Effect of Nighttime Exposure to Light from Color Lamps on Cold Tolerance of Tomato Seedlings
-
摘要:
目的 探讨不同光质夜间补光对番茄幼苗耐冷性的影响,为提高番茄幼苗耐冷性提供理论和实践依据。 方法 以倍盈番茄为试验材料,采用光质分别为白光(W)、红光(R)、蓝光(B)和红蓝组合光配比(2R/8B、5R/5B、8R/2B)等6个组合进行夜间补光处理,20 d后各处理番茄幼苗置于亚低温(10 ℃/5 ℃)下胁迫,以未补光所培育番茄幼苗为对照。 结果 与对照相比,各补光处理所培育的番茄幼苗在亚低温处理期间叶片中的电解质渗透率和丙二醛(MDA)含量上升幅度均显著低于对照,红蓝复合光(2R/8B、5R/5B、8R/2B)在亚低温胁迫期间叶片一直保持着较高的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性,在亚低温胁迫6 d 时以红蓝复合8R/2B活性上升幅度最高,分别达到399.49%、129.01%和135.74%,显著高于对照。 结论 夜间补光处理均可提高番茄幼苗的耐冷性,其中以红蓝复合8R/2B补光处理的幼苗的抗低温胁迫能力最强。 Abstract:Objective Effect of exposure to light of varied spectra at night on the cold tolerance of tomato (Lycopersicon esculentum) seedlings was investigated. Method Tomato seedlings grown under supplemental lighting at night by using white (W), red (R) or blue (B) light or combined 2R/8B, 5R/5B or 8R/2B were taken as treatments, and seedlings grown under natural conditions were taken as control. After 20d of cultivation, the plants were subjected to a low-temperature stress of 10/5 ℃ (day/night temperatures) to determine the tolerance of the seedlings toward mild hypothermia. Result The ranges of increased electrolyte permeability and MDA content in the leaves of the treatment seedlings under low-temp stress were significantly lower than those of control. After being exposed at night to the combination of 2R/8B, 5R/5B or 8R/2B, the seedlings could maintain high activities of SOD, CAT, and POD under the low-temp stress. These activities peaked when the 8R/2B was applied to reach significantly 399.49% on SOD, 129.01% on CAT, and 135.74% on POD higher than those of CK, 6d after the seedlings were moved to the low-temp environment. Conclusion Exposing tomato seedlings to light of different spectra at night improved the ability of the plants to tolerate mild hypothermia. The effect was maximized when the seedlings were grown for 20d under the nighttime lighting with 8 red and 2 blue lamps. -
图 1 亚低温胁迫对不同光质夜间补光所育番茄幼苗电解质渗透率的影响
注:不同小写字母表示在0.05水平下差异显著。下同
Figure 1. Effect of mild hypothermia on electrolyte permeability of tomato seedlings under nighttime exposure to light of various spectra
Note:Data with different lowercase letters indicate significant difference at 0.05 level. Same for the following.
表 1 试验设计光质处理
Table 1. Experimental design of nighttime light exposures of tomato seedlings
处理
Treatments白光
White light
intensity/
µmol·m−2·s−1红光
Red light
intensity/
µmol·m−2·s−1蓝光
Blue light
intensity/
µmol·m−2·s−1对照(CK) 0 0 0 W 100 0 0 R 0 100 0 B 0 0 100 2R/8B 0 20 80 5R/5B 0 50 50 8R/2B 0 80 20 -
[1] KANGASJARVI S, NEUKERMANS J, LI S. et al Photosynthesis, photorespirationand light signalling in defence responses [J]. Journal of Experimental Botany, 2012, 63(4): 1619−1636. doi: 10.1093/jxb/err402 [2] IZAGUIRRE M M, MAZZA C A, BIONDINI M. et al Remote sensing of future competitors: Impacts on plant defenses [J]. Proceedings of the National Academy of Sciences of United States of America, 2006, 103(18): 7170−7174. doi: 10.1073/pnas.0509805103 [3] 杨有新, 王峰, 蔡加星, 等. 光质和光敏色素在植物逆境响应中的作用研究进展 [J]. 园艺学报, 2014, 41(9):1861−1872.YANG Y X, WANG F, CAI J X, et al. Recent Advances in the Role of Light Quality and Phytochrome in Plant Defense Resistance Against Environmental Stresses [J]. Acta Horticulturae Sinica, 2014, 41(9): 1861−1872.(in Chinese) [4] FRANKLIN K A, WHITELAM G C. Light-quality regulation of freezing tolerance in Arabidopsis thaliana [J]. Nature Genetics, 2007, 39(11): 1410−1413. doi: 10.1038/ng.2007.3 [5] 蒲高斌. 光质对番茄生育特性及其果实品质的影响[D]. 泰安: 山东农业大学, 2005.PU G B. Effects of Light Qualities on the Growth Characteristics and Qualities of Tomato[D]. Taian: Shandong Agriculture University, 2005. (in Chinese). [6] 许莉. 光质对叶用莴苣生理特性及品质的影响[D]. 泰安: 山东农业大学, 2007.XU L. Effect of Light Quality on Physiological Characteristics and Quality of Leaf Lettuce[D]. Taian: Shandong Agriculture University, 2007. (in Chinese). [7] 陈建勋, 王晓峰. 