Screening, Identification, and Preliminary Analysis on Antagonistic Bacillus sp. against Potato Dry Rot
-
摘要:
目的 探究分离自青稞白酒糟醅的菌株对马铃薯干腐病的生防效果,为马铃薯干腐病的生物防控提供初步的理论依据。 方法 采用平板对峙法,测定9株分离自青稞白酒糟醅的菌株对4株马铃薯干腐病病原真菌的抑菌活性。通过形态学、生理生化及分子生物学方法对活性菌株进行鉴定。采用平板透明圈法和排油圈法,分别测定活性菌株发酵液分泌抑菌蛋白和产生脂肽类物质的能力。采用牛津杯法,以马铃薯干腐病病原菌为指示菌,测定活性菌株发酵液有机溶剂萃取物的抑菌活性及其在不同条件下抑菌活性的稳定性。 结果 (1)筛选到2株对马铃薯干腐病菌具有较强抑制活性的菌株JZ3-4-7和JZ3-1-15,其中JZ3-1-15抑菌活性稳定。(2)经鉴定,JZ3-1-15为贝莱斯芽孢杆菌(Bacillus velezensis)。(3)JZ3-1-15的发酵液能产生蛋白酶、淀粉酶和纤维素酶,并且能够产生脂肽类物质。(4)JZ3-1-15发酵液的正丁醇萃取物对马铃薯干腐病病原真菌青9D-2-6的抑菌活性最高,抑制率达80.07%。(5)JZ3-1-15发酵液的正丁醇萃取物可耐121 ℃高温,热稳定性较强;具有较高的酸碱稳定性,pH值为8时抑菌活性达到最高;紫外线照射处理对抑菌活性无影响。 结论 JZ3-1-15及其正丁醇萃取物对马铃薯干腐病菌具有强抑菌活性,有望将其开发为马铃薯新型生防保鲜菌剂,并从中分离到对马铃薯干腐病菌具有新颖作用靶点的活性化合物及先导化合物。 Abstract:Objective Bacillus sp. isolated from Hordeum vulgare L. distiller’s grain were explored as a potential biocontrol agent against the potato dry rot disease. Method The plate confrontation method was applied to examine the antagonistic activities of 9 Bacillus strains isolated from the barley wine distiller’s grain against 4 potato dry rot pathogens. Active strains were then identified by morphological, physiological, biochemical, and molecular biology methods. The plate transparent ring and discharge of oil ring tests were used to determine the capacity of the selected strains in secreting bacteriostatic proteins and lipopeptides. Using the potato dry rot pathogens as indicator in the Oxford cup test, the antibacterial activity and the stability under different conditions of the extracts of the fermentation broths of the active strains were determined. Result (1) The Bacillus sp., JZ3-4-7 and JZ3-1-15 displayed significant inhibitory activities against the potato dry rot pathogens in the screening. JZ3-1-15 also exhibited a desirable stability. (2) JZ3-1-15 was subsequently identified as B. velezensis. (3) The JZ3-1-15 fermentation broth contained protease, amylase, cellulase, as well as lipopeptides. (4) The n-butanol extract of JZ3-1-15 fermentation broth had a significant inhibitory rate of 80.07% against the pathogen, Qing 9D-2-6. (5) The same extract withstood a temperature as high as 121 ℃ maintaining a strong thermal stability. It was also stable under acidic and alkaline conditions with a peak anti-pathogenicity at pH 8, and its activity not affected by ultraviolet. Conclusion JZ3-1-15 and the n-butanol extract of its fermentation broth showed significant inhibitory activity on the potato dry rot pathogens. It appeared that they could be developed as a new biocontrol agent against the target pathogens and/or a preservative for fresh potatoes. The effective compounds or precursors might also be isolated from them for combating the potato dry rot disease and further studies. -
表 1 分离自青稞白酒糟醅的菌株抑制马铃薯干腐病病原真菌的活性
Table 1. Inhibitory activity of strains from distiller's grain against pathogens of potato dry rot
菌株
strain青9D-2-6
Qing 9D-2-665D-5-2 青9B-4-6
