]. Acta Ecologica Sinica, 2012, 32(17): 5299−5308.(in Chinese) doi: 10.5846/stxb201203050299
    [15] 曾志华, 杨民和, 佘晨兴, 等. 闽江河口区淡水和半咸水潮汐沼泽湿地土壤产甲烷菌多样性 [J]. 生态学报, 2014, 34(10):2764−2681.

    ZENG Z H, YANG M H, SHE J X, et al. Diversity of methanogen communities in tidal freshwater and brackish marsh soil in the Min River estuary [J]. Acta Ecologica Sinica, 2014, 34(10): 2764−2681.(in Chinese)
    [16] 陈丽华, 吕新, 刘兰英, 等. 闽江河口湿地土壤硝化-反硝化细菌数量的时空分布特征 [J]. 福建农业学报, 2018, 33(10):1078−1083.

    CHEN L H, LYU X, LIU L Y, et al. Spatiotemporal distributions of nitrifying and denitrifying bacteria in soil of Minjiang estuary wetland [J]. Fujian Journal of Agricultural Sciences, 2018, 33(10): 1078−1083.(in Chinese)
    [17] ROTTHAUWE J H, WITZEL K P, LIESACK W. The ammonia monooxygenase structural gene AmoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations [J]. Applied and Environmental Microbiology, 1997, 63(12): 4704−4712. doi: 10.1128/AEM.63.12.4704-4712.1997
    [18] SURA-DE JONG M, REYNOLDS R J, RICHTEROVA K, et al. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties [J]. Frontiers in Plant Science, 2015, 6: 113.
    [19] 张爱娣, 郑仰雄, 吴碧珊, 等. 滨海湿地土壤微生物群落多样性及其影响因素 [J]. 水土保持研究, 2020, 27(3):8−14, 22.

    ZHANG A D, ZHENG Y X, WU B S, et al. Soil microbial community diversity and its influencing factors in coastal wetland [J]. Research of Soil and Water Conservation, 2020, 27(3): 8−14, 22.(in Chinese)
    [20] CHAPARRO J M, BADRI D V, BAKKER M G, et al. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions [J]. PLoS One, 2013, 8(2): e55731. doi: 10.1371/journal.pone.0055731
    [21] CHAPARRO J M, BADRI D V, VIVANCO J M. Rhizosphere microbiome assemblage is affected by plant development [J]. The ISME Journal, 2014, 8(4): 790−803. doi: 10.1038/ismej.2013.196
    [22] 李振灵, 丁彦礼, 白少元, 等. 潜流人工湿地基质结构与微生物群落特征的相关性 [J]. 环境科学, 2017, 38(9):3713−3720.

    LI Z L, DING Y L, BAI S Y, et al. Correlations Between Substrate Structure and Microbial Community in Subsurface Flow Constructed Wetlands [J]. Environmental Science, 2017, 38(9): 3713−3720.(in Chinese)
    [23] LIU J, YI N K, WANG S, et al. Impact of plant species on spatial distribution of metabolic potential and functional diversity of microbial communities in a constructed wetland treating aquaculture wastewater [J]. Ecological Engineering, 2016, 94: 564−573. doi: 10.1016/j.ecoleng.2016.06.106
    [24] VYMAZAL J. Removal of enteric bacteria in constructed treatment wetlands with emergent macrophytes: A review [J]. Journal of Environmental Science and Health, Part A, 2005, 40(6/7): 1355−1367.
    [25] STOTTMEISTER U, WIEßNER A, KUSCHK P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment [J]. Biotechnology Advances, 2003, 22(1/2): 93−117.
    [26] 沈琦, 郝雅荞, 徐潇航, 等. 基于高通量测序技术的盐地碱蓬根际细菌群落多样性分析 [J]. 浙江理工大学学报(自然科学版), 2020, 43(5):671−677.

    SHEN Q, HAO Y Q, XU X H, et al. Analysis of rhizosphere bacterial diversity in Suaeda glauca Bunge based on high-throughput sequencing [J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2020, 43(5): 671−677.(in Chinese)
    [27] KE X B, LU Y H. Adaptation of ammonia-oxidizing microorganisms to environment shift of paddy field soil [J]. FEMS Microbiology Ecology, 2012, 80(1): 87−97. doi: 10.1111/j.1574-6941.2011.01271.x
    [28] 贺纪正, 沈菊培, 张丽梅. 土壤硝化作用的新机理-氨氧化古菌在酸性土壤氨氧化中的主导作用 [J]. 科学观察, 2012, 7(6):58−60.

    HE J Z, SHEN J P, ZHANG L M. A new mechanism of soil nitrification-the leading role of ammonia oxidizing archaea in acid soil ammonia oxidation [J]. Science Focus, 2012, 7(6): 58−60.(in Chinese)
    [29] DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria [J]. Nature, 2015, 528(7583): 504−509. doi: 10.1038/nature16461
    [30] VAN KESSEL M A H J, SPETH D R, ALBERTSEN M, et al. Complete nitrification by a single microorganism [J]. Nature, 2015, 528(7583): 555−559. doi: 10.1038/nature16459
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  553
  • HTML全文浏览量:  117
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-01
  • 修回日期:  2020-11-27
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回