• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同连作年限怀牛膝根际芽孢杆菌和镰刀菌的多样性分析

陈婷 王娟英 吴林坤 陈军 吴红淼 林生 林文雄

陈婷,王娟英,吴林坤,等. 不同连作年限怀牛膝根际芽孢杆菌和镰刀菌的多样性分析 [J]. 福建农业学报,2020,35(11):1234−1243 doi: 10.19303/j.issn.1008-0384.2020.11.009
引用本文: 陈婷,王娟英,吴林坤,等. 不同连作年限怀牛膝根际芽孢杆菌和镰刀菌的多样性分析 [J]. 福建农业学报,2020,35(11):1234−1243 doi: 10.19303/j.issn.1008-0384.2020.11.009
CHEN T, WANG J Y, WU L K, et al. Diversity of Bacillus and Fusarium Species in Rhizosphere Soil under Continuous Achyranthes bidentata Monoculture [J]. Fujian Journal of Agricultural Sciences,2020,35(11):1234−1243 doi: 10.19303/j.issn.1008-0384.2020.11.009
Citation: CHEN T, WANG J Y, WU L K, et al. Diversity of Bacillus and Fusarium Species in Rhizosphere Soil under Continuous Achyranthes bidentata Monoculture [J]. Fujian Journal of Agricultural Sciences,2020,35(11):1234−1243 doi: 10.19303/j.issn.1008-0384.2020.11.009

不同连作年限怀牛膝根际芽孢杆菌和镰刀菌的多样性分析

doi: 10.19303/j.issn.1008-0384.2020.11.009
基金项目: 福建省教育厅中青年教师科研项目(JAT170200);闽台作物特色种质创制与绿色栽培协同创新中心(2015-75)
详细信息
    作者简介:

    陈婷(1981−),女,博士,助理研究员,研究方向:农业生态学(E-mail:iamchenting@126.com

    通讯作者:

    林文雄(1957−),男,博士,教授,研究方向:农业生态学(E-mail:wenxiong181@163.com

  • 中图分类号: S 567

Diversity of Bacillus and Fusarium Species in Rhizosphere Soil under Continuous Achyranthes bidentata Monoculture

  • 摘要:   目的  针对药用植物怀牛膝耐连作甚至表现连作促进的特殊现象,分析不同连作年限怀牛膝根际土壤关键微生物群落结构变化,探讨不同连作年限怀牛膝根际微生物组的演变过程,为破解大多数药用植物连作障碍提供理论借鉴。  方法  本研究以连作1年、10年、15年怀牛膝根际土壤与撂荒田对照土壤为试验材料,采用变性梯度凝胶电泳(DGGE)技术分析芽孢杆菌属和镰刀菌属群落结构差异。  结果  在怀牛膝根际土壤中,芽孢杆菌属种类丰富,其中优势菌群为枯草芽孢杆菌(Bacillus stubtilis)和蜡样芽孢杆菌(Bacillus cereus);且与1年土壤相比,连作10年和15年的土壤中会明显增加枯草芽孢杆菌和耐盐芽孢杆菌的相对含量。镰刀菌属的条带数目相对较少,种类多样性少,在群落结构上CK和15Y比较相似,1年和10年相似,优势菌群为腐皮镰刀菌(Fusarium solani)和尖孢镰刀菌(Fusarium oxysporum)。qPCR定量分析显示,怀牛膝连作下会增加其有益细菌的含量,而有害菌镰刀菌属基本维持在一个水平。  结论  多年连作怀牛膝能够增加根际有益微生物群落的多样性与种群丰度,抑制病原微生物群落的多样性与种群丰度,通过选择性促抑影响根际微生物组成而自我塑造健康的根际微生态环境。
  • 图  1  土壤总DNA提取(A)、芽孢杆菌属特异片段扩增(B)、镰刀菌属特异片段扩增(C)

    注:图中M、1、2、3、4分别表示Marker、对照土壤(CK)、连作1年(1Y)土壤、10年(10Y)土壤、15年(15Y)土壤。

    Figure  1.  Extracted DNA of A. bidentata from soil (A) and PCR amplifications of Bacillus (B) and Fusarium (C)

    Note: Lane M, 1, 2, 3, and 4 represented marker, CK, 1Y, 10Y, and 15Y, respectively.