Qing 9B-4-665C-4-3 病原菌菌落直径
Diameter of
pathogen colony/cm抑制率
Inhibition rate/%病原菌菌落直径
Diameter of
pathogen colony/cm抑制率
Inhibition rate/%病原菌菌落直径
Diameter of
pathogen colony/cm抑制率
Inhibition rate/%病原菌菌落直径
Diameter of
pathogen colony/cm抑制率
Inhibition rate/%JZ3-1-15 3.69±1.23 57.24 4.36±1.47 49.83 4.13±1.45 51.92 4.87±1.37 50.18 JZ3-4-7 4.58±1.64 46.93 4.87±1.72 43.96 5.14±1.21 47.15 5.45±1.72 41.07 JZ3-5-1 7.65±1.22 11.36 8.46±1.32 2.65 7.16±1.32 10.83 6.87±1.56 8.17 JZ3-1-10 7.74±1.36 10.31 8.32±1.26 4.26 8.21±1.65 4.42 6.98±1.66 16.22 JZ3-1-23 7.78±1.47 9.85 7.90±1.02 9.09 7.96±1.85 7.33 6.64±1.31 10.85 JZ3-1-14 7.92±1.58 8.23 8.26±1.59 4.95 7.95±1.49 7.45 7.25±1.45 15.40 JZ3-2-2 8.03±1.29 6.95 8.12±1.55 6.56 8.13±1.72 5.36 6.84±1.35 8.52 JZ2-1-6 8.16±1.34 5.45 7.69±1.83 11.51 7.69±1.57 10.48 7.93±1.57 7.47 JZ3-1-4 8.18±1.51 5.21 7.99±1.35 8.06 8.07±1.58 6.05 7.34±1.52 14.35 CK 8.63±0.64 8.69±1.37 8.59±0.96 8.57±1.23 注:表中数值为平均值±标准差。
Note: The values in the table are mean ± standard deviation.表 2 供试菌株对马铃薯干腐病病原真菌抑菌活性的稳定性
Table 2. Stability of antimicrobial activity of strains from distiller's grains against pathogens of potato dry rot
菌株
strain抑菌带缩小率
Inhibition zone
reduction rate/%稳定性评价
Stability evaluationJZ3-1-15 0.78 a ++ JZ3-4-7 25.75 b + 注:表中同一列中不同字母表示处理间差异显著(P<0.05)。
Note: Different letters in the same column in the table indicate significant differences between the treatments(P<0.05).表 3 菌株JZ3-1-15的生理生化特征
Table 3. Physiological and biochemical characteristics of JZ3-1-15
试验项目
Pilot projects结果
result试验项目
Pilot projects结果
result柠檬酸利用 Citric acid utilization − 甲基红 M.R − 接触酶 Contact enzyme + V-P − 葡萄糖发酵 Glucose fermentation F ONPG + 蔗糖利用 Sucrose Utilization + 硝酸盐还原 Nitrate reduction + 甘露醇利用 Mannitol utilization + 明胶液化 Gelatin Liquefaction + 麦芽糖利用 Maltose utilization + 石蕊牛乳试验 Litmus Milk Test 凝固 freezing 注:“+”表示阳性,“−”表示阴性。
Note: "+" means positive, "−" means negative.表 4 菌株JZ3-1-15发酵液萃取物对病原真菌青9D-2-6的抑菌活性
Table 4. Inhibitory activity of crude extract from JZ3-1-15 fermentation broth against Qing 9D-2-6
萃取物溶液
Extract solution质量浓度
Concentration/(mg·mL−1)抑制率
Inhibition rate/%毒力回归方程
Virulence regression equation回归系数
rEC50/(mg·mL−1) 乙酸乙酯 Ethyl acetate 1.25 20.74±1.38 c y=3.93+0.93 x 0.93 14.06 2.50 23.16±0.67 c 5.00 25.00±1.56 c 10.00 42.17.±1.79 b 20.00 62.67±1.73 a 氯仿 Chloroform 1.25 24.19±1.67 d y=4.05+1.00 x 0.96 8.88 2.50 26.15±1.35 c 5.00 33.64±1.34 c 10.00 52.42±1.37 b 20.00 67.51±2.26 a 正丁醇 N-butanol 1.25 27.76±1.25 d y=4.13+1.22 x 0.98 5.18 2.50 29.84±2.10 d 5.00 37.67±1.63 c 10.00 61.41±1.67 b 20.00 80.07±0.81 a 注:表中同一萃取物的同一列中无相同字母,表示处理间差异显著(P<0.05)。
Note: Different letters in the same column in the table indicate significant differences between the treatments(P<0.05). -
