Genome-wide Identification and Expression Analysis of Metacaspase Gene Family in strawberry
-
摘要:
目的 精氨酸/赖氨酸特异性半胱氨酸酶(metacaspases,MCs)在植物生长发育的细胞程序性死亡(programmed cell death,PCD)中发挥重要的调控作用,为系统鉴定草莓FaMC基因家族,进行草莓FaMC基因家族全基因组鉴定及表达分析。 方法 通过草莓全基因组数据分析FaMC蛋白的理化性质、结构域、系统发育关系和保守基序,采用qRT-PCR技术对草莓6个组织器官和6个果实发育时期中的FaMC基因进行表达分析。 结果 蛋白序列分析表明,草莓基因组中21个FaMC成员分为3种类型:I型、I*型和II型。系统发育树和保守结构域分析表明:I型FaMC含N端前结构域且包含1个锌指结构;I*型FaMC含N端前结构域,但其中没有锌指结构;II型FaMC不含N端前结构域。基因表达分析发现,FaMC基因在不同组织中存在表达差异性,I型、I*型和II型FaMC基因分别在叶片、根和花中高表达。在果实发育过程中,多数I*型FaMC基因的表达水平呈现出高-低-高的动态变化趋势;部分I型、II型FaMC在果实发育过程中呈现相反的表达模式。 结论 FaMC基因可能在草莓生长过程中发挥重要作用。 -
关键词:
- 草莓 /
- metacaspase /
- 细胞程序性死亡(PCD) /
- 基因组 /
- 表达分析
Abstract:Objective To identify and study the genes in strawberry (Fragaria ananassa) which related to the synthesis of metacaspases (MCs), the enzymes that played vital roles in regulating the programmed cell death (PCD) in plants. Method The physiochemical properties, conserved domains, phylogenetic relationships and conserved motifs of FaMC proteins were analyzed based on strawberry whole genome data. The expressions of FaMC genes in 6 tissues and 6 fruit development stages of strawberry were carried out by qRT-PCR. Result The 21 FaMC proteins identified in this study could be divided into Type-I, Type-I*, and Type-II based on the differences on their sequences. The phylogenetic trees and conserved domains of the 3 different types showed the differentiations between them. Type-I FaMC protein consisted of N-terminal domain (NTD) with one zinc finger motif, Type-I* consisted of NTD but no zinc finger, and Type-II had not NTD. The FaMC genes were distinctively differently expressed in different tissues and developmental stages. Type-I expressed in the leaves, Type-I* in the roots, and Type-II in the flowers. And, during the berry development stage, most Type-I* exhibited a high-low-high U-pattern of changes, whereas, part of Type-I and Type-II had a reversed U-pattern. Conclusion FaMC genes were identified to be closely related to the synthesis of metacaspases that played important roles in the development and growth of strawberry plants. -
Key words:
- Strawberry /
- metacaspase /
- programmed cell death /
- genome /
- expression analysis
-
图 1 草莓FaMC家族氨基酸序列比对分析
注:矩形:LSD1型锌指结构域;大粗实线:脯氨酸和谷氨酰胺的N端前结构域;中粗实线:p10亚基;细实线:p20亚基;虚线:连接区
Figure 1. Multiple sequence alignments of FaMC proteins in strawberry
Note: Rectangle: LSD1-type zinc finger motif; thickest solid line: Pro/Gln-rich NTD; thicker solid line: p10 subunit; solid line: p20 subunit; dotted line: linker.
图 2 草莓与拟南芥MC家族蛋白质系统进化分析
注:拟南芥MC蛋白登录号:AtMC1(NP_171719.2);AtMC2(NP_001031711.1);AtMC3(NP_201229.1);AtMC4(NP_178052.1);AtMC5(NP_178051.1);AtMC6(NP_178050.1);AtMC7(NP_178049.2);AtMC8(NP_173092.1);AtMC9(NP_196040.1)
Figure 2. Phylogenetic tree of MC gene family in strawberry and Arabidopsis
Note: Accessions of AtMC proteins: AtMC1 (NP_171719.2); AtMC2 (NP_001031711.1); AtMC3 (NP_201229.1); AtMC4 (NP_178052.1); AtMC5 (NP_178051.1); AtMC6 (NP_178050.1); AtMC7 (NP_178049.2); AtMC8 (NP_173092.1); AtMC9 (NP_196040.1).
