Diversity of Bacillus and Fusarium Species in Rhizosphere Soil under Continuous Achyranthes bidentata Monoculture
-
摘要:
目的 针对药用植物怀牛膝耐连作甚至表现连作促进的特殊现象,分析不同连作年限怀牛膝根际土壤关键微生物群落结构变化,探讨不同连作年限怀牛膝根际微生物组的演变过程,为破解大多数药用植物连作障碍提供理论借鉴。 方法 本研究以连作1年、10年、15年怀牛膝根际土壤与撂荒田对照土壤为试验材料,采用变性梯度凝胶电泳(DGGE)技术分析芽孢杆菌属和镰刀菌属群落结构差异。 结果 在怀牛膝根际土壤中,芽孢杆菌属种类丰富,其中优势菌群为枯草芽孢杆菌(Bacillus stubtilis)和蜡样芽孢杆菌(Bacillus cereus);且与1年土壤相比,连作10年和15年的土壤中会明显增加枯草芽孢杆菌和耐盐芽孢杆菌的相对含量。镰刀菌属的条带数目相对较少,种类多样性少,在群落结构上CK和15Y比较相似,1年和10年相似,优势菌群为腐皮镰刀菌(Fusarium solani)和尖孢镰刀菌(Fusarium oxysporum)。qPCR定量分析显示,怀牛膝连作下会增加其有益细菌的含量,而有害菌镰刀菌属基本维持在一个水平。 结论 多年连作怀牛膝能够增加根际有益微生物群落的多样性与种群丰度,抑制病原微生物群落的多样性与种群丰度,通过选择性促抑影响根际微生物组成而自我塑造健康的根际微生态环境。 Abstract:Objective Changes on the key microbial communities in the continuously cropped rhizosphere soil (CCRS) of Achyranthes bidentata Blume were studied to analyze the allelopathic effect for operational improvement on cultivation of the medicinal plants. Method The community structures of Bacillus spp. and Fusarium spp. in the rhizosphere soil of A. bidentata under 1, 10, and 15 years of consecutive monoculture were determined using denaturing gradient gel electrophoresis (DGGE). Soil sample from a virgin land was used as control (CK). Result Abundant Bacillus spp. dominated by B. stubtilis and B. cereus were isolated from the CCRS specimens. The CCRS under 10-year (10Y) and 15-year (15Y) of continuous cropping had a greater relative content of B. subtilis and B. halodurans than their 1-year (1Y) counterpart. With respect to Fusarium spp., the number of bands and species were relatively few, the community structure tended to be similar between CK and 15Y as well as between 1Y and 10Y, and F. solani and F. oxysporum being the dominant species. The qPCR results also indicated that continuous monoculture of A. bidentata increased the abundance of the beneficial bacteria but kept that of the harmful Fusarium spp. largely unchanged. Conclusion Continuous cropping A. bidentata enhanced the diversity and abundance of the beneficial Bacillus spp. without encouraging the expansion of the pathogenic Fusarium community in the rhizosphere. It appeared that the rhizosphere allelopathy under the cultivation practice had created a healthy ecosystem that promoted the growth of A. bidentata. -
Key words:
- Achyranthes bidentata Blume /
- continuous monoculture /
- Bacillus /
- Fusarium /
- DGGE
-
图 1 土壤总DNA提取(A)、芽孢杆菌属特异片段扩增(B)、镰刀菌属特异片段扩增(C)
注:图中M、1、2、3、4分别表示Marker、对照土壤(CK)、连作1年(1Y)土壤、10年(10Y)土壤、15年(15Y)土壤。
Figure 1. Extracted DNA of A. bidentata from soil (A) and PCR amplifications of Bacillus (B) and Fusarium (C)
Note: Lane M, 1, 2, 3, and 4 represented marker, CK, 1Y, 10Y, and 15Y, respectively.
表 1 PCR 扩增所用引物及程序
Table 1. Primers and program applied for PCR amplification
引物
Primer序列(5′-3′)
Sequence (5′-3′)PCR程序
PCR program参考文献
ReferencesBacillus R1378 CGGTGTGTACAAGGCCCGGGAACG 94 ℃预变性5 min;35个循环程序:94 ℃,1 min,65 ℃,30 s,72 ℃,1 min;最后72 ℃延伸10 min。
Pre-denaturation at 94 ℃ for 5 min; 35 cycles program: 94 ℃, 1 min, 65 ℃, 30 s, 72 ℃, 1 min; finally extension at 72 ℃ for 10 min.