[1] DELAPLACE P, ROJAS-BELTRAN J, FRETTINGER P, et al. Oxylipin profile and antioxidant status of potato tubers during extended storage at room temperature [J]. Plant Physiology and Biochemistry, 2008, 46(12): 1077−1084. doi: 10.1016/j.plaphy.2008.09.001 [2] 李金花, 王蒂, 柴兆祥, 等. 甘肃省马铃薯镰刀菌干腐病优势病原的分离鉴定 [J]. 植物病理学报, 2011, 41(5):456−463.LI J H, WANG D, CHAI Z X, et al. Isolation and identification of the dominant pathogens causing potato Fusarium dry rot in Gansu Province [J]. Acta Phytopathologica Sinica, 2011, 41(5): 456−463.(in Chinese) [3] 雷娅红, 况卫刚, 郑春生, 等. 基于DNA条形码技术对镰刀菌属的检测鉴定 [J]. 植物保护学报, 2016, 43(4):544−551.LEI Y H, KUANG W G, ZHENG C S, et al. Detection and identification of the genus Fusarium by DNA barcoding [J]. Acta Phytophylacica Sinica, 2016, 43(4): 544−551.(in Chinese) [4] 许苗, 叶文武, 王淑琛, 等. 快速检测马铃薯干腐病病原接骨木镰孢的环介导等温扩增技术 [J]. 植物病理学报, 2018, 48(1):55−60.XU M, YE W W, WANG S C, et al. Rapid diagnosis of potato dry rot caused by Fusarium sambucinum using a loop-mediated isothermal amplification assay [J]. Acta Phytopathologica Sinica, 2018, 48(1): 55−60.(in Chinese) [5] BOJANOWSKI A, AVIS T J, PELLETIER S, et al. Management of potato dry rot [J]. Postharvest Biology and Technology, 2013, 84: 99−109. doi: 10.1016/j.postharvbio.2013.04.008 [6] CABAÑAS R, CASTELLÁ G, ABARCA M L, et al. Thiabendazole resistance and mutations in the beta-tubulin gene of Penicillium expansum strains isolated from apples and pears with blue mold decay [J]. FEMS Microbiology Letters, 2009, 297(2): 189−195. doi: 10.1111/j.1574-6968.2009.01670.x [7] 王丽丽, 徐韬, 李琳, 等. 马铃薯干腐病病菌生物学特性及室内药剂筛选 [J]. 新疆农业大学学报, 2016, 39(3):222−226.WANG L L, XU T, LI L, et al. Biological characteristics of the pathogens of the potato dry rot and fungicides selection in laboratory [J]. Journal of Xinjiang Agricultural University, 2016, 39(3): 222−226.(in Chinese) [8] 孙清华, 任向宇, 冯志文, 等. 贮藏期马铃薯干腐病防治药剂筛选及其安全性评价 [J]. 中国马铃薯, 2019, 33(6):364−371.SUN Q H, REN X Y, FENG Z W, et al. Screening and safety evaluation of fungicides for control of potato dry rot during storage [J]. Chinese Potato Journal, 2019, 33(6): 364−371.(in Chinese) [9] GERBORE J, BENHAMOU N, VALLANCE J, et al. Biological control of plant pathogens: Advantages and limitations seen through the case study of Pythium oligandrum [J]. Environmental Science and Pollution Research International, 2014, 21(7): 4847−4860. doi: 10.1007/s11356-013-1807-6 [10] 苏博, 江胡彪, 乔建礼, 等. 玉米纹枯病生防菌DZSY21的抗病机制 [J]. 浙江农业学报, 2017, 29(3):450−459.SU B, JIANG H B, QIAO J L, et al. Resistance mechanism of bio-control strain DZSY21 against maize sheath blight [J]. Acta Agriculturae Zhejiangensis, 2017, 29(3): 450−459.(in Chinese) [11] 王爱军. 马铃薯干腐病和黑痣病菌拮抗芽孢杆菌的筛选及芽孢杆菌遗传多样性研究[D]. 兰州: 甘肃农业大学, 2013.WANG A J. Screening of antagonistic Bacillus strains against pathogens of Fusarium dry rot and black scurf in potato and its AFLP analysis of genetic diversity[D]. Lanzhou: Gansu Agricultural University, 2013. (in Chinese). [12] SADFI N, CHERIF M, FLISS I, et al. Evaluation of bacterial isolates from salty soils and Bacillus Thuringiensis strains for the biocontrol of fusarium dry rot of potato tubers [J]. Journal of Plant Pathology, 2001, 83(2): 101−117. [13] 牛世全, 李渭娟, 李海云, 等. 