    图  2  不同连作年限下怀牛膝根际土壤芽孢杆菌属群落的DGGE图谱

    注:CK,对照土壤;1Y:连作1年土壤;10Y:连作10年土壤;15Y:连作15年土壤。图中所标识的条带为差异条带。图4同。

    Figure  2.  DGGE profiles of Bacillus amplified from CK, 1Y, 10Y, and 15Y specimens

    Note: In soil specimens of CK, 1Y, 10Y, and 15Y. Differential bands are identified. Same for Fig. 4.

    图  3  芽孢杆菌属DGGE主成分分析

    Figure  3.  Principal component analysis on DGGE of Bacillus

    图  4  不同连作年限下怀牛膝根际镰刀菌属群落的DGGE图谱

    Figure  4.  DGGE profiles of amplified Fusarium from CK, 1Y, 10Y, and 15Y specimens

    图  5  镰刀菌属DGGE主成分分析

    Figure  5.  Principal component analysis on DGGE of Fusarium

    图  6  不同连作年限下怀牛膝根际芽孢杆菌和尖孢镰刀菌绝对定量

    Figure  6.  Quantification of Bacillus spp. and F. oxysporum in soil specimens

    表  1  PCR 扩增所用引物及程序

    Table  1.   Primers and program applied for PCR amplification

    引物
    Primer
    序列(5′-3′)
    Sequence (5′-3′)
    PCR程序
    PCR program
    参考文献
    References
    Bacillus
    R1378 CGGTGTGTACAAGGCCCGGGAACG 94 ℃预变性5 min;35个循环程序:94 ℃,1 min,65 ℃,30 s,72 ℃,1 min;最后72 ℃延伸10 min。
    Pre-denaturation at 94 ℃ for 5 min; 35 cycles program: 94 ℃, 1 min, 65 ℃, 30 s, 72 ℃, 1 min; finally extension at 72 ℃ for 10 min.
    Drigo, et al. 2009[19]
    Bacf GGGAAACCGGGGCTAATACCGGAT
    F968-GC AACGCGAAGAACCTTAC 94 ℃预变性5 min;各2个循环程序:94 ℃,1 min,63 ℃/61 ℃/59 ℃/57 ℃/55 ℃,1 min,72 ℃,1 min,20个循环程序:94 ℃,1 min,55 ℃,1 min,72 ℃,1 min;最后72 ℃延伸10 min。
    Pre-denaturation at 94 ℃ for 5 min; each 2 cycle programs: 94 ℃, 1 min, 63 ℃/61 ℃/59 ℃/57 ℃/55 ℃, 1 min, 72 ℃, 1 min; 20 cycle programs: 94 ℃ , 1 min, 55 ℃, 1 min, 72 ℃, 1 min; the final extension at 72 ℃ for 10 min.
    Garbeva, et al. 2003[20]
    R1378 CGGTGTGTACAAGGCCCGGGAACG
    Fusarium
    EF-1 ATGGGTAAGGA(A/G)GACAAGAC 94 ℃预变性5 min;30个循环程序:94 ℃,1 min,55 ℃,1 min,72 ℃,1 min;最后72 ℃延伸10 min。
    Pre-denaturation at 94 ℃ for 5 min; 30 cycles program: 94 ℃, 1 min, 55 ℃, 1 min, 72 ℃, 1 min; finally extension at 72 ℃ for 10 min.
    O’Donnell, et al. 1998[21]
    EF-2 GGA(G/A)GTACCAGT(G/C)ATCATGTT
    Alfie-GC TCGTCATCGGCCACGTCGACTC 94 ℃预变性5 min;35个循环程序:94 ℃,1 min,57 ℃,1 min,72 ℃,50 s;最后72 ℃延伸10 min。
    Pre-denaturation at 94 ℃ for 5 min; 35 cycles program: 94 ℃, 1 min, 57 ℃, 1 min, 72 ℃, 50 s; the final extension at 72 ℃ for 10 min.
    Yergeau, et al. 2005[22]
    Alfie-2 CCTTACCGAGCTCAGCGGCTTC
    ITS1F CTTGGTCATTTAGAGGAAGTAA 94 ℃预变性 5 min;35个循环程序:94 ℃,50 s,60.4 ℃,45 s,72 ℃,60 s;最后72 ℃延伸10 min。
    Pre-denaturation at 94 ℃ for 5 min; 35 cycles program: 94 ℃, 50 s, 60.4 ℃, 45 s; the final extension at 72 ℃ for 10 min.
    Lievens, et al. 2010[23]
    AFP308R CGAATTAACGCGAGTCCCAA
    说明:GC夹序列为CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCACGGGGGG。
    Note: GC clip sequence was CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCACGGGGGG.
    下载: 导出CSV