Drigo, et al. 2009[19] Bacf GGGAAACCGGGGCTAATACCGGAT F968-GC AACGCGAAGAACCTTAC 94 ℃预变性5 min;各2个循环程序:94 ℃,1 min,63 ℃/61 ℃/59 ℃/57 ℃/55 ℃,1 min,72 ℃,1 min,20个循环程序:94 ℃,1 min,55 ℃,1 min,72 ℃,1 min;最后72 ℃延伸10 min。
Pre-denaturation at 94 ℃ for 5 min; each 2 cycle programs: 94 ℃, 1 min, 63 ℃/61 ℃/59 ℃/57 ℃/55 ℃, 1 min, 72 ℃, 1 min; 20 cycle programs: 94 ℃ , 1 min, 55 ℃, 1 min, 72 ℃, 1 min; the final extension at 72 ℃ for 10 min.Garbeva, et al. 2003[20] R1378 CGGTGTGTACAAGGCCCGGGAACG Fusarium EF-1 ATGGGTAAGGA(A/G)GACAAGAC 94 ℃预变性5 min;30个循环程序:94 ℃,1 min,55 ℃,1 min,72 ℃,1 min;最后72 ℃延伸10 min。
Pre-denaturation at 94 ℃ for 5 min; 30 cycles program: 94 ℃, 1 min, 55 ℃, 1 min, 72 ℃, 1 min; finally extension at 72 ℃ for 10 min.
O’Donnell, et al. 1998[21] EF-2 GGA(G/A)GTACCAGT(G/C)ATCATGTT Alfie-GC TCGTCATCGGCCACGTCGACTC 94 ℃预变性5 min;35个循环程序:94 ℃,1 min,57 ℃,1 min,72 ℃,50 s;最后72 ℃延伸10 min。
Pre-denaturation at 94 ℃ for 5 min; 35 cycles program: 94 ℃, 1 min, 57 ℃, 1 min, 72 ℃, 50 s; the final extension at 72 ℃ for 10 min.
Yergeau, et al. 2005[22] Alfie-2 CCTTACCGAGCTCAGCGGCTTC ITS1F CTTGGTCATTTAGAGGAAGTAA 94 ℃预变性 5 min;35个循环程序:94 ℃,50 s,60.4 ℃,45 s,72 ℃,60 s;最后72 ℃延伸10 min。
Pre-denaturation at 94 ℃ for 5 min; 35 cycles program: 94 ℃, 50 s, 60.4 ℃, 45 s; the final extension at 72 ℃ for 10 min.Lievens, et al. 2010[23] AFP308R CGAATTAACGCGAGTCCCAA 说明:GC夹序列为CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCACGGGGGG。
Note: GC clip sequence was CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCACGGGGGG.表 2 芽孢杆菌属DGGE群落多样性
Table 2. Diversity index based on DGGE of Bacillus
处理 Treatment 辛普森指数(J) Simpson(J) 香农指数(H) Shannon(H) 均匀度 Evenness 布里渊指数 Brillouin CK 1.0411±0.0019 a 3.9246±0.0074 d 0.9812±0.0019 a 2.7083±0.0656 b 1Y 1.0321±0.0056 b 4.7206±0.0082 b 0.982±0.0017 a 3.1245±0.1575 a 10Y 1.0298±0.0021 b 4.6592±0.0105 c 0.9799±0.0022 a 3.2195±0.0248 a 30Y 1.0242±0.0029 b 4.7973±0.0152 a 0.9777±0.0031 a 3.2214±0.0561 a 注:表中的字母表示同一行数据差异显著(P<0.05, n=3)
Note: Data with different letters indicate significant difference on a same row (P<0.05, n=3).表 3 芽孢杆菌属DGGE条带鉴定
Table 3. Identification of DGGE bands on Bacillus
条带
BandsCK 1Y 10Y 15Y 同源性相似系数
Homology similarity
coefficient/%物种
SpeciesB1 0.0719 a 0.0716 a 0.0603 b 0.0670 ab 100 Bacillus sp.芽孢杆菌 B11 0.0000 b 0.0486 a 0.0000 b 0.0476 a 100 B14 0.0371 b 0.0455 a 0.0377 b 0.0366 b 100 B30 0.0223 b 0.0404 a 0.0243 b 0.0243 b 100 B31 0.0000 b 0.0245 a 0.0244 a 0.0208 a 100 B35 0.0498 b 0.0522 b 0.061 a 0.0573 ab 100 B37 0.0000 b 0.0000 b 0.0000 b 0.0352 a 100 B2 0.0758 ab 0.0761 ab 0.0728 b 0.0849 a 100 Bacillus mycoides 蕈状芽孢杆菌 B5 0.0734 a 0.0777 a 0.0754 a 0.0791 a 100 B18 0.0000 b 0.0294 a 0.0000 b 0.0000 b 100 Bacillus pumilus 短小芽孢杆菌 B19 0.0000 b 0.0274 a 0.0000 b 0.0000 b 100 B28 0.0285 a 0.0294 a 0.0303 a 0.0293 a 100 B3 0.0777 b 0.0849 ab 0.0770 b 0.0893 a 100 Bacillus stubtilis 枯草芽孢杆菌 B4 0.0755 b 0.0773 ab 0.0746 b 0.0862 a 100 B20 0.0000 c 0.0000 c 0.0603 b 0.0726 a 100 B21 0.0000 c 0.0000 c 0.0653 b 0.0783 a 100 B26 0.0000 c 0.0451 a 0.0406 ab 0.0380 b 100 B27 0.0000 c 0.0000 c 0.0395 a 0.0346 b 100 B6 0.0729 ab 0.0680 b 0.0749 ab 0.0759 a 100 Brachybacterium sp. 