• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

濒危半红树植物玉蕊对潮汐淹浸逆境的应答特性分析

梁芳 潘艳菊 邓旭 吴玉霜 梁泽锐 赵仕花 檀小辉

梁芳,潘艳菊,邓旭,等. 濒危半红树植物玉蕊对潮汐淹浸逆境的应答特性分析 [J]. 福建农业学报,2020,35(12):1346−1356 doi: 10.19303/j.issn.1008-0384.2020.12.008
引用本文: 梁芳,潘艳菊,邓旭,等. 濒危半红树植物玉蕊对潮汐淹浸逆境的应答特性分析 [J]. 福建农业学报,2020,35(12):1346−1356 doi: 10.19303/j.issn.1008-0384.2020.12.008
LIANG F, PAN Y J, DENG X, et al. Responses of Barringtonia racemosa to Tidal Flooding [J]. Fujian Journal of Agricultural Sciences,2020,35(12):1346−1356 doi: 10.19303/j.issn.1008-0384.2020.12.008
Citation: LIANG F, PAN Y J, DENG X, et al. Responses of Barringtonia racemosa to Tidal Flooding [J]. Fujian Journal of Agricultural Sciences,2020,35(12):1346−1356 doi: 10.19303/j.issn.1008-0384.2020.12.008

濒危半红树植物玉蕊对潮汐淹浸逆境的应答特性分析

doi: 10.19303/j.issn.1008-0384.2020.12.008
基金项目: 国家自然科学基金项目(31660226)
详细信息
    作者简介:

    梁芳(1984−),女,硕士,副教授,研究方向:园林植物抗逆生理(Email:liangfang360@163.com

    通讯作者:

    檀小辉(1984−),男,博士研究生,助理研究员,研究方向:植物生理及分子生物学(E-mail:xiaohuitan@126.com

  • 中图分类号: S 792

Responses of Barringtonia racemosa to Tidal Flooding

  • 摘要:   目的  分析濒危半红树植物玉蕊对潮汐淹浸逆境的应答特性,为玉蕊在城市内河、滨湖、湿地恢复等景观应用中的适宜淹水时长选择提供科学依据。  方法  以二年生玉蕊实生幼苗为材料,试验模拟半日潮,研究各幼苗在不同淹水时长的潮汐淹浸逆境中的植株形态、生理生化及矿质元素的应答特性。  结果  (1)玉蕊幼苗经过250 d的潮汐淹浸逆境胁迫处理都能存活,其株高、叶片数、叶面积都显著低于对照植株,穿袋株数量、产生气生根及皮孔的数量均显著高于对照组。(2)玉蕊叶片叶绿素a、叶绿素总量(16 h·d−1除外)整体呈下降趋势;MDA含量整体呈上升趋势(14 h·d−1除外),并与脯氨酸、可溶性糖含量在淹水10 h·d−1时达到最大值,且均显著大于CK;(3)淹浸逆境胁迫促进叶片N、P、Fe元素的吸收,但抑制K、Cu元素的吸收。  结论  叶面积、叶片磷元素含量、叶绿素总含量、侧根表面积、CAT活性、POD活性、可溶性蛋白含量是玉蕊应答淹浸胁迫的主要指标;玉蕊对淹水时长≤20 h·d−1的半日潮淹浸逆境有很强的耐受性和适应性,可配植于城市内河易淹水的岸域、滨湖绿带及淡水湿地等景观环境中。
  • 图  1  淹浸逆境对玉蕊株高、地径、叶片数及叶面积的影响

    注:不同处理间玉蕊幼苗叶片的株高总增量(A)、地径总增长量(B)、叶片数变化量(C)及叶面积(D)。不同小写字母表示差异显著(P<0.05),差异性分析为不同处理间的差异性比较,图2~7同。

    Figure  1.  Effects of flooding on plant height, underground trunk girth, leaf number, and leaf area of B. racemose

    Note: Increases on plant height (A), increases on underground trunk girth (B), changes on leaf count (C), and changes on leaf area (D) of B. racemosa seedlings under treatments. Data with different lowercase letters indicate significant differences at P<0.05 on different treatments. Same for the following.

    图  2  淹浸逆境对玉蕊气生根数、穿袋株数、皮孔数及主侧根表面积的影响

    注:不同处理间玉蕊幼苗叶片的气生根数(A)、穿袋株数(B)、皮孔数(C)、主根表面积(D)及侧根表面积(E)。

    Figure  2.  Effects of flooding on numbers of aerial roots, piercing plants, and lenticels and surface area of main and lateral roots of B. racemose

    Note: Number of aerial roots (A), number of plants penetrated breeding bag (B), number of pores (C), surface area of main roots (D), and surface area of lateral roots (E) of B. racemosa seedlings under treatments.