    表  2  芽孢杆菌属DGGE群落多样性

    Table  2.   Diversity index based on DGGE of Bacillus

    处理 Treatment辛普森指数(J) Simpson(J)香农指数(H) Shannon(H)均匀度 Evenness布里渊指数 Brillouin
    CK 1.0411±0.0019 a3.9246±0.0074 d0.9812±0.0019 a2.7083±0.0656 b
    1Y1.0321±0.0056 b4.7206±0.0082 b0.982±0.0017 a3.1245±0.1575 a
    10Y1.0298±0.0021 b4.6592±0.0105 c0.9799±0.0022 a3.2195±0.0248 a
    30Y1.0242±0.0029 b4.7973±0.0152 a0.9777±0.0031 a3.2214±0.0561 a
    注:表中的字母表示同一行数据差异显著(P<0.05, n=3)
    Note: Data with different letters indicate significant difference on a same row (P<0.05, n=3).
    下载: 导出CSV

    表  3  芽孢杆菌属DGGE条带鉴定

    Table  3.   Identification of DGGE bands on Bacillus

    条带
    Bands
    CK1Y10Y15Y同源性相似系数
    Homology similarity
    coefficient/%
    物种
    Species
    B1 0.0719 a 0.0716 a 0.0603 b 0.0670 ab 100 Bacillus sp.芽孢杆菌
    B11 0.0000 b 0.0486 a 0.0000 b 0.0476 a 100
    B14 0.0371 b 0.0455 a 0.0377 b 0.0366 b 100
    B30 0.0223 b 0.0404 a 0.0243 b 0.0243 b 100
    B31 0.0000 b 0.0245 a 0.0244 a 0.0208 a 100
    B35 0.0498 b 0.0522 b 0.061 a 0.0573 ab 100
    B37 0.0000 b 0.0000 b 0.0000 b 0.0352 a 100
    B2 0.0758 ab 0.0761 ab 0.0728 b 0.0849 a 100 Bacillus mycoides 蕈状芽孢杆菌
    B5 0.0734 a 0.0777 a 0.0754 a 0.0791 a 100
    B18 0.0000 b 0.0294 a 0.0000 b 0.0000 b 100 Bacillus pumilus 短小芽孢杆菌
    B19 0.0000 b 0.0274 a 0.0000 b 0.0000 b 100
    B28 0.0285 a 0.0294 a 0.0303 a 0.0293 a 100
    B3 0.0777 b 0.0849 ab 0.0770 b 0.0893 a 100 Bacillus stubtilis 枯草芽孢杆菌
    B4 0.0755 b 0.0773 ab 0.0746 b 0.0862 a 100
    B20 0.0000 c 0.0000 c 0.0603 b 0.0726 a 100
    B21 0.0000 c 0.0000 c 0.0653 b 0.0783 a 100
    B26 0.0000 c 0.0451 a 0.0406 ab 0.0380 b 100
    B27 0.0000 c 0.0000 c 0.0395 a 0.0346 b 100
    B6 0.0729 ab 0.0680 b 0.0749 ab 0.0759 a 100 Brachybacterium sp. 短状杆菌
    B7 0.0693 b 0.0685 b 0.0768 a 0.0000 c 100 Bacillus cereus 蜡样芽孢杆菌
    B8 0.0698 bc 0.0621 c 0.0808 a 0.0751 ab 100
    B22 0.0741 b 0.0773 ab 0.0756 b 0.0848 a 100
    B24 0.0000 b 0.0445 a 0.0434 a 0.0419 a 100
    B25 0.0388 a 0.0462 a 0.0440 a 0.0429 a 100
    B12 0.0000 b 0.0237 a 0.0000 b 0.0000 b 100 Stenotrophomonas maltophilia 嗜麦芽糖寡养单胞菌
    B17 0.0000 c 0.0305 a 0.0233 b 0.0230 b 100
    B34 0.0539 b 0.0602 ab 0.0631 a 0.063 a 100
    B13 0.0000 c 0.0411 a 0.0000 c 0.0328 b 100 Bacillus amyloliquefaciens 解淀粉芽孢杆菌
    B16 0.0000 b 0.0286 a 0.0000 b 0.0000 b 100
    B29 0.0000 b 0.0000 b 0.0248 a 0.0000 b 100
    B23 0.0000 b 0.0000 b 0.0549 a 0.0509 a 100 Bacillus odyssey 奥德赛芽孢杆菌
    B32 0.0000 b 0.0000 b 0.0000 b 0.0655 a 100 Bacillus halodurans 耐盐芽孢杆菌
    B33 0.0000 b 0.0000 b 0.0000 b 0.0643 a 100
    B9 0.0618 a 0.0496 b 0.0527 b 0.0580 ab 100 Uncultured bacterium未知菌种
    B10 0.0000 b 0.0493 a 0.0460 a 0.0475 a 100
    B15 0.0000 b 0.0372 a 0.0000 b 0.0000 b 100
    B36 0.0000 c 0.0456 a 0.0369 b 0.0363 b 100
    注:表中数据为各条带灰度值(通过条带的面积与亮度进行计算)。数据后不同小写字母表示差异显著(P <0.05)。表5同。
    Note: Data are gray values calculated with area and brightness of individual bands; those with different lowercase letters indicate significant difference at P<0.05 level. Same for Table 5.
    下载: 导出CSV