图 4 草莓FaMC基因的表达谱
注:A:FaMC基因在不同组织部位的表达谱;P1:叶片;P2:花;P3:根;P4:茎;P5:匍匐茎;P6:幼果。B:FaMC基因在果实不同发育时期的表达谱;S1:小绿期;S2:大绿期;S3:白果期;S4:始红期;S5:片红期;S6:全红期。红色代表高表达,绿色代表低表达。
Figure 4. Expression patterns of FaMC genes in strawberry
Note: a: Expression patterns of FaMC in different tissues; P1: leaf; P2: flower; P3: root; P4: stem; P5: stolon; P6: young fruit. b: expression patterns of FaMC in different fruit developmental stages; S1: small and green; S2: large and green; S3: white; S4: turning red; S5: partial red; S6: fully red. Red color represents high expression, green low expression.
表 1 引物序列
Table 1. Primer sequences
基因
Gene上游引物(5′→3′)
Forward primer下游引物(5′→3′)
Reverse primerFaActin TGGGTTTGCTGGAGATGAT CAGTTAGGAGAACTGGGTGC FaMC1 ATGTTGGAGCACCTCACCTC GCTTGACACCCACTCAGAAG FaMC2 CAAAAACATCCGAAGGGCTA CGGCAACCTTTCTTTAGCTG FaMC3 CTCTCATCTTCCTCCTACAACG GCATCGAGCTCCATATTCTTCC FaMC4 TCTGGCAGTGCTGTTACGTC CGCAGGCAGTTAATTGAGGC FaMC5 CTTCCGTTCTCATGCTCACA CAAAATCCGAGGGACACAGT FaMC6 CGGTGTCAAGCTGCATTCTA CCACCTTTTGTTCCTTTCCA FaMC7 TCCCACTGACATGAACCTCA GCTAGACTCACGCTGGTTCC FaMC8 CGAGAAAGAGCAGATTGGACC GCAAGTTGAGATCGAGTAGAGG FaMC9 TGACCAGTATGTAAAGCCCG ATCTCCTGAAGGTGTGGCAT FaMC10 AATACGGAGCTCGATGGCTG CGTTATGTTTGTCTTGGTAGGG FaMC11 GAAATCCCTGAAATGGCTTG GTGGGTGAACGATGGTTGA FaMC12 ATTATCGTGGGGATGAAGTCG CCATACATATTTTCCACCCCTG FaMC13 GCCGCAATTGTTATGCCCAT CACCCCTGTCCATTCTGCAA FaMC14 CTTCACGATCTGCAACTCCA GGCAGTTGGAGCAGTCTACC FaMC15 CGAGTGGTCAGACAGCATCA ACCAGCCGGAACTTTCTCGT FaMC16 GCCCTTTCAATGCAGACCT ACACCAACGAATCTCCAGCTT FaMC17 ACAAACTCCAGAGCCACCAG TGACAGCCACTGATGAGAATG FaMC18 CGAGTTGTTGAAGCCGGA TCTATTGCTTAGCGGAGCC FaMC19 TACGGGAACATGATGACTGC AGCTTTCCAAGACTCCCTCC FaMC20 GCAGCAATTGTTAGTCCCAT CACTTGTTCCTTTCCATACGC FaMC21 GAAATACGGGTTCTGGTGGA CTCGCAGGCAGTTAATTGGG 表 2 草莓FaMC蛋白理化性质
Table 2. Physiochemical properties and subcellular localization of FaMC proteins in strawberry
基因
Gene基因组编号
Genome ID氨基酸数
Amino
acid分子量
Molecular
weight等电点
pI不稳定指数
Instability
index亲水性
Hydropathicity亚细胞定位
Subcellular
localizationFaMC1 augustus_masked-Fvb3-1-processed-gene-103.9 324 35555.30 5.43 37.04 −0.219 叶绿体 Chloroplast FaMC2 maker-Fvb3-1-snap-gene-242.61 402 44269.43 5.06 42.48 −0.582 细胞质 Cytoplasmic FaMC3 augustus_masked-Fvb3-1-processed-gene-281.5 326 36519.19 7.58 45.73 −0.110 叶绿体 Chloroplast FaMC4 maker-Fvb7-2-augustus-gene-79.38 381 40904.39 6.42 41.60 −0.302 叶绿体 Chloroplast FaMC5 maker-Fvb7-2-augustus-gene-253.66 358 38720.78 6.85 50.79 −0.327 细胞核 Nuclear FaMC6 snap_masked-Fvb3-3-processed-gene-22.24 347 38805.38 8.14 47.98 −0.354 叶绿体 Chloroplast FaMC7 maker-Fvb3-3-augustus-gene-63.33 413 45221.46 5.12 40.94 −0.616 细胞质 Cytoplasmic FaMC8 maker-Fvb3-4-augustus-gene-109.35 323 35386.06 5.19 37.43 −0.207 叶绿体 Chloroplast FaMC9 maker-Fvb3-4-augustus-gene-226.44 413 45224.44 5.06 40.97 −0.579 细胞质 Cytoplasmic FaMC10 augustus_masked-Fvb3-4-processed-gene-255.9 290 31963.38 6.09 39.67 −0.362 叶绿体 