短状杆菌 B7 0.0693 b 0.0685 b 0.0768 a 0.0000 c 100 Bacillus cereus 蜡样芽孢杆菌 B8 0.0698 bc 0.0621 c 0.0808 a 0.0751 ab 100 B22 0.0741 b 0.0773 ab 0.0756 b 0.0848 a 100 B24 0.0000 b 0.0445 a 0.0434 a 0.0419 a 100 B25 0.0388 a 0.0462 a 0.0440 a 0.0429 a 100 B12 0.0000 b 0.0237 a 0.0000 b 0.0000 b 100 Stenotrophomonas maltophilia 嗜麦芽糖寡养单胞菌 B17 0.0000 c 0.0305 a 0.0233 b 0.0230 b 100 B34 0.0539 b 0.0602 ab 0.0631 a 0.063 a 100 B13 0.0000 c 0.0411 a 0.0000 c 0.0328 b 100 Bacillus amyloliquefaciens 解淀粉芽孢杆菌 B16 0.0000 b 0.0286 a 0.0000 b 0.0000 b 100 B29 0.0000 b 0.0000 b 0.0248 a 0.0000 b 100 B23 0.0000 b 0.0000 b 0.0549 a 0.0509 a 100 Bacillus odyssey 奥德赛芽孢杆菌 B32 0.0000 b 0.0000 b 0.0000 b 0.0655 a 100 Bacillus halodurans 耐盐芽孢杆菌 B33 0.0000 b 0.0000 b 0.0000 b 0.0643 a 100 B9 0.0618 a 0.0496 b 0.0527 b 0.0580 ab 100 Uncultured bacterium未知菌种 B10 0.0000 b 0.0493 a 0.0460 a 0.0475 a 100 B15 0.0000 b 0.0372 a 0.0000 b 0.0000 b 100 B36 0.0000 c 0.0456 a 0.0369 b 0.0363 b 100 注:表中数据为各条带灰度值(通过条带的面积与亮度进行计算)。数据后不同小写字母表示差异显著(P <0.05)。表5同。
Note: Data are gray values calculated with area and brightness of individual bands; those with different lowercase letters indicate significant difference at P<0.05 level. Same for Table 5.表 4 镰刀菌属DGGE群落多样性
Table 4. Diversity index based on DGGE of Fusarium
处理 Treatment 辛普森指数(J) Simpson(J) 香农指数(H) Shannon(H) 均匀度 Evenness 布里渊指数 Brillouin CK 0.8783±0.0043 a 3.1458±0.0164 a 0.9093±0.0048 b 2.8925±0.0136 a 1Y 0.7666±0.0029 d 2.2739±0.0194 d 0.8797±0.0075 c 2.1294±0.0211 d 10Y 0.8064±0.0038 c 2.4497±0.0126 c 0.9477±0.0049 a 2.3049±0.0232 c 15Y 0.8580±0.0017 b 2.897±0.0144 b 0.9139±0.0046 b 2.6865±0.0086 b 表 5 镰刀菌属DGGE条带鉴定
Table 5. Identification of DGGE bands on Fusarium
条带
BandsCK 1Y 10Y 15Y 同源性相似系数
Homology similarity
coefficient/%物种
SpeciesF1 0.0385 b 0.0000 c 0.1395 a 0.0000 c 100 Fusarium solani 腐皮镰刀菌 F3 0.0277 b 0.0000 c 0.0000 c 0.0407 a 100 F4 0.0122 a 0.0000 b 0.0000 b 0.0000 b 100 F9 0.0000 b 0.0549 a 0.0000 b 0.0000 b 100 F10 0.0000 b 0.0614 a 0.0000 b 0.0000 b 100 F11 0.0000 d 0.2643 a 0.1374 b 0.1148 c 100 F13 0.1642 a 0.1215 b 0.0986 b 0.0236 c 100 F2 0.0500 b 0.0000 c 0.1058 a 0.0000 c 100 Fusarium oxysporum 尖孢镰刀菌 F6 0.1017 b 0.0000 c 0.0000 c 0.1582 a 100 F8 0.0814 a 0.0000 c 0.0000 c 0.0509 b 100 F12 0.1384 b 0.1360 b 0.1978 a 0.1364 b 100 F5 0.0828 a 0.0000 b 0.0000 b 0.0000 b 100 Fusarium equiseti 木贼镰刀菌 F7 0.0864 b 0.0000 c 0.0000 c 0.1975 a 100 Fusarium sp. 镰刀菌 F14 0.0000 b 0.0000 b 0.1197 a 0.0000 b 100 F15 0.0000 b 0.0000 b 0.0000 b 0.0645 a 100 Aspergillus nidulans 小巢状曲菌 -