    表  4  镰刀菌属DGGE群落多样性

    Table  4.   Diversity index based on DGGE of Fusarium

    处理 Treatment辛普森指数(J) Simpson(J)香农指数(H) Shannon(H)均匀度 Evenness布里渊指数 Brillouin
    CK 0.8783±0.0043 a 3.1458±0.0164 a 0.9093±0.0048 b 2.8925±0.0136 a
    1Y 0.7666±0.0029 d 2.2739±0.0194 d 0.8797±0.0075 c 2.1294±0.0211 d
    10Y 0.8064±0.0038 c 2.4497±0.0126 c 0.9477±0.0049 a 2.3049±0.0232 c
    15Y 0.8580±0.0017 b 2.897±0.0144 b 0.9139±0.0046 b 2.6865±0.0086 b
    下载: 导出CSV

    表  5  镰刀菌属DGGE条带鉴定

    Table  5.   Identification of DGGE bands on Fusarium

    条带
    Bands
    CK1Y10Y15Y同源性相似系数
    Homology similarity
    coefficient/%
    物种
    Species
    F1 0.0385 b 0.0000 c 0.1395 a 0.0000 c 100 Fusarium solani 腐皮镰刀菌
    F3 0.0277 b 0.0000 c 0.0000 c 0.0407 a 100
    F4 0.0122 a 0.0000 b 0.0000 b 0.0000 b 100
    F9 0.0000 b 0.0549 a 0.0000 b 0.0000 b 100
    F10 0.0000 b 0.0614 a 0.0000 b 0.0000 b 100
    F11 0.0000 d 0.2643 a 0.1374 b 0.1148 c 100
    F13 0.1642 a 0.1215 b 0.0986 b 0.0236 c 100
    F2 0.0500 b 0.0000 c 0.1058 a 0.0000 c 100 Fusarium oxysporum 尖孢镰刀菌
    F6 0.1017 b 0.0000 c 0.0000 c 0.1582 a 100
    F8 0.0814 a 0.0000 c 0.0000 c 0.0509 b 100
    F12 0.1384 b 0.1360 b 0.1978 a 0.1364 b 100
    F5 0.0828 a 0.0000 b 0.0000 b 0.0000 b 100 Fusarium equiseti 木贼镰刀菌
    F7 0.0864 b 0.0000 c 0.0000 c 0.1975 a 100 Fusarium sp. 镰刀菌
    F14 0.0000 b 0.0000 b 0.1197 a 0.0000 b 100
    F15 0.0000 b 0.0000 b 0.0000 b 0.0645 a 100 Aspergillus nidulans 小巢状曲菌
    下载: 导出CSV
  • [1] WU L K, WANG J Y, HUANG W M, et al. Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture [J]. Scientific Reports, 2015, 5: 15871. doi: 10.1038/srep15871
    [2] WU H M, WU L K, WANG J Y, et al. Mixed phenolic acids mediated proliferation of pathogens Talaromyces helicus and Kosakonia sacchari in continuously monocultured Radix pseudostellariae rhizosphere soil [J]. Frontiers in Microbiology, 2016, 7: 335.
    [3] 姚春芝, 蒋宇婷, 杨玉婷, 等. 三七连作土壤浸提液对其根腐病菌的化感效应 [J]. 应用生态学报, 2020, 31(7):2227−2235.