    图  5  淹浸逆境对玉蕊叶片渗透物质及细胞膜的影响

    注:不同处理间玉蕊幼苗叶片的脯氨酸(A)、可溶性糖(B)、可溶性蛋白(C)及丙二醛的含量(D)。

    Figure  5.  Effects of flooding on osmotic substances and cell membrane of B. racemosa leaves

    Note: Contents of proline (A), soluble sugar (B), soluble protein (C) and MDA (D) of B. racemosa seedlings under treatments.

    图  6  淹浸逆境对玉蕊叶片氮磷钾的影响

    注:不同处理间玉蕊幼苗叶片的硝态氮(A)、有效磷(B)和有效钾的含量(C)。

    Figure  6.  Effects of flooding on N, P, and K in B. racemosa leaves

    Note: Contents of nitrate N (A), effective P (B), and effective K (C) of B. racemosa seedlings under treatments.

    图  3  淹浸逆境对玉蕊叶绿素含量的影响

    注:不同处理间玉蕊幼苗叶片的叶绿素a的含量(A)、叶绿素b的含量(B)及叶绿素的总含量(C)。

    Figure  3.  Effect of flooding on chlorophyll content of B. racemose

    Note: Chlorophyll a (A), chlorophyll b (B), and total chlorophyll (C) of B. racemosa seedlings under treatments.

    图  4  淹浸逆境对玉蕊叶片酶系统的影响

    注:不同处理间玉蕊幼苗叶片的SOD活性(A)、POD活性(B)及CAT活性(C)。

    Figure  4.  Effect of flooding on enzyme activities of B. racemosa leaves

    Note: Activities of SOD (A), POD (B), and CAT (C) of B. racemosa seedlings under treatments.

    图  7  淹浸逆境对玉蕊叶片铁、铜离子的影响

    注:不同处理间玉蕊幼苗叶片矿质元素的Fe含量(A)和Cu的含量(B)。

    Figure  7.  Effects of flooding on Fe and Cu ions in B. racemosa leaves

    Note: Contents of Fe (A) and Cu (B) of B. racemosa seedlings under treatments.

    表  1  玉蕊对淹浸逆境应答指标的主成分分析

    Table  1.   Principal component analysis on responses of B. racemosa to flooding

    应答指标
    Response indicators
    主成分矩阵
    Principal component matrix a
    1234567
    株高 Plant height 0.780 −0.212 0.119 0.027 −0.016 −0.079 −0.286
    地径 Ground diameter −0.121 0.586 0.387 0.149 0.469 0.149 0.188
    叶片数 Number of blades 0.770 −0.107 0.202 0.007 0.031 −0.263 0.010
    叶面积 leaf area 0.822 0.000 −0.329 0.203 0.007 0.140 0.004
    皮孔数 Number of lenticels −0.703 −0.398 −0.103 −0.366 0.025 0.129 −0.196
    主根表面积 Surface area of taproot 0.370 0.159 0.269 0.563 −0.430 −0.014 −0.316
    侧根表面积 Surface area of lateral roots 0.132 0.250 0.460 0.703 −0.082 0.353 0.090
    叶绿素 a Chlorophyll a 0.599 0.125 −0.153 −0.429 0.335 0.160 0.028
    叶绿素 b Chlorophyll b −0.287 0.049 −0.820 0.404 −0.074 −0.056 0.098
    叶绿素总量 Total chlorophyll 0.398 −0.051 0.728 −0.488 0.081 0.068 −0.095
    SOD活性 SOD activity 0.573 0.194 −0.572 −0.082 0.179 0.272 0.093
    POD活性 POD activity −0.027 −0.381 0.201 −0.157 −0.604 0.355 0.433
    CAT活性 CAT activity −0.334 0.247 0.057 0.242 0.538 −0.497 0.153
    脯氨酸含量 Proline content −0.098 0.602 0.130 −0.679 −0.207 0.062 0.076
    可溶性糖含量 Soluble sugar content −0.155 0.638 0.493 0.181 0.022 −0.114 −0.216
    可溶性蛋白含量 Soluble protein content −0.346 −0.070 0.096 0.123 0.509 0.691 −0.104
    丙二醛含量 Malondialdehyde content −0.164 0.535 −0.323 −0.279 −0.139 0.189 −0.589
    硝态 N含量 Nitrate N content −0.549 −0.569 0.227 0.270 −0.101 0.145 −0.013
    P含量 P content 0.111 0.877 0.009 −0.075 −0.105 0.148 0.289
    K含量 K content 0.477 −0.660 0.155 −0.197 0.145 −0.097 0.168
    Fe含量 Fe content −0.449 0.561 0.066 −0.235 −0.284 −0.245 0.126
    Cu含量 Cu content 0.418 0.585 −0.230 0.146 −0.167 0.057 0.095
    特征值 Characteristic value 4.679 4.155 2.71 2.467 1.695 1.385 1.05
    贡献率 Contribution rate/% 21.267 18.888 12.32 11.211 7.707 6.297 4.772
    累积贡献率 Cumulative contribution rate/% 21.267 40.155 52.475 63.686 71.393 77.691 82.462
    注:提取方法:主成分;a:已提取了7个成分。
    Note: Extraction method: principal component; a:7 principle components extracted.
    下载: 导出CSV
  • [1] 邱凤英. 几种半红树植物生物学特性、耐盐、耐水淹及造林试验研究 [D]. 长沙: 中南林业科技大学, 2009.

    QIU F Y. Research on biological characteristics, salt-resistance, flooding-resistance and afforest experiment of several species of semi-mangroves [D]. Changsha: Central South University of Forestry & Technology, 2009. (in Chinese)
    [2] 林晞. 玉蕊—一种极具开发价值的园林观赏树种 [J]. 亚热带植物通讯, 1998(2):45−47.

    LIN X. Barringtonia racemosa──An excellent ornamental tree [J]. Subtrop. Plant Res. Commun, 1998(2): 45−47.(in Chinese)
    [3] AMRAN N, RANI A N, MAHMUD R, et al. Antioxidant and cytotoxic effect of Barringtonia racemosa and Hibiscus sabdariffa fruit extracts in MCF-7 human breast cancer cell line [J]. Pharmacognosy Research, 2016, 8(1): 66−70. doi: 10.4103/0974-8490.171104
    [4] KONG K W, ABDUL AZIZ A, RAZALI N, et al. Antioxidant-rich leaf extract of Barringtonia racemosa significantly alters the in vitro expression of genes encoding enzymes that are involved in methylglyoxal degradation III [J]. PeerJ, 2016, 4: e2379. doi: 10.7717/peerj.2379
    [5] VAN Q T T, VIEN L T, HANH T T H, et al. Acylated flavonoid glycosides from Barringtonia racemosa [J]. Natural Product Research, 2020, 34(9): 1276−1281. doi: 10.1080/14786419.2018.1560290
    [6] 农淑霞, 黎明. 优良园林观赏树种: 玉蕊 [J]. 中国林业, 2006(21):39.

    NONG S X, LI M. Fine ornamental tree species——Barringtonia racemosa [J]. Forestry of China, 2006(21): 39.(in Chinese)
    [7] 覃海宁, 杨永, 董仕勇, 等. 中国高等植物受威胁物种名录 [J]. 生物多样性, 2017, 25(7):696−744. doi: 10.17520/biods.2017144

    HAINING Q, YONG Y, SHIYONG D, et al. Threatened species list of China's higher plants [J]. Biodiversity Science, 2017, 25(7): 696−744.(in Chinese) doi: 10.17520/biods.2017144
    [8] 蔡志全, 齐欣, 曹坤芳. 七种热带雨林树苗叶片气孔特征及其可塑性对不同光照强度的响应 [J]. 应用生态学报, 2004, 15(2):201−204. doi: 10.3321/j.issn:1001-9332.2004.02.006

    CAI Z Q, QI X, CAO K F. Response of stomatal characteristics and its plasticity to different light intensities in leaves of seven tropical woody seedlings [J]. Chinese Journal of Applied Ecology, 2004, 15(2): 201−204.(in Chinese) doi: 10.3321/j.issn:1001-9332.2004.02.006
    [9] 蔡志全, 曹坤芳. 遮荫下2种热带树苗叶片光合特性和抗氧化酶系统对自然降温的响应 [J]. 林业科学, 2004, 40(1):47−51. doi: 10.3321/j.issn:1001-7488.2004.01.008

    CAI Z Q, CAO K F. The response of photosynthetic characteristics and enzymatic antioxidant system in leaves of two tropical seedlings growing in shade conditions as temperature fall [J]. Scientia Silvae Sinicae, 2004, 40(1): 47−51.(in Chinese) doi: 10.3321/j.issn:1001-7488.2004.01.008
    [10] 钟军弟, 成夏岚, 莫雨杏, 等. 雷州九龙山红树林国家湿地公园玉蕊种群动态 [J]. 湿地科学, 2018, 16(2):231−237.

    ZHONG J D, CHENG X L, MO Y X, et al. Dynamic of Barringtonia racemose population in Jiulongshan mangrove national wetland park, Leizhou [J]. Wetland Science, 2018, 16(2): 231−237.(in Chinese)
    [11] 郭程轩, 陈祁琪, 徐颂军, 等. 雷州半岛东海岸玉蕊群落的干扰机制及潜在生态损失分析 [J]. 华南师范大学学报(自然科学版), 2019, 51(4):67−75.

    GUO C X, CHEN Q Q, XU S J, et al. The disturbance mechanism and potential ecological loss of the Barringtonia racemosa community on the east Coast of Leizhou peninsula [J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(4): 67−75.(in Chinese)
    [12] 梁芳, 黄秋伟, 於艳萍, 等. 濒危半红树植物玉蕊对盐胁迫的生理响应 及其相关性分析 [J]. 中南林业科技大学学报, 2019, 39(10):12−18.

    LIANG F, HUANG Q W, YU Y P, et al. Physiological response of endangered semi-mangrove Barringtonia racemosa to salt stress and its correlation analysis [J]. Journal of Central South University of Forestry & Technology, 2019, 39(10): 12−18.(in Chinese)
    [13] 李玲. 植物生理学模块实验指导 [M]. 北京: 科学出版社, 2009.
    [14] 张力, 甘乾福, 吴旭. SPSS19. 0(中文版)在生物统计中的应用 [M]. 第3版. 厦门: 厦门大学出版社, 2013.
    [15] 潘澜, 薛立. 植物淹水胁迫的生理学机制研究进展 [J]. 生态学杂志, 2012, 31(10):2662−2672.

    PAN L, XUE L. Plant physiological mechanisms in adapting to waterlogging stress: A review [J]. Chinese Journal of Ecology, 2012, 31(10): 2662−2672.(in Chinese)
    [16] 陈兴帮, 陈波, 张月华, 等. 淹水对3种桤木幼苗光合特性及根系生长的影响 [J]. 南方农业学报, 2019, 50(9):2036−2044.

    CHEN X B, CHEN B, ZHANG Y H, et al. Effects of photosynthetic characteristics and root growth of three species seedlings of Alnus under waterlogging stress [J]. Journal of Southern Agriculture, 2019, 50(9): 2036−2044.(in Chinese)
    [17] 姚玉霞, 李泽鸿, 曹杰, 等. 几种主要营养成分氮、磷、钾在烟草生长中的作用 [J]. 农业与技术, 1995(3):43−45.

    YAO Y X, LI Z H, CAO J, et al. The role of nitrogen, phosphorus and potassium in tobacco growth [J]. Agriculture and technology, 1995(3): 43−45.(in Chinese)
    [18] 梁芳, 卫旭芳, 白永超, 等. 文冠果新梢发育过程中不同部位矿质元素的变化特性 [J]. 浙江农林大学学报, 2018, 35(4):624−634. doi: 10.11833/j.issn.2095-0756.2018.04.007

    LIANG F, WEI X F, BAI Y C, et al. Mineral elements for new shoot development in Xanthoceras sorbifolia new shoots [J]. Journal of Zhejiang A&F University, 2018, 35(4): 624−634.(in Chinese) doi: 10.11833/j.issn.2095-0756.2018.04.007
    [19] YEUNG E, BAILEY-SERRES J, SASIDHARAN R. After the deluge: Plant revival post-flooding [J]. Trends in Plant Science, 2019, 24(5): 443−454. doi: 10.1016/j.tplants.2019.02.007
    [20] SALTER J, MORRIS K, BAILEY P C E, et al. Interactive effects of salinity and water depth on the growth of Melaleuca ericifolia Sm. (Swamp paperbark) seedlings [J]. Aquatic Botany, 2007, 86(3): 213−222. doi: 10.1016/j.aquabot.2006.10.002
    [21] 曹福亮, 蔡金峰, 汪贵斌, 等. 淹水胁迫对乌桕生长及光合作用的影响 [J]. 林业科学, 2010, 46(10):57−61. doi: 10.11707/j.1001-7488.20101009

    CAO F L, CAI J F, WANG G B, et al. Effects of waterlogging stress on the growth and photosynthesis of Sapium sebiferum [J]. Scientia Silvae Sinicae, 2010, 46(10): 57−61.(in Chinese) doi: 10.11707/j.1001-7488.20101009
    [22] 王瑞. 紫穗槐幼苗对不同梯度淹水胁迫的形态特征和生理生化响应 [D]. 兰州: 兰州大学, 2012.