[1] WU L K, WANG J Y, HUANG W M, et al. Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture [J]. Scientific Reports, 2015, 5: 15871. doi: 10.1038/srep15871 [2] WU H M, WU L K, WANG J Y, et al. Mixed phenolic acids mediated proliferation of pathogens Talaromyces helicus and Kosakonia sacchari in continuously monocultured Radix pseudostellariae rhizosphere soil [J]. Frontiers in Microbiology, 2016, 7: 335. [3] 姚春芝, 蒋宇婷, 杨玉婷, 等. 三七连作土壤浸提液对其根腐病菌的化感效应 [J]. 应用生态学报, 2020, 31(7):2227−2235.YAO C Z, JIANG Y T, YANG Y T, et al. Allelopathic effect of extracts from Panax notoginseng mono-cropped soil on its root rot pathogens [J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2227−2235.(in Chinese) [4] 郝慧荣, 李振方, 熊君, 等. 连作怀牛膝根际土壤微生物区系及酶活性的变化研究 [J]. 中国生态农业学报, 2008, 16(2):307−311. doi: 10.3724/SP.J.1011.2008.00307HAO H R, LI Z F, XIONG J, et al. Variation of microbial flora and enzyme activity in rhizospheric soil under continuous cropping of Achyranthes bidentata [J]. Chinese Journal of Eco-Agriculture, 2008, 16(2): 307−311.(in Chinese) doi: 10.3724/SP.J.1011.2008.00307 [5] CHEN T, LI J, WU L K, et al. Effects of continuous monoculture of Achyranthes bidentata on microbial community structure and functional diversity in soil [J]. Allelopathy Journal, 2015, 36(2): 197−212. [6] LI Z F, ZHANG Z G, XIE D F, et al. Positive allelopathic stimulation and underlying molecular mechanism of achyranthe under continuous monoculture [J]. Acta Physiologiae Plantarum, 2011, 33(6): 2339−2347. doi: 10.1007/s11738-011-0774-0 [7] WANG J Y, WU L K, TANTAI H P, et al. Properties of bacterial community in the rhizosphere soils of Achyranthes bidentata tolerant to consecutive monoculture [J]. Plant Growth Regulation, 2019, 89(2): 167−178. doi: 10.1007/s10725-019-00523-0 [8] 王建花, 陈婷, 林文雄. 植物化感作用类型及其在农业中的应用 [J]. 中国生态农业学报, 2013, 21(10):1173−1183. doi: 10.3724/SP.J.1011.2013.01173WANG J H, CHEN T, LIN W X. Plant allelopathy types and their application in agriculture [J]. Chinese Journal of Eco-Agriculture, 2013, 21(10): 1173−1183.(in Chinese) doi: 10.3724/SP.J.1011.2013.01173 [9] BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health [J]. Trends in Plant Science, 2012, 17(8): 478−486. doi: 10.1016/j.tplants.2012.04.001 [10] 孙艳艳, 蒋桂英, 刘建国, 等. 加工番茄连作对农田土壤酶活性及微生物区系的影响 [J]. 生态学报, 2010, 30(13):3599−3607.SUN Y Y, JIANG G Y, LIU J G, et al. Effects of continuous cropping tomato for processing on soil enzyme activities and microbial flora [J]. Acta Ecologica Sinica, 2010, 30(13): 3599−3607.(in Chinese) [11] 胡斌, 段昌群, 王震洪, 等. 植被恢复措施对退化生态系统土壤酶活性及肥力的影响 [J]. 土壤学报, 2002, 39(4):604−608. doi: 10.3321/j.issn:0564-3929.2002.04.022HU B, DUAN C Q, WANG Z H, et al. Effect of vegetation rehabilitation measures on soil fertility and soil enzymatic activity in degraded ecosystem [J]. Acta Pedologica Sinica, 2002, 39(4): 604−608.