    YAO C Z, JIANG Y T, YANG Y T, et al. Allelopathic effect of extracts from Panax notoginseng mono-cropped soil on its root rot pathogens [J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2227−2235.(in Chinese)
    [4] 郝慧荣, 李振方, 熊君, 等. 连作怀牛膝根际土壤微生物区系及酶活性的变化研究 [J]. 中国生态农业学报, 2008, 16(2):307−311. doi: 10.3724/SP.J.1011.2008.00307

    HAO H R, LI Z F, XIONG J, et al. Variation of microbial flora and enzyme activity in rhizospheric soil under continuous cropping of Achyranthes bidentata [J]. Chinese Journal of Eco-Agriculture, 2008, 16(2): 307−311.(in Chinese) doi: 10.3724/SP.J.1011.2008.00307
    [5] CHEN T, LI J, WU L K, et al. Effects of continuous monoculture of Achyranthes bidentata on microbial community structure and functional diversity in soil [J]. Allelopathy Journal, 2015, 36(2): 197−212.
    [6] LI Z F, ZHANG Z G, XIE D F, et al. Positive allelopathic stimulation and underlying molecular mechanism of achyranthe under continuous monoculture [J]. Acta Physiologiae Plantarum, 2011, 33(6): 2339−2347. doi: 10.1007/s11738-011-0774-0
    [7] WANG J Y, WU L K, TANTAI H P, et al. Properties of bacterial community in the rhizosphere soils of Achyranthes bidentata tolerant to consecutive monoculture [J]. Plant Growth Regulation, 2019, 89(2): 167−178. doi: 10.1007/s10725-019-00523-0
    [8] 王建花, 陈婷, 林文雄. 植物化感作用类型及其在农业中的应用 [J]. 中国生态农业学报, 2013, 21(10):1173−1183. doi: 10.3724/SP.J.1011.2013.01173

    WANG J H, CHEN T, LIN W X. Plant allelopathy types and their application in agriculture [J]. Chinese Journal of Eco-Agriculture, 2013, 21(10): 1173−1183.(in Chinese) doi: 10.3724/SP.J.1011.2013.01173
    [9] BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health [J]. Trends in Plant Science, 2012, 17(8): 478−486. doi: 10.1016/j.tplants.2012.04.001
    [10] 孙艳艳, 蒋桂英, 刘建国, 等. 加工番茄连作对农田土壤酶活性及微生物区系的影响 [J]. 生态学报, 2010, 30(13):3599−3607.

    SUN Y Y, JIANG G Y, LIU J G, et al. Effects of continuous cropping tomato for processing on soil enzyme activities and microbial flora [J]. Acta Ecologica Sinica, 2010, 30(13): 3599−3607.(in Chinese)
    [11] 胡斌, 段昌群, 王震洪, 等. 植被恢复措施对退化生态系统土壤酶活性及肥力的影响 [J]. 土壤学报, 2002, 39(4):604−608. doi: 10.3321/j.issn:0564-3929.2002.04.022

    HU B, DUAN C Q, WANG Z H, et al. Effect of vegetation rehabilitation measures on soil fertility and soil enzymatic activity in degraded ecosystem [J]. Acta Pedologica Sinica, 2002, 39(4): 604−608.(in Chinese) doi: 10.3321/j.issn:0564-3929.2002.04.022
    [12] BLUM U, SHAFER S R. Microbial populations and phenolic acids in soil [J]. Soil Biology and Biochemistry, 1988, 20(6): 793−800. doi: 10.1016/0038-0717(88)90084-3
    [13] 赵帆, 赵密珍, 王钰, 等. 草莓不同连作年限土壤养分及微生物区系分析 [J]. 江苏农业科学, 2017, 45(16):110−113.

