Reference Gene Selection for RT-qPCR Analysis on Cucumis melo
-
摘要:
目的 筛选可分别在甜瓜不同组织器官和不同胁迫处理下稳定表达的内参基因,用于对靶基因表达量的实时荧光定量分析,保证相关试验的准确性及可靠性。 方法 以甜瓜品种新银辉为试验材料,通过实时荧光定量PCR技术分析18s rRNA、TUA、EF1a、Actin1、Actin2、Actin3、Actin4、CYC和UBI-ep共9个候选内参基因在甜瓜不同组织器官及不同胁迫处理下的表达稳定性,包括甜瓜根、叶、种子和果实4种不同组织材料,以及水分胁迫、肉桂酸胁迫、盐碱胁迫和ABA胁迫4种处理。同时使用Best-Keeper、Norm Finder和ge Norm软件对9个候选内参基因进行稳定性分析。 结果 对不同组织器官而言,Best-Keeper评估排名前5的内参基因依次为CYC>18s rRNA>UBI-ep>EF1a>TUA;Norm Finder计算排名前5的内参基因依次为EF1a>UBI-ep>Actin4>CYC>Actin3;ge Norm分析排名前5的基因依次为Actin4=Actin3>Actin1>EF1a>UBI-ep。不同胁迫处理中,Best-Keeper计算排名前5的基因依次为18s rRNA>Actin3>Actin4>EF1a>UBI-ep;Norm Finder分析排名前5的基因依次为EF1a>UBI-ep>Actin4>CYC>18s rRNA;ge Norm分析排名前5的基因依次为EF1a=UBI-ep>Actin4>CYC>Actin1。总体而言EF1a