(in Chinese) doi: 10.3321/j.issn:0564-3929.2002.04.022 [12] BLUM U, SHAFER S R. Microbial populations and phenolic acids in soil [J]. Soil Biology and Biochemistry, 1988, 20(6): 793−800. doi: 10.1016/0038-0717(88)90084-3 [13] 赵帆, 赵密珍, 王钰, 等. 草莓不同连作年限土壤养分及微生物区系分析 [J]. 江苏农业科学, 2017, 45(16):110−113.ZHAO F, ZHAO M Z, WANG Y, et al. Soil nutrient and microflora analysis of strawberry in different consecutive years [J]. Jiangsu Agricultural Sciences, 2017, 45(16): 110−113.(in Chinese) [14] 周艳丽, 乔宏宇, 高红春, 等. 甜瓜连作对其根际土壤微生物和酶活性的影响 [J]. 北方园艺, 2015(19):158−161.ZHOU Y L, QIAO H Y, GAO H C, et al. Effect of melon continuous cropping on rhizosphere soil microorganisms and enzyme activities [J]. Northern Horticulture, 2015(19): 158−161.(in Chinese) [15] 吴林坤, 黄伟民, 王娟英, 等. 不同连作年限野生地黄根际土壤微生物群落多样性分析 [J]. 作物学报, 2015, 41(2):308−317. doi: 10.3724/SP.J.1006.2015.00308WU L K, HUANG W M, WANG J Y, et al. Diversity analysis of rhizosphere microflora of wild R. glutinosa grown in monocropping for different years [J]. Acta Agronomica Sinica, 2015, 41(2): 308−317.(in Chinese) doi: 10.3724/SP.J.1006.2015.00308 [16] SAXENA A K, KUMAR M, CHAKDAR H, et al. Bacillus species in soil as a natural resource for plant health and nutrition [J]. Journal of Applied Microbiology, 2020, 128(6): 1583−1594. doi: 10.1111/jam.14506 [17] PIETRO A D, MADRID M P, CARACUEL Z, et al. Fusarium oxysporum: Exploring the molecular arsenal of a vascular wilt fungus [J]. Molecular Plant Pathology, 2003, 4(5): 315−325. doi: 10.1046/j.1364-3703.2003.00180.x [18] PUNJA Z K, PARKER M. Development of Fusarium root and stem rot, a new disease on greenhouse cucumber in British Columbia, caused by Fusarium oxysporum f. sp. radicis-cucumerinum [J]. Canadian Journal of Plant Pathology, 2000, 22(4): 349−363. doi: 10.1080/07060660009500453 [19] DRIGO B, VAN VEEN J A, KOWALCHUK G A. Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO(2) [J]. The ISME Journal, 2009, 3(10): 1204−1217. doi: 10.1038/ismej.2009.65 [20] GARBEVA P, VAN VEEN J A, VAN ELSAS J D. Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE [J]. Microbial Ecology, 2003, 45(3): 302−316. doi: 10.1007/s00248-002-2034-8 [21] O'DONNELL K, KISTLER H C, CIGELNIK E, et al. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies [J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(5): 2044−2049. doi: 10.1073/pnas.95.5.2044 [22] YERGEAU E, FILION M, VUJANOVIC V, et al. A PCR-denaturing gradient gel electrophoresis approach to assess Fusarium diversity in Asparagus [J]. Journal of Microbiological Methods, 2005, 60(2): 143−154. doi: 10.1016/j.mimet.2004.09.006 [23] LIEVENS B, BROUWER M, VANACHTER A C R C, et al. Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray [J]. Environmental Microbiology, 2005, 7(11): 1698−1710. doi: 10.1111/j.1462-2920.2005.00816.x [24] 张福锁, 申建波, 冯固. 根际生态学: 过程与调控[M]. 北京: 中国农业大学出版社, 2009. [25] 华菊玲, 刘光荣, 黄劲松. 连作对芝麻根际土壤微生物群落的影响 [J]. 