Responses of Barringtonia racemosa to Tidal Flooding
-
摘要:
目的 分析濒危半红树植物玉蕊对潮汐淹浸逆境的应答特性,为玉蕊在城市内河、滨湖、湿地恢复等景观应用中的适宜淹水时长选择提供科学依据。 方法 以二年生玉蕊实生幼苗为材料,试验模拟半日潮,研究各幼苗在不同淹水时长的潮汐淹浸逆境中的植株形态、生理生化及矿质元素的应答特性。 结果 (1)玉蕊幼苗经过250 d的潮汐淹浸逆境胁迫处理都能存活,其株高、叶片数、叶面积都显著低于对照植株,穿袋株数量、产生气生根及皮孔的数量均显著高于对照组。(2)玉蕊叶片叶绿素a、叶绿素总量(16 h·d−1除外)整体呈下降趋势;MDA含量整体呈上升趋势(14 h·d−1除外),并与脯氨酸、可溶性糖含量在淹水10 h·d−1时达到最大值,且均显著大于CK;(3)淹浸逆境胁迫促进叶片N、P、Fe元素的吸收,但抑制K、Cu元素的吸收。 结论 叶面积、叶片磷元素含量、叶绿素总含量、侧根表面积、CAT活性、POD活性、可溶性蛋白含量是玉蕊应答淹浸胁迫的主要指标;玉蕊对淹水时长≤20 h·d−1的半日潮淹浸逆境有很强的耐受性和适应性,可配植于城市内河易淹水的岸域、滨湖绿带及淡水湿地等景观环境中。 Abstract:Objective Responses of the endangered semi-mangrove Barringtonia racemosa to submergence in tides were studied to determine the adequacy of their planting for urban inland river, lakeside, and wetland restorations or other similar landscape projects. Method Two-year-old B. racemosa seedlings were used in the simulated semi-diurnal tide experiment. Morphology, physiology, biochemistry, and mineral contents of the plants in response to tidal submergence for varied durations were monitored. Result (1) The seedlings survived 250 d under the flooding treatments, but the plant height, leaf count, and leaf area were significantly lower, while the numbers of aerial roots, piercing plants, and lenticels significantly higher, than those of control. (2) The chlorophyll a and total chlorophyll in the leaves decreased continuously under flooding, except the 16 h·d−1 submergence treatment; MDA increased, except the 14 h·d−1 treatment; and, MDA, proline, and soluble sugars became significantly higher than those of CK and peaked under the 10 h·d−1 treatment. (3) The flooding increased the absorption of N, P, and Fe but inhibited that of K and Cu in the leaves. Conclusion The area, the contents of P, total chlorophyll, and soluble protein, and the activities of CAT and POD of leaves as well as the surface area of lateral roots were the major indicators that reflected the responses of B. racemosa to the flooding stress. The plants showed strong tolerance and adaptability to the adversity brought about by the semi-diurnal tides that lasted 20 h·d−1. Thus, B. racemosa could be adequately planted for landscaping at waterfront, lakeshore green belt, and/or freshwater wetland. -
Key words:
- Barringtonia racemosa /
- semi-mangrove plant /
- endangered /
- tidal flooding /
- stress
-
图 1 淹浸逆境对玉蕊株高、地径、叶片数及叶面积的影响
注:不同处理间玉蕊幼苗叶片的株高总增量(A)、地径总增长量(B)、叶片数变化量(C)及叶面积(D)。不同小写字母表示差异显著(P<0.05),差异性分析为不同处理间的差异性比较,图2~7同。
Figure 1. Effects of flooding on plant height, underground trunk girth, leaf number, and leaf area of B. racemose
Note: Increases on plant height (A), increases on underground trunk girth (B), changes on leaf count (C), and changes on leaf area (D) of B. racemosa seedlings under treatments. Data with different lowercase letters indicate significant differences at P<0.05 on different treatments. Same for the following.