河西走廊盐碱土壤中抗马铃薯干腐病放线菌的筛选鉴定 [J]. 西北师范大学学报(自然科学版), 2017, 53(2):94−98.NIU S Q, LI W J, LI H Y, et al. Screening of actinomyces on antagonism toFusariun spp isolated from saline-alkali soils in Hexi Corridor [J]. Journal of Northwest Normal University (Natural Science), 2017, 53(2): 94−98.(in Chinese) [14] 孙现超, 彭健芳, 张宁, 等. 马铃薯干腐病菌拮抗放线菌JY-22的抑菌作用及菌株鉴定 [J]. 植物保护学报, 2013, 40(1):38−44.SUN X C, PENG J F, ZHANG N, et al. Inhibitory effect and identification of an antagonistic actinomyces strain JY-22 against Fusarium solani causing potato dry rot [J]. Acta Phytophylacica Sinica, 2013, 40(1): 38−44.(in Chinese) [15] 崔岩. 马铃薯干腐病与黑痣病菌拮抗木霉菌的筛选及木霉菌遗传多样性分析[D]. 兰州: 甘肃农业大学, 2013.CUI Y. Screening of antagonistic Trichoderma strains against pathogens of Fusarium dry rot and black scurf in potato in Gansu and its analysis of genetic diversity[D]. Lanzhou: Gansu Agricultural University, 2013. (in Chinese). [16] 刘筱, 潘静宇, 李永才, 等. 寡雄蛋白(Oligandrin)处理对马铃薯块茎干腐病及苯丙烷代谢的影响 [J]. 食品工业科技, 2017, 38(6):339−344, 369.LIU X, PAN J Y, LI Y C, et al. Effects of oligandrin treatment on dry rot and phenylpropanoid pathway metabolism of potato tubers [J]. Science and Technology of Food Industry, 2017, 38(6): 339−344, 369.(in Chinese) [17] 韩峰. 蓝桉精油的高效分离及对马铃薯干腐病镰刀菌抑制作用的研究[D]. 哈尔滨: 东北林业大学, 2017.HAN F. Efficient separation of essential oil from Eucalyptus globulus and the study of inhibitory effect of potato Fusarium dry rot[D]. Harbin: Northeast Forestry University, 2017. (in Chinese). [18] 王建新. 酒糟高值化利用研究进展 [J]. 食品安全导刊, 2018(33):160−161.WANG J X. Research progress on high-value utilization of lees [J]. China Food Safety Magazine, 2018(33): 160−161.(in Chinese) [19] 张玉诚. 白酒糟菌体蛋白饲料开发研究[D]. 雅安: 四川农业大学, 2016.ZHANG Y C. Study on bacterial protein feeds production from distillers grains[D]. Yaan: Sichuan Agricultural University, 2016. (in Chinese). [20] 王若帆. 酒糟粗提物对肝癌HepG2细胞的抑制作用及相关机制[D]. 南充: 川北医学院, 2019.WANG R F. Inhibitory effects and mechanisms of extracts from distiller's grains on HepG2 cells[D]. Nanchong: North Sichuan Medical College, 2019. (in Chinese). [21] 李玮, 沈硕, 郭青云. 青稞白酒糟醅粗提物抑草活性研究 [J]. 西北农业学报, 2017, 26(6):916−925.LI W, SHEN S, GUO Q Y. Study on inhibitory activity of crude extracts from distiller's grains of hulless barley against weeds [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(6): 916−925.(in Chinese) [22] 李玮, 沈硕, 郭青云. 3株来源于青稞白酒糟醅的生防菌株鉴定及其生物活性 [J]. 中国生物防治学报, 2016, 32(4):544−552.LI W, SHEN S, GUO Q Y. Identification and biological activity of three strains isolated from distiller's grains of highland barley wine [J]. Chinese Journal of Biological Control, 2016, 32(4): 544−552.(in Chinese) [23] 陈妙妙, 沈硕, 李伟佳. 菌株JZ2-1-12的鉴定及其对马铃薯干腐病的抑制活性 [J]. 青海大学学报, 2020(1):7−14.CHEN M M, SHEN S, LI W J. Identification of strain JZ2-1-12 and its inhibitory activity on potato dry rot [J]. Journal of Qinghai University (Natural Science), 2020(1): 7−14.(in Chinese) [24] 武志华. 