植物生理学实验指导[M]. 广州: 华南理工大学出版社, 2015. [8] 王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2015. [9] 巩振辉. 作物育种学[M]. 北京: 农业出版社, 2007. [10] 陈禹兴, 付连双, 王晓楠, 等. 低温胁迫对冬小麦恢复生长后植株细胞膜透性和丙二醛含量的影响 [J]. 东北农业大学学报, 2010, 41(10):10−16. doi: 10.3969/j.issn.1005-9369.2010.10.003CHEN Y X, FU L S, WANG X N, et al. Effect of freezing stress on membrane permeability and MDA content in the re-growth plant of winter wheat cultivars [J]. Journal of Northeast Agricultural University, 2010, 41(10): 10−16.(in Chinese) doi: 10.3969/j.issn.1005-9369.2010.10.003 [11] 王芳, 李永生, 彭云玲, 等. 外源一氧化氮对玉米幼苗抗低温胁迫的影响 [J]. 干旱地区农业研究, 2017, 35(4):270−275. doi: 10.7606/j.issn.1000-7601.2017.04.41WANG F, LI Y S, PENG Y L, et al. Effects of exogenous nitric oxide on low temperature stress of maize seedlings [J]. Agricultural Research in the Arid Areas, 2017, 35(4): 270−275.(in Chinese) doi: 10.7606/j.issn.1000-7601.2017.04.41 [12] DOBRETSOV G E, BORSCHEVSKAYA T A, PETROV V A, et al. The increaseof phospholipid bilayer rigidity after lipid peroxidation [J]. FEBS Letters, 1977, 84: 195. doi: 10.1016/0014-5793(77)81088-0 [13] 周龙, 廖康, 王磊, 等. 低温胁迫对新疆野生樱桃李电解质渗出率和丙二醛含量的影响 [J]. 新疆农业大学学报, 2006, 29(1):47−50. doi: 10.3969/j.issn.1007-8614.2006.01.012ZHOU L, LIAO K, WANG L, et al. Study on Resistance to Coldness of Prunus divaricate [J]. Journal of Xinjiang Agricultural University, 2006, 29(1): 47−50.(in Chinese) doi: 10.3969/j.issn.1007-8614.2006.01.012 [14] 陈磊, 朱月林, 杨立飞, 等. 氮素不同形态配比对菜用大豆生长、种子抗氧化酶活性及活性氧代谢的影响 [J]. 植物营养与肥料学报, 2010, 16(3):768−772. doi: 10.11674/zwyf.2010.0337CHEN L, ZHU Y L, YANG L F, et al. Effects of nitrogen forms and ratios on plant growth, seed antioxidant enzyme activities and reactive oxygen metabolism of vegetable soybean [J]. Journal of Plant Nutrition and Fertilizer, 2010, 16(3): 768−772.(in Chinese) doi: 10.11674/zwyf.2010.0337 [15] 张淑英, 褚贵新, 梁永超. 不同铵硝配比对低温胁迫棉花幼苗生长及抗氧化酶活性的影响 [J]. 植物营养与肥料学报, 2017, 23(3):721−729. doi: 10.11674/zwyf.16397ZHANG S Y, CHU G X, LIANG Y C. Impacts of different ammonium/nitrate ratios on the growth and antioxidant defense enzyme activities in cotton seedlings exposed to low-temperature stress [J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(3): 721−729.(in Chinese) doi: 10.11674/zwyf.16397 [16] 王萍, 吕星光, 李敏. 低温胁迫对西瓜砧木幼苗生长和生理指标的影响 [J]. 北方园艺, 2017(10):35−38.WANG P, LYU X G, LI M. Effects of Low Temperature Stress on Growth and Physiological Indexes of Watermelon Rootstock Seedlings [J]. Northern Horticulture, 2017(10): 35−38.(in Chinese) [17] IMAHORI Y, TAKEMURA M, BAI J. Chilling-induced oxidative stress and antioxidant responses in mume (Prumus mume) fruit during low temperature storage [J]. Postharvest Biology and Technology, 2008(49): 54−60. [18] ASHRAF M. Biotechnological approach of improving plant salt tolerance using antantioxidants as markers [J]. Biotechnology Advances, 2009(27): 84−93. [19] 马骊, 孙万仓, 刘自刚, 等. 低温胁迫下白菜型与甘蓝型冬油菜抗寒基因表达差异 [J]. 中国油料作物学报, 2016, 32(3):135−142.MA L, SUN W C, LIU Z G, et al. Expression of cold resistance genes from winter rapeseed of Brassica rapa and B. napus under chilling stress [J]. Chinese Journal of Oil Crop Sciences, 2016, 32(3): 135−142.(in Chinese) [20] 秦文斌, 山溪, 张振超, 等. 低温胁迫对甘蓝幼苗抗逆生理指标的影响 [J]. 核农学报, 2018, 32(3):576−581. doi: 10.11869/j.issn.100-8551.2018.03.0576QIN W B, SHAN X, ZHAN Z C, et al. Effect of Low Temperature Stress on Anti-stress Physiological Indexes of Cabbage Seedlings [J]. Journal of Nuclear Agricultural Sciences,, 2018, 32(3): 576−581.(in Chinese) doi: 10.11869/j.issn.100-8551.2018.03.0576 [21] 温日宇, 刘建霞, 李顺, 等. 低温胁迫对不同藜麦幼苗生理生化特性的影响 [J]. 种子, 2019, 38(5):53−56.WEN R Y, LIU J X, LI S, et al. Effect of Low Temperature Stress on Physiological and Biochemical Characteristics of Different Quinoa Seedlings [J]. Seed,, 2019, 38(5): 53−56.(in Chinese)