图 2 淹浸逆境对玉蕊气生根数、穿袋株数、皮孔数及主侧根表面积的影响
注:不同处理间玉蕊幼苗叶片的气生根数(A)、穿袋株数(B)、皮孔数(C)、主根表面积(D)及侧根表面积(E)。
Figure 2. Effects of flooding on numbers of aerial roots, piercing plants, and lenticels and surface area of main and lateral roots of B. racemose
Note: Number of aerial roots (A), number of plants penetrated breeding bag (B), number of pores (C), surface area of main roots (D), and surface area of lateral roots (E) of B. racemosa seedlings under treatments.
表 1 玉蕊对淹浸逆境应答指标的主成分分析
Table 1. Principal component analysis on responses of B. racemosa to flooding
应答指标
Response indicators主成分矩阵
Principal component matrix a1 2 3 4 5 6 7 株高 Plant height 0.780 −0.212 0.119 0.027 −0.016 −0.079 −0.286 地径 Ground diameter −0.121 0.586 0.387 0.149 0.469 0.149 0.188 叶片数 Number of blades 0.770 −0.107 0.202 0.007 0.031 −0.263 0.010 叶面积 leaf area 0.822 0.000 −0.329 0.203 0.007 0.140 0.004 皮孔数 Number of lenticels −0.703 −0.398 −0.103 −0.366 0.025 0.129 −0.196 主根表面积 Surface area of taproot 0.370 0.159 0.269 0.563 −0.430 −0.014 −0.316 侧根表面积 Surface area of lateral roots 0.132 0.250 0.460 0.703 −0.082 0.353 0.090 叶绿素 a Chlorophyll a 0.599 0.125 −0.153 −0.429 0.335 0.160 0.028 叶绿素 b Chlorophyll b −0.287 0.049 −0.820 0.404 −0.074 −0.056 0.098 叶绿素总量 Total chlorophyll 0.398 −0.051 0.728 −0.488 0.081 0.068 −0.095 SOD活性 SOD activity 0.573 0.194 −0.572 −0.082 0.179 0.272 0.093 POD活性 POD activity −0.027 −0.381 0.201 −0.157 −0.604 0.355 0.433 CAT活性 CAT activity −0.334 0.247 0.057 0.242 0.538 −0.497 0.153 脯氨酸含量 Proline content −0.098 0.602 0.130 −0.679 −0.207 0.062 0.076 可溶性糖含量 Soluble sugar content −0.155 0.638 0.493 0.181 0.022 −0.114 −0.216 可溶性蛋白含量 Soluble protein content −0.346 −0.070 0.096 0.123 0.509 0.691 −0.104 丙二醛含量 Malondialdehyde content −0.164 0.535 −0.323 −0.279 −0.139 0.189 −0.589 硝态 N含量 Nitrate N content −0.549 −0.569 0.227 0.270 −0.101 0.145 −0.013 P含量 P content 0.111 0.877 0.009 −0.075 −0.105 0.148 0.289 K含量 K content 0.477 −0.660 0.155 −0.197 0.145 −0.097 0.168 Fe含量 Fe content −0.449 0.561 0.066 −0.235 −0.284 −0.245 0.126 Cu含量 Cu content 0.418 0.585 −0.230 0.146 −0.167 0.057 0.095 特征值 Characteristic value 4.679 4.155 2.71 2.467 1.695 1.385 1.05 贡献率 Contribution rate/% 21.267 18.888 12.32 11.211 7.707 6.297 4.772 累积贡献率 Cumulative contribution rate/% 21.267 40.155 52.475 63.686 71.393 77.691 82.462 注:提取方法:主成分;a:已提取了7个成分。
Note: Extraction method: principal component; a:7 principle components extracted. -
[1] 邱凤英. 几种半红树植物生物学特性、耐盐、耐水淹及造林试验研究 [D]. 长沙: 中南林业科技大学, 2009.QIU F Y. Research on biological characteristics, salt-resistance, flooding-resistance and afforest experiment of several species of semi-mangroves [D]. Changsha: Central South University of Forestry & Technology, 2009. (in Chinese) [2] 林晞. 玉蕊—一种极具开发价值的园林观赏树种 [J]. 亚热带植物通讯, 1998(2):45−47.LIN X. Barringtonia racemosa──An excellent ornamental tree [J]. Subtrop. Plant Res. Commun, 1998(2): 45−47.(in Chinese) [3] AMRAN N, RANI A N, MAHMUD R, et al. Antioxidant and cytotoxic effect of Barringtonia racemosa and Hibiscus sabdariffa fruit extracts in MCF-7 human breast cancer cell line [J]. Pharmacognosy Research, 2016, 8(1): 66−70. doi: 10.4103/0974-8490.171104 [4] KONG K W, ABDUL AZIZ A, RAZALI N, et al. Antioxidant-rich leaf extract of Barringtonia racemosa significantly alters the in vitro expression of genes encoding enzymes that are involved in methylglyoxal degradation III [J]. PeerJ, 2016, 4: e2379. doi: 10.7717/peerj.2379 [5] VAN Q T T, VIEN L T, HANH T T H, et al. Acylated flavonoid glycosides from Barringtonia racemosa [J]. Natural Product Research, 2020, 34(9): 1276−1281. doi: 10.1080/14786419.2018.1560290 [6] 农淑霞, 黎明. 优良园林观赏树种: 玉蕊 [J]. 中国林业, 2006(21):39.NONG S X, LI M. Fine ornamental tree species——Barringtonia racemosa [J]. Forestry of China, 2006(21): 39.(in Chinese) [7] 覃海宁, 杨永, 董仕勇, 等. 中国高等植物受威胁物种名录 [J]. 生物多样性, 2017, 25(7):696−744. doi: 10.17520/biods.2017144HAINING Q, YONG Y, SHIYONG D, et al. Threatened species list of China's higher plants [J]. Biodiversity Science, 2017, 25(7): 696−744.(in Chinese) doi: 10.17520/biods.2017144 [8] 蔡志全, 齐欣, 曹坤芳. 七种热带雨林树苗叶片气孔特征及其可塑性对不同光照强度的响应 [J]. 应用生态学报, 2004, 15(2):201−204. doi: 10.3321/j.issn:1001-9332.2004.02.006CAI Z Q, QI X, CAO K F. Response of stomatal characteristics and its plasticity to different light intensities in leaves of seven tropical woody seedlings [J]. Chinese Journal of Applied Ecology, 2004, 15(2): 201−204.(in Chinese) doi: 10.3321/j.issn:1001-9332.2004.02.006 [9] 蔡志全, 曹坤芳. 遮荫下2种热带树苗叶片光合特性和抗氧化酶系统对自然降温的响应 [J]. 林业科学, 2004, 40(1):47−51. doi: 10.3321/j.issn:1001-7488.2004.01.008CAI Z Q, CAO K F. The response of photosynthetic characteristics and enzymatic antioxidant system in leaves of two tropical seedlings growing in shade conditions as temperature fall [J]. Scientia Silvae Sinicae, 2004, 40(1): 47−51.(in Chinese) doi: 10.3321/j.issn:1001-7488.2004.01.008 [10] 钟军弟, 成夏岚, 莫雨杏, 等. 雷州九龙山红树林国家湿地公园玉蕊种群动态 [J]. 湿地科学, 2018, 16(2):231−237.ZHONG J D, CHENG X L, MO Y X, et al. Dynamic of Barringtonia racemose population in Jiulongshan mangrove national wetland park, Leizhou [J]. Wetland Science, 2018, 16(2): 231−237.(in Chinese) [11] 郭程轩, 陈祁琪, 徐颂军, 等. 雷州半岛东海岸玉蕊群落的干扰机制及潜在生态损失分析 [J]. 华南师范大学学报(自然科学版), 2019, 51(4):67−75.GUO C X, CHEN Q Q, XU S J, et al. The disturbance mechanism and potential ecological loss of the Barringtonia racemosa community on the east Coast of Leizhou peninsula [J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(4): 67−75.(in Chinese) [12] 梁芳, 黄秋伟, 於艳萍, 等. 濒危半红树植物玉蕊对盐胁迫的生理响应 及其相关性分析 [J]. 中南林业科技大学学报, 2019, 39(10):12−18.LIANG F, HUANG Q W, YU Y P, et al. Physiological response of endangered semi-mangrove Barringtonia racemosa to salt stress and its correlation analysis [J]. Journal of Central South University of Forestry & Technology, 2019, 39(10): 12−18.(in Chinese) [13] 李玲. 植物生理学模块实验指导 [M]. 北京: 科学出版社, 2009. [14] 张力, 甘乾福, 吴旭. SPSS19. 0(中文版)在生物统计中的应用 [M]. 第3版. 厦门: 厦门大学出版社, 2013. [15] 潘澜, 薛立. 植物淹水胁迫的生理学机制研究进展 [J]. 生态学杂志, 2012, 31(10):2662−2672.PAN L, XUE L. Plant physiological mechanisms in adapting to waterlogging stress: A review [J]. Chinese Journal of Ecology, 2012, 31(10): 2662−2672.(in Chinese) [16] 陈兴帮, 陈波, 张月华, 等. 淹水对3种桤木幼苗光合特性及根系生长的影响 [J]. 南方农业学报, 2019, 50(9):2036−2044.CHEN X B, CHEN B, ZHANG Y H, et al. Effects of photosynthetic characteristics and root growth of three species seedlings of Alnus under waterlogging stress [J]. Journal of Southern Agriculture, 2019, 50(9): 2036−2044.(in Chinese) [17] 姚玉霞, 李泽鸿, 曹杰, 等. 几种主要营养成分氮、磷、钾在烟草生长中的作用 [J]. 农业与技术, 1995(3):43−45.YAO Y X, LI Z H, CAO J, et al. The role of nitrogen, phosphorus and potassium in tobacco growth [J]. Agriculture and technology, 1995(3): 43−45.(in Chinese) [18] 梁芳, 卫旭芳, 白永超, 等. 文冠果新梢发育过程中不同部位矿质元素的变化特性 [J]. 浙江农林大学学报, 2018, 35(4):624−634. doi: 10.11833/j.issn.2095-0756.2018.04.007LIANG F, WEI X F, BAI Y C, et al. Mineral elements for new shoot development in Xanthoceras sorbifolia new shoots [J]. Journal of Zhejiang A&F University, 2018, 35(4): 624−634.(in Chinese) doi: 10.11833/j.issn.2095-0756.2018.04.007 [19] YEUNG E, BAILEY-SERRES J, SASIDHARAN R. After the deluge: Plant revival post-flooding [J]. Trends in Plant Science, 2019, 24(5): 443−454. doi: 10.1016/j.tplants.2019.02.007 [20] SALTER J, MORRIS K, BAILEY P C E, et al. Interactive effects of salinity and water depth on the growth of Melaleuca ericifolia Sm. (Swamp paperbark) seedlings [J]. Aquatic Botany, 2007, 86(3): 213−222. doi: 10.1016/j.aquabot.2006.10.002 [21] 曹福亮, 蔡金峰, 汪贵斌, 等. 淹水胁迫对乌桕生长及光合作用的影响 [J]. 林业科学, 2010, 46(10):57−61. doi: 10.11707/j.1001-7488.20101009CAO F L, CAI J F, WANG G B, et al. Effects of waterlogging stress on the growth and photosynthesis of Sapium sebiferum [J]. Scientia Silvae Sinicae, 2010, 46(10): 57−61.(in Chinese) doi: 10.11707/j.1001-7488.20101009 [22] 王瑞. 紫穗槐幼苗对不同梯度淹水胁迫的形态特征和生理生化响应 [D]. 兰州: 兰州大学, 2012.WANG R. Effect of different waterlogging stress on the growth and physiological and biochemical characteristics of Amorpha fruticosa seedlings [D]. Lanzhou: Lanzhou University, 2012. (in Chinese) [23] 张博宇, 胡秋月, 邱峙嵩, 等. 不同土壤水分含量对黄花风铃木幼苗生长和生理的影响 [J]. 