    WANG R. Effect of different waterlogging stress on the growth and physiological and biochemical characteristics of Amorpha fruticosa seedlings [D]. Lanzhou: Lanzhou University, 2012. (in Chinese)
    [23] 张博宇, 胡秋月, 邱峙嵩, 等. 不同土壤水分含量对黄花风铃木幼苗生长和生理的影响 [J]. 西南农业学报, 2020, 33(4):775−780.

    ZHANG B Y, HU Q Y, QIU Z S, et al. Effects of different soil water content on growth and physiology of Tabebuia chrysantha seedlings [J]. Southwest China Journal of Agricultural Sciences, 2020, 33(4): 775−780.(in Chinese)
    [24] 吴红强, 杨柳青, 曾红, 等. 凹叶景天在水分胁迫下的生理响应研究 [J]. 中南林业科技大学学报, 2016, 36(8):109−114.

    WU H Q, YANG L Q, ZENG H, et al. Physiological responses on Sedum emarginatum under water stress [J]. Journal of Central South Forestry University, 2016, 36(8): 109−114.(in Chinese)
    [25] 张晓平, 方炎明, 陈永江. 淹涝胁迫对鹅掌楸属植物叶片部分生理指标的影响 [J]. 植物资源与环境学报, 2006, 15(1):41−44. doi: 10.3969/j.issn.1674-7895.2006.01.010

    ZHANG X P, FANG Y M, CHEN Y J. Effect of waterlogging stress on physiological indexes of Liriodendron seedlings [J]. Journal of Plant Resources and Environment, 2006, 15(1): 41−44.(in Chinese) doi: 10.3969/j.issn.1674-7895.2006.01.010
    [26] DAT J F, CAPELLI N, FOLZER H, et al. Sensing and signalling during plant flooding [J]. Plant Physiology and Biochemistry, 2004, 42(4): 273−282. doi: 10.1016/j.plaphy.2004.02.003
    [27] LUZHEN C, WENQING W, PENG L. Photosynthetic and physiological responses of Kandelia candel L. Druce seedlings to duration of tidal immersion in artificial seawater [J]. Environmental and Experimental Botany, 2005, 54(3): 256−266. doi: 10.1016/j.envexpbot.2004.09.004
    [28] 袁琳, 张利权, 肖德荣, 等. 刈割与水位调节集成技术控制互花米草(Spartina alterniflora) [J]. 生态学报, 2008, 28(11):5723−5730. doi: 10.3321/j.issn:1000-0933.2008.11.059

    YUAN L, ZHANG L Q, XIAO D R, et al. a demonstration study using the integrated technique of cutting plus waterlogging for the control of Spartina alterniflora [J]. Acta Ecologica Sinica, 2008, 28(11): 5723−5730.(in Chinese) doi: 10.3321/j.issn:1000-0933.2008.11.059
    [29] 罗美娟, 崔丽娟, 张守攻, 等. 淹水胁迫对桐花树幼苗水分和矿质元素的影响 [J]. 福建林学院学报, 2012, 32(4):336−340. doi: 10.3969/j.issn.1001-389X.2012.04.009

    LUO M J, CUI L J, ZHANG S G, et al. Effects of flooding stress on water and mineral nutrients in Aegiceras corniculatum seedlings [J]. Journal of Fujian College of Forestry, 2012, 32(4): 336−340.(in Chinese) doi: 10.3969/j.issn.1001-389X.2012.04.009
    [30] 罗美娟. 红树植物桐花树幼苗对潮汐淹水胁迫的响应研究 [D]. 北京: 中国林业科学研究院, 2012.

    LUO M J. Studies on the Aegiceras corniculatum seedlings in response to simulated tidal flooding stress [D]. Beijing: China Academy of Forestry Sciences, 2012. (in Chinese)
    [31] RUBIO G, OESTERHELD M, ALVAREZ C R, et al. Mechanisms for the increase in phosphorus uptake of waterlogged plants: Soil phosphorus availability, root morphology and uptake kinetics [J]. Oecologia, 1997, 112(2): 150−155. doi: 10.1007/s004420050294
    [32] KOZLOWSKI T T. Responses of woody plants to flooding and salinity [J]. Tree Physiology, 1997, 17(7): 490.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1264
  • HTML全文浏览量:  284
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-25
  • 修回日期:  2020-11-12
  • 网络出版日期:  2020-11-24
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回