生态学报, 2012, 32(9):2936−2942. doi: 10.5846/stxb201104010422HUA J L, LIU G R, HUANG J S. Effect of continuous cropping of sesame on rhizospheric microbial communities [J]. Acta Ecologica Sinica, 2012, 32(9): 2936−2942.(in Chinese) doi: 10.5846/stxb201104010422 [26] 吴连举, 赵亚会, 关一鸣, 等. 人参连作障碍原因及其防治途径研究进展 [J]. 特产研究, 2008, 30(2):68−72. doi: 10.3969/j.issn.1001-4721.2008.02.021WU L J, ZHAO Y H, GUAN Y M, et al. A review on studies of the reason and control methods of succession cropping obstacle of Panax ginseng C. A. Mey [J]. Special Wild Economic Animal and Plant Research, 2008, 30(2): 68−72.(in Chinese) doi: 10.3969/j.issn.1001-4721.2008.02.021 [27] 乔俊卿, 陈志谊, 梁雪杰, 等. 枯草芽孢杆菌Bs916防治番茄青枯病 [J]. 中国生物防治学报, 2016, 32(2):229−234.QIAO J Q, CHEN Z Y, LIANG X J, et al. Biocontrol efficacy on tomato bacterial wilt by Bacillus subtilis Bs916 [J]. Chinese Journal of Biological Control, 2016, 32(2): 229−234.(in Chinese) [28] 呼健洋. 东北地区大豆田土壤镰孢菌多样性及其对胞囊线虫的生防作用研究[D]. 沈阳: 沈阳农业大学, 2016.HU J Y. The Fusarium diversity and its biocontrol effects against the Heterodera glycines in the soil of soybean field of the Northeastern China[D]. Shenyang: Shenyang Agricultural University, 2016. (in Chinese). [29] 王永崇. 作物病虫害分类介绍及其防治图谱——西瓜枯萎病及其防治图谱 [J]. 农药市场信息, 2020(2):70.WANG Y C. Classification of crop pests and diseases and their control map: Watermelon fusarium wilt and its control map [J]. Pesticide Market News, 2020(2): 70.(in Chinese) [30] BAI G H, PLATTNER R, DESJARDINS A, et al. Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat [J]. Plant Breeding, 2001, 120(1): 1−6. doi: 10.1046/j.1439-0523.2001.00562.x [31] 林镇跃, 阙友雄, 刘平武, 等. 植物致病镰刀菌的研究进展 [J]. 中国糖料, 2014, 36(1):58−64, 78. doi: 10.3969/j.issn.1007-2624.2014.01.022LIN Z Y, QUE Y X, LIU P W, et al. Research progress of plant Fusarium phytopathogen [J]. Sugar Crops of China, 2014, 36(1): 58−64, 78.(in Chinese) doi: 10.3969/j.issn.1007-2624.2014.01.022 [32] ZHANG J B, LI H P, DANG F J, et al. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China [J]. Mycological Research, 2007, 111(8): 967−975. doi: 10.1016/j.mycres.2007.06.008 [33] VUJANOVIC V, HAMEL C, JABAJI-HARE S, et al. Development of a selective myclobutanil agar (MBA) medium for the isolation of Fusarium species from Asparagus fields [J]. Canadian Journal of Microbiology, 2002, 48(9): 841−847. doi: 10.1139/w02-082 [34] CHEN J, WU L K, XIAO Z G, et al. Assessment of the diversity of Pseudomonas spp. and Fusarium spp. in Radix pseudostellariae rhizosphere under monoculture by combining DGGE and quantitative PCR [J]. Frontiers in Microbiology, 2017, 8: 1748. doi: 10.3389/fmicb.2017.01748 [35] 于妍华. 西洋参连作障碍微生态机制及生防放线菌的抗病作用[D]. 杨凌: 西北农林科技大学, 2011.YU Y H. Study on micro-ecology mechanism in American gensing continuous croping obstacles and disease resistance of bio-control actinomyces[D]. Yangling: Northwest A & F University, 2011. (in Chinese).