内蒙古中部地区粘细菌分离及其抑制马铃薯晚疫病菌的活性和成分研究[D]. 呼和浩特: 内蒙古农业大学, 2018.WU Z H. Isolation of myxobacteria from the central region of Inner Mongolia and their activity and components against potato late blight pathogen[D]. Hohhot: Inner Mongolia Agricultural University, 2018. (in Chinese). [25] 沈硕, 王舰. 青海盐湖地区嗜盐菌的分离纯化及抑制植物病原菌的活性初探 [J]. 广东农业科学, 2013, 40(1):79−81, 88.SHEN S, WANG J. Isolation, petrifaction and inhibitory activity against plant pathogenic fungi of halophilic strains from Qinghai Salt Lake [J]. Guangdong Agricultural Sciences, 2013, 40(1): 79−81, 88.(in Chinese) [26] 刘观斌, 王淼, 卢迈新, 等. 一株能抑制罗非鱼源无乳链球菌的反硝化芽孢杆菌的筛选鉴定 [J]. 中国水产科学, 2016, 23(1):207−217.LIU G B, WANG M, LU M X, et al. Identification of a denitrifying Bacillus strain with an antagonistic effect on Streptococcus agalactiae isolated from tilapia [J]. Journal of Fishery Sciences of China, 2016, 23(1): 207−217.(in Chinese) [27] 裘纪莹, 王未名, 陈建爱, 等. 葡聚糖酶产生菌的初筛培养基优化 [J]. 现代食品科技, 2009, 25(12):1464−1465, 1453.QIU J Y, WANG W M, CHEN J A, et al. Optimization of a culture medium for primary screening of glucanase producing strains [J]. Modern Food Science & Technology, 2009, 25(12): 1464−1465, 1453.(in Chinese) [28] 刘安, 赵华, 张朝正. 贝莱斯芽孢杆菌抑菌物质的分析及提取优化 [J]. 中国酿造, 2019, 38(12):63−68.LIU A, ZHAO H, ZHANG C Z. Analysis and extraction optimization of bacteriostatic substances from Bacillus velezensis [J]. China Brewing, 2019, 38(12): 63−68.(in Chinese) [29] AGRIOS G N. Plant. Pathology(Forth Edition)[M]. San Diego: Academic Press. 1997, 342-359.. [30] BUCHANAN R E, GIBBONS N E. Bergey's manual of systematic bacteriology[M]. 9thed. Beijing: Science Press, 1999. [31] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. [32] 沈硕. 青藏高原察尔汗盐湖地区可培养中度嗜盐菌的群落结构与多样性 [J]. 微生物学报, 2017, 57(4):490−499.SHEN S. Community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan Salt Lake on Qinghai-Tibet Plateau [J]. Acta Microbiologica Sinica, 2017, 57(4): 490−499.(in Chinese) [33] 潘晓梅, 李昭煜, 石晓玲, 等. 番茄灰霉生防菌XF的筛选、鉴定及生防因子的初步探索 [J]. 西北农业学报, 2019, 28(11):1888−1895.PAN X M, LI Z Y, SHI X L, et al. Screening, identification and biocontrol effects of antagonistic bacterial strain XF and preliminary exploration of biocontrol factors [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(11): 1888−1895.(in Chinese) [34] 魏新燕, 黄媛媛, 黄亚丽, 等. 拮抗灰霉菌的海洋细菌甲基营养型芽胞杆菌的筛选、鉴定及其抑菌活性物质的研究 [J]. 中国生物防治学报, 2017, 33(5):667−674.WEI X Y, HUANG Y Y, HUANG Y L, et al. Screening, identification of antagonistic ocean bacteria Bacillus methylotrophicus and its antimicrobial substances to Botrytis cinerea pres [J]. Chinese Journal of Biological Control, 2017, 33(5): 667−674.(in Chinese) [35] 刘冬梅, 李理, 杨晓泉, 等. 用牛津杯法测定益生菌的抑菌活力 [J]. 食品研究与开发, 2006, 27(3):110−111.LIU D M, LI L, YANG X Q, et al. Determination of the antimicrobial activity of probiotic by Oxford plate assay system [J]. Food Research and Development, 2006, 27(3): 110−111.(in Chinese) [36] 张志祥, 徐汉虹, 程东美. EXCEL在毒力回归计算中的应用 [J]. 