    ZHAO F, ZHAO M Z, WANG Y, et al. Soil nutrient and microflora analysis of strawberry in different consecutive years [J]. Jiangsu Agricultural Sciences, 2017, 45(16): 110−113.(in Chinese)
    [14] 周艳丽, 乔宏宇, 高红春, 等. 甜瓜连作对其根际土壤微生物和酶活性的影响 [J]. 北方园艺, 2015(19):158−161.

    ZHOU Y L, QIAO H Y, GAO H C, et al. Effect of melon continuous cropping on rhizosphere soil microorganisms and enzyme activities [J]. Northern Horticulture, 2015(19): 158−161.(in Chinese)
    [15] 吴林坤, 黄伟民, 王娟英, 等. 不同连作年限野生地黄根际土壤微生物群落多样性分析 [J]. 作物学报, 2015, 41(2):308−317. doi: 10.3724/SP.J.1006.2015.00308

    WU L K, HUANG W M, WANG J Y, et al. Diversity analysis of rhizosphere microflora of wild R. glutinosa grown in monocropping for different years [J]. Acta Agronomica Sinica, 2015, 41(2): 308−317.(in Chinese) doi: 10.3724/SP.J.1006.2015.00308
    [16] SAXENA A K, KUMAR M, CHAKDAR H, et al. Bacillus species in soil as a natural resource for plant health and nutrition [J]. Journal of Applied Microbiology, 2020, 128(6): 1583−1594. doi: 10.1111/jam.14506
    [17] PIETRO A D, MADRID M P, CARACUEL Z, et al. Fusarium oxysporum: Exploring the molecular arsenal of a vascular wilt fungus [J]. Molecular Plant Pathology, 2003, 4(5): 315−325. doi: 10.1046/j.1364-3703.2003.00180.x
    [18] PUNJA Z K, PARKER M. Development of Fusarium root and stem rot, a new disease on greenhouse cucumber in British Columbia, caused by Fusarium oxysporum f. sp. radicis-cucumerinum [J]. Canadian Journal of Plant Pathology, 2000, 22(4): 349−363. doi: 10.1080/07060660009500453
    [19] DRIGO B, VAN VEEN J A, KOWALCHUK G A. Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO(2) [J]. The ISME Journal, 2009, 3(10): 1204−1217. doi: 10.1038/ismej.2009.65
    [20] GARBEVA P, VAN VEEN J A, VAN ELSAS J D. Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE [J]. Microbial Ecology, 2003, 45(3): 302−316. doi: 10.1007/s00248-002-2034-8
    [21] O'DONNELL K, KISTLER H C, CIGELNIK E, et al. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies [J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(5): 2044−2049. doi: 10.1073/pnas.95.5.2044
    [22] YERGEAU E, FILION M, VUJANOVIC V, et al. A PCR-denaturing gradient gel electrophoresis approach to assess Fusarium diversity in Asparagus [J]. Journal of Microbiological Methods, 2005, 60(2): 143−154. doi: 10.1016/j.mimet.2004.09.006
    [23] LIEVENS B, BROUWER M, VANACHTER A C R C, et al. Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray [J]. Environmental Microbiology, 2005, 7(11): 1698−1710. doi: 10.1111/j.1462-2920.2005.00816.x
    [24] 张福锁, 申建波, 冯固. 根际生态学: 过程与调控[M]. 北京: 中国农业大学出版社, 2009.
    [25] 华菊玲, 刘光荣, 黄劲松. 连作对芝麻根际土壤微生物群落的影响 [J]. 生态学报, 2012, 32(9):2936−2942. doi: 10.5846/stxb201104010422

    HUA J L, LIU G R, HUANG J S. Effect of continuous cropping of sesame on rhizospheric microbial communities [J]. Acta Ecologica Sinica, 2012, 32(9): 2936−2942.(in Chinese) doi: 10.5846/stxb201104010422
    [26] 吴连举, 赵亚会, 关一鸣, 等. 人参连作障碍原因及其防治途径研究进展 [J]. 特产研究, 2008, 30(2):68−72. doi: 10.3969/j.issn.1001-4721.2008.02.021

    WU L J, ZHAO Y H, GUAN Y M, et al. A review on studies of the reason and control methods of succession cropping obstacle of Panax ginseng C. A. Mey [J]. Special Wild Economic Animal and Plant Research, 2008, 30(2): 68−72.(in Chinese) doi: 10.3969/j.issn.1001-4721.2008.02.021
    [27] 乔俊卿, 陈志谊, 梁雪杰, 等. 枯草芽孢杆菌Bs916防治番茄青枯病 [J]. 中国生物防治学报, 2016, 32(2):229−234.

    QIAO J Q, CHEN Z Y, LIANG X J, et al. Biocontrol efficacy on tomato bacterial wilt by Bacillus subtilis Bs916 [J]. Chinese Journal of Biological Control, 2016, 32(2): 229−234.(in Chinese)
    [28] 呼健洋. 东北地区大豆田土壤镰孢菌多样性及其对胞囊线虫的生防作用研究[D]. 沈阳: 沈阳农业大学, 2016.

    HU J Y. The Fusarium diversity and its biocontrol effects against the Heterodera glycines in the soil of soybean field of the Northeastern China[D]. Shenyang: Shenyang Agricultural University, 2016. (in Chinese).
    [29] 王永崇. 作物病虫害分类介绍及其防治图谱——西瓜枯萎病及其防治图谱 [J]. 农药市场信息, 2020(2):70.

    WANG Y C. Classification of crop pests and diseases and their control map: Watermelon fusarium wilt and its control map [J]. Pesticide Market News, 2020(2): 70.(in Chinese)
    [30] BAI G H, PLATTNER R, DESJARDINS A, et al. Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat [J]. Plant Breeding, 2001, 120(1): 1−6. doi: 10.1046/j.1439-0523.2001.00562.x
    [31] 林镇跃, 阙友雄, 刘平武, 等. 植物致病镰刀菌的研究进展 [J]. 中国糖料, 2014, 36(1):58−64, 78. doi: 10.3969/j.issn.1007-2624.2014.01.022

    LIN Z Y, QUE Y X, LIU P W, et al. Research progress of plant Fusarium phytopathogen [J]. Sugar Crops of China, 2014, 36(1): 58−64, 78.(in Chinese) doi: 10.3969/j.issn.1007-2624.2014.01.022
    [32] ZHANG J B, LI H P, DANG F J, et al. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China [J]. Mycological Research, 2007, 111(8): 967−975. doi: 10.1016/j.mycres.2007.06.008
    [33] VUJANOVIC V, HAMEL C, JABAJI-HARE S, et al. Development of a selective myclobutanil agar (MBA) medium for the isolation of Fusarium species from Asparagus fields [J]. Canadian Journal of Microbiology, 2002, 48(9): 841−847. doi: 10.1139/w02-082
    [34] CHEN J, WU L K, XIAO Z G, et al. Assessment of the diversity of Pseudomonas spp. and Fusarium spp. in Radix pseudostellariae rhizosphere under monoculture by combining DGGE and quantitative PCR [J]. Frontiers in Microbiology, 2017, 8: 1748. doi: 10.3389/fmicb.2017.01748
    [35] 于妍华. 西洋参连作障碍微生态机制及生防放线菌的抗病作用[D]. 杨凌: 西北农林科技大学, 2011.

    YU Y H. Study on micro-ecology mechanism in American gensing continuous croping obstacles and disease resistance of bio-control actinomyces[D]. Yangling: Northwest A & F University, 2011. (in Chinese).
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  1398
  • HTML全文浏览量:  271
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-28
  • 修回日期:  2020-09-27
  • 网络出版日期:  2020-11-13
  • 刊出日期:  2020-11-30

目录

    /

    返回文章
    返回