Chloroplast FaMC11 maker-Fvb5-1-augustus-gene-207.38 406 45451.82 8.95 52.83 −0.491 线粒体 Mitochondrial FaMC12 maker-Fvb7-1-augustus-gene-86.37 381 40803.28 6.37 44.55 −0.282 叶绿体 Chloroplast FaMC13 maker-Fvb7-1-augustus-gene-129.25 381 40807.37 6.48 45.56 −0.272 叶绿体 Chloroplast FaMC14 maker-Fvb7-1-snap-gene-270.81 338 37729.50 9.10 62.14 −0.194 叶绿体 Chloroplast FaMC15 maker-Fvb5-4-snap-gene-163.56 413 46277.63 8.88 54.06 −0.532 线粒体 Mitochondrial FaMC16 snap_masked-Fvb3-2-processed-gene-39.23 350 39121.78 7.47 49.27 −0.334 叶绿体 Chloroplast FaMC17 maker-Fvb3-2-augustus-gene-75.24 413 45214.42 5.06 41.30 −0.596 细胞质 Cytoplasmic FaMC18 augustus_masked-Fvb3-2-processed-gene-201.8 323 35426.17 5.27 36.96 −0.203 线粒体 Mitochondrial FaMC19 maker-Fvb7-3-augustus-gene-48.64 350 38180.67 7.59 39.34 −0.154 叶绿体 Chloroplast FaMC20 maker-Fvb7-3-augustus-gene-157.36 371 39964.41 6.93 39.93 −0.267 线粒体 Mitochondrial FaMC21 maker-Fvb7-4-augustus-gene-151.37 371 39772.15 6.34 40.74 −0.256 叶绿体 Chloroplast 表 3 草莓FaMC蛋白氨基酸保守序列
Table 3. Conserved motifs of FaMC proteins in strawberry
Motif 长度/aa
Length氨基酸保守序列
Amino acid conserved sequencemotif1 50 PTKKNIRMALHWLVQGCQAGDSLVFHYSGHGTRQPNYTGDEVDGYDETLC motif2 34 ELKGCINDAKCMKYLlinkerFKFPESSIRMLTEEE motif3 50 PLDFETQGMIVDDEINAAIVRPJPAGVKLHAIVDACHSGTVLDLPFLCRM motif4 29 PRSGVWKGTSGGEVISISGCDDBQTSADT motif5 41 ITSTGAMTFAFIQAIERGHAATYGNJLNAMRSTIRNTGSGA motif6 29 NHAPPPPPPNVHGRKRAVICGISYKYSRH motif7 21 GLRQEPQLTASEEFDVYTKPF motif8 50 AIQTILAETDGEITNQELVLRARKILKEQGYTQRPGLYCSDHHTDAPFVC motif9 11 MLVGCSNCRTP motif10 50 PTDMNLITDDDFRZFVDQLKKGCRLTIVSDSCHSGGLIDESVEQIGESHK motif11 50 KTDIDVGKLRPTLFDVFGDDASPKVKKFMKVILNKLQSHEGEGSGGLMGK motif12 50 IKNFLKQSAGDALKSRGIHVPSAFRRHGGDEEESEDREIDMGDGERGYMK motif13 20 QLPPGAZSIRCALCQAVTLI motif14 29 SAVASLLGGSSGAVTSLVGMLLTGGSVGG motif15 11 RGGRYVWEDHR motif16 50 DTLSGSCNKTKAIPFESILEHLTSLTGISTSDIATHFLELFAADASLKFR motif17 21 GDPRALHSAPSSHEPPPPAPY motif18 15 TPPGPPSYAYGALSY motif19 11 GHPPPPPPRPY motif20 15 NRELPLLALIFLLEQ -
[1] PATRICK E, THOMAS P, ROBERT V, et al. Origin and evolution of the octoploid strawberry [J]. Nature genetics, 2019, 51(3): 541−547. doi: 10.1038/s41588-019-0356-4 [2] 苏代发, 童江云, 杨俊誉, 等. 中国草莓属植物种质资源的研究、开发与利用进展 [J]. 云南大学学报(自然科学版), 2018(6):1261−1276. doi: 10.7540/j.ynu.20180613SU D F, TONG J Y, YANG J Y, et al. Advances in research, exploitation and utilization of Fragaria spp. germplasm resources [J]. Journal of Yunnan University(Natural Sciences Edition), 2018(6): 1261−1276.(in Chinese) doi: 10.7540/j.ynu.20180613 [3] 雷家军, 代汉萍, 谭昌华, 等. 中国草莓属植物的分类研究 [J]. 园艺学报, 2006, 33(1):1−5. doi: 10.3321/j.issn:0513-353X.2006.01.001LEI J J, DAI H P, TAN C H, et al. Studies on the taxonomy of the strawberry (Fragaria) species distributed [J]. Acta Horticulturae Sinica, 2006, 33(1): 1−5.