西南农业学报, 2020, 33(4):775−780.ZHANG B Y, HU Q Y, QIU Z S, et al. Effects of different soil water content on growth and physiology of Tabebuia chrysantha seedlings [J]. Southwest China Journal of Agricultural Sciences, 2020, 33(4): 775−780.(in Chinese) [24] 吴红强, 杨柳青, 曾红, 等. 凹叶景天在水分胁迫下的生理响应研究 [J]. 中南林业科技大学学报, 2016, 36(8):109−114.WU H Q, YANG L Q, ZENG H, et al. Physiological responses on Sedum emarginatum under water stress [J]. Journal of Central South Forestry University, 2016, 36(8): 109−114.(in Chinese) [25] 张晓平, 方炎明, 陈永江. 淹涝胁迫对鹅掌楸属植物叶片部分生理指标的影响 [J]. 植物资源与环境学报, 2006, 15(1):41−44. doi: 10.3969/j.issn.1674-7895.2006.01.010ZHANG X P, FANG Y M, CHEN Y J. Effect of waterlogging stress on physiological indexes of Liriodendron seedlings [J]. Journal of Plant Resources and Environment, 2006, 15(1): 41−44.(in Chinese) doi: 10.3969/j.issn.1674-7895.2006.01.010 [26] DAT J F, CAPELLI N, FOLZER H, et al. Sensing and signalling during plant flooding [J]. Plant Physiology and Biochemistry, 2004, 42(4): 273−282. doi: 10.1016/j.plaphy.2004.02.003 [27] LUZHEN C, WENQING W, PENG L. Photosynthetic and physiological responses of Kandelia candel L. Druce seedlings to duration of tidal immersion in artificial seawater [J]. Environmental and Experimental Botany, 2005, 54(3): 256−266. doi: 10.1016/j.envexpbot.2004.09.004 [28] 袁琳, 张利权, 肖德荣, 等. 刈割与水位调节集成技术控制互花米草(Spartina alterniflora) [J]. 生态学报, 2008, 28(11):5723−5730. doi: 10.3321/j.issn:1000-0933.2008.11.059YUAN L, ZHANG L Q, XIAO D R, et al. a demonstration study using the integrated technique of cutting plus waterlogging for the control of Spartina alterniflora [J]. Acta Ecologica Sinica, 2008, 28(11): 5723−5730.(in Chinese) doi: 10.3321/j.issn:1000-0933.2008.11.059 [29] 罗美娟, 崔丽娟, 张守攻, 等. 淹水胁迫对桐花树幼苗水分和矿质元素的影响 [J]. 福建林学院学报, 2012, 32(4):336−340. doi: 10.3969/j.issn.1001-389X.2012.04.009LUO M J, CUI L J, ZHANG S G, et al. Effects of flooding stress on water and mineral nutrients in Aegiceras corniculatum seedlings [J]. Journal of Fujian College of Forestry, 2012, 32(4): 336−340.(in Chinese) doi: 10.3969/j.issn.1001-389X.2012.04.009 [30] 罗美娟. 红树植物桐花树幼苗对潮汐淹水胁迫的响应研究 [D]. 北京: 中国林业科学研究院, 2012.LUO M J. Studies on the Aegiceras corniculatum seedlings in response to simulated tidal flooding stress [D]. Beijing: China Academy of Forestry Sciences, 2012. (in Chinese) [31] RUBIO G, OESTERHELD M, ALVAREZ C R, et al. Mechanisms for the increase in phosphorus uptake of waterlogged plants: Soil phosphorus availability, root morphology and uptake kinetics [J]. Oecologia, 1997, 112(2): 150−155. doi: 10.1007/s004420050294 [32] KOZLOWSKI T T. Responses of woody plants to flooding and salinity [J]. Tree Physiology, 1997, 17(7): 490.