昆虫知识, 2002, 39(1):67−70.ZHANG Z X, XU H H, CHENG D M. Calculating toxicity regression with EXCEL [J]. Entomological Knowledge, 2002, 39(1): 67−70.(in Chinese) [37] 杨胜清. 贝莱斯芽孢杆菌S6的鉴定、发酵条件优化及其生防作用研究[D]. 长春: 吉林农业大学, 2017.YANG S Q. Identification, optimization of fermentation conditions of Bacillus velezensis strain S6 and its biocontrol effect[D]. Changchun: Jilin Agricultural University, 2017. (in Chinese). [38] SCHISLER D A, SLININGER P J, OLSEN N L. Appraisal of selected osmoprotectants and carriers for formulating Gramne-gative biocontrol agents active against Fusarium dry rot on potatoes in storage [J]. Biological Control, 2016, 98: 1−10. doi: 10.1016/j.biocontrol.2016.03.009 [39] 娄义, 郭俏, 彭楚, 等. 3株芽孢杆菌对番茄的促生作用及对番茄根域微生物的影响 [J]. 应用生态学报, 2018, 29(1):260−268.LOU Y, GUO Q, PENG C, et al. Effects of three Bacillus strains on growth promoting and rhizosphere soil microflora of tomato [J]. Chinese Journal of Applied Ecology, 2018, 29(1): 260−268.(in Chinese) [40] 蔡高磊, 张凡, 欧阳友香, 等. 贝莱斯芽孢杆菌(Bacillus velezensis)研究进展 [J]. 北方园艺, 2018(12):162−167.CAI G L, ZHANG F, OUYANG Y X. Research Progress on Bacillus velezensis [J]. Northern Horticulture, 2018(12): 162−167.(in Chinese) [41] 沙月霞, 隋书婷, 曾庆超, 等. 贝莱斯芽孢杆菌E69预防稻瘟病等多种真菌病害的潜力 [J]. 中国农业科学, 2019, 52(11):1908−1917.SHA Y X, SUI S T, ZENG Q C, et al. Biocontrol potential of Bacillus velezensis strain E69 against rice blast and other fungal diseases [J]. Scientia Agricultura Sinica, 2019, 52(11): 1908−1917.(in Chinese) [42] 冯江鹏, 邱莉萍, 梁秀燕, 等. 草莓胶孢炭疽菌拮抗细菌贝莱斯芽孢杆菌JK3的鉴定及其抗菌活性 [J]. 浙江农业学报, 2020, 32(5):831−839.FENG J P, QIU L P, LIANG X Y, et al. Identification of antagonistic bacteria Bacillus velezensis JK3 against anthracnose of straw- berry and its antipathogenic activity [J]. Acta Agriculturae Zhejiangensis, 2020, 32(5): 831−839.(in Chinese) [43] PALAZZINI J M, DUNLAP C A, BOWMAN M J, et al. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles [J]. Microbiological Research, 2016, 192: 30−36. doi: 10.1016/j.micres.2016.06.002 [44] 金疏桐, 王祖华, 徐启燃, 等. 内生贝莱斯芽胞杆菌生物拮抗活性的研究 [J]. 中国微生态学杂志, 2017, 29(4):385−389.JIN S T, WANG Z H, XU Q R, et al. The antagonistic activity of an endophytic Bacillus velezensis [J]. Chinese Journal of Microecology, 2017, 29(4): 385−389.(in Chinese) [45] 李生樟, 陈颖, 杨瑞环, 等. 一株拮抗黄单胞菌的贝莱斯芽孢杆菌的分离和鉴定 [J]. 微生物学报, 2019, 59(10):1969−1983.LI S Z, CHEN Y, YANG R H, et al. Isolation and identification of a Bacillus velezensis strain against plant pathogenic Xanthomonas spp [J]. Acta Microbiologica Sinica, 2019, 59(10): 1969−1983.(in Chinese) [46] 王淋敏. 贝莱斯芽孢杆菌(Bacillus velezensis)促生作用的研究[D]. 雅安: 四川农业大学, 2017.WANG L M. Study on the growth promoting effect of Bacillus velezensis[D]. Yaan: Sichuan Agricultural University, 2017. (in Chinese). [47] 康星星. 贝莱斯芽孢杆菌CC09防治小麦全蚀病菌侵染的机制[D]. 南京: 南京大学, 2019.KANG X X. Mechanism of Bacillus velezensis CC09 in controlling pathogen gaeumannomyces graminis var. tritici[D]. Nanjing: Nanjing University, 2019. (in Chinese).