(in Chinese) doi: 10.3321/j.issn:0513-353X.2006.01.001 [4] LUCAS W, GROOVER A, LICHTENBERGER R, et al. The plant vascular system: evolution, development and functions [J]. Journal of Integrative Plant Biology, 2013, 55(4): 294−388. doi: 10.1111/jipb.12041 [5] AHARONI A, KEIZER L, BROECK H, et al. Novel insight into vascular, stress, and auxin-dependent and -independent gene expression programs in strawberry, a non-climacteric fruit [J]. Plant Physiology, 2002, 129(3): 1019−1031. doi: 10.1104/pp.003558 [6] FAIT A, HANHINEVA K, BELEGGIA R, et al. Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development [J]. Plant Physiology, 2008, 148(2): 730−750. doi: 10.1104/pp.108.120691 [7] CAI J T, ZHANG Z H, ZHOU A Q, et al. Localization of BEN1-LIKE protein and nuclear degradation during development of metaphloem sieve elements in Triticum aestivum L [J]. Acta Biologica Hungarica, 2015, 66(1): 66−79. doi: 10.1556/ABiol.66.2015.1.6 [8] LUIS C, ARMANDO B, JULIO M, et al. AtMCP1b, a chloroplast-localised metacaspase, is induced in vascular tissue after wounding or pathogen infection [J]. Functional Plant Biology, 2008, 34(12): 1061−1071. doi: 10.1071/FP07153 [9] DANEVA A, GAO Z, VAN M, et al. Functions and regulation of programmed cell death in plant development [J]. Annual Review of Celland Developmental Biology, 2016, 32: 441−468. doi: 10.1146/annurev-cellbio-111315-124915 [10] 冉昆, 马怀宇, 杨洪强. 植物细胞程序性死亡中的类胱天蛋白酶研究进展 [J]. 西北植物学报, 2008, 28(12):2564−2570. doi: 10.3321/j.issn:1000-4025.2008.12.033RAN K, MA H Y, YANG H Q. Recent advance in the study of caspase-like proteases involved in plant programmed cell death [J]. Acta Botanica Boreali-occidentalia Sinica, 2008, 28(12): 2564−2570.(in Chinese) doi: 10.3321/j.issn:1000-4025.2008.12.033 [11] SANMARTIN M, JAROSZEWSKI L, RAIKHEL N, et al. Caspases. Regulating death since origin of life [J]. Plant Physiology, 2005, 137(3): 841−847. doi: 10.1104/pp.104.058552 [12] LAM E, ZHANG Y. Regulating the reapers: activating metacaspases for programmed cell death [J]. Trends in Plant Science, 2012, 17(8): 487−494. doi: 10.1016/j.tplants.2012.05.003 [13] TSIATSIAN L, BREUSEGEM F, GALLOIS P, et al. Metacaspases [J]. Cell Death and Differentiation, 2011, 18(8): 1279−1288. doi: 10.1038/cdd.2011.66 [14] FAGUNDES D, BOHN B, CABREIRA C, et al. Caspases in plants: Metacaspase gene family in plant stress responses [J]. Functional & Integrative Genomics, 2015, 15(6): 639−649. doi: 10.1007/s10142-015-0459-7 [15] MININA EA, STAEL S, VAN F, et al. Plant metacaspase activation and activity [J]. Methods in Molecular Biology, 2014, 1133: 237−253. doi: 10.1007/978-1-4939-0357-3_15 [16] KLEMENCIC M, FUNK C. Evolution and structural diversity of MCs. [J]. Journal of Experimental Botany, 2019, 70(7): 2039−2047. doi: 10.1093/jxb/erz082 [17] ALEXIS A, EDGAR S, LAURA S, et al. Two aspartate residues at the putative p10 subunit of a type II metacaspase from Nicotiana tabacum L. may contribute to the substrate-binding pocket [J]. Planta, 2014, 239(1): 147−160. doi: 10.1007/s00425-013-1975-0 [18] DIETRICH R A, RICHBERG M H, SCHMIDT R, et al. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death [J]. Cell, 1997, 88(5): 685−694. doi: 10.1016/s0092-8674(00)81911-x [19] KWON S, HWANG D. Expression analysis of the metacaspase gene familly in Arabidopsis [J]. Journal of Plant Biology, 2013, 56: 391−398. doi: 10.1007/s12374-013-0290-4 [20] WANG L, ZHANG H. Genomewide survey and characterization of metacaspase gene family in rice(Oryza sativa) [J]. Joural of Genetics, 2014, 93(1): 93−102. doi: 10.1007/s12041-014-0343-6 [21] ZHANG C H, GONG P J, WEI R, et al. The metacaspase gene family of Vitis Vinifera L. : characterization and differential expression during ovule abortion in stenospermocarpic seedless grapes [J]. Gene, 2013, 528(2): 267−276. doi: 10.1016/j.gene.2013.06.062 [22] AHMAD R, ZUILY Y, PASSAQUET C, et al. Ozone and aging up-regulate type II metacaspase gene expression and global metacaspase activity in the leaves of field-grown maize (Zea mays L.) plants [J]. Chemosphere, 2012, 87(7): 789−795. doi: 10.1016/j.chemosphere [23] CAO Y P, MENG D D, CHEN T, et al. Metacaspase gene family in Rosaceae genomes: comparative genomic analysis and their expression during pear pollen tube and fruit development [J]. PLos One, 2019, 14(2): 1−18. doi: 10.1371/journal.pone.0211635 [24] BOLLHONER B, ZHANG B, STAEL S, et al. Post mortem function of AtMC9 in xylem vessel elements [J]. New Phytologist, 2013, 200(2): 498−510. doi: 10.1111/nph.12387 [25] HE R, DRURY G, ROTARI V, et al. Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis [J]. The Journal of Biological Chemistry, 2018, 283(2): 774−783. doi: 10.1074/jbc.M704185200 [26] MARIA F, LADA H, ANDREI S, et al. Metacaspase-dependent programmed cell death is essential for plant embroyo genesis [J]. Current Biology, 2004, 14(9): 339−340. doi: 10.1016/j.cub.2004.04.019 [27] ZHOU Y, HU L F, JIANG L, et al. Genome-wide identification, characterization, and transcriptional analysis of the metacaspase gene family in cucumber (Cucumis sativus) [J]. Genome, 2018, 61(3): 187−194. doi: 10.1139/gen-2017-0174 [28] BOSTANCIOGLU S M, TOMBULOGLU G, TOMBULOGLU H. Genome-wide identification of barley MCs (metacaspase) and their possible roles in boron-induced programmed cell death [J]. Molecular Biology Reports, 2018, 45(3): 211−225. doi: 10.1007/s11033-018-4154-3 [29] BOLLHONER B, LUKKARI S, BYGDELL J, et al. The function of two type II metacaspases in woody tissues of Populus trees [J]. New Phytologist, 2018, 217(4): 1551−1565. doi: 10.1111/nph.14945 [30] 张智慧. 小麦颖果筛分子发育中II型metacaspase蛋白(TaeMCA II)的定位及蛋白质组学分析[D]. 武汉: 华中农业大学, 2015.ZHANG Z H. Localizrtion of the type II metacaspase protein (TaeMCA II) and proteomic analysis in sieve elements development of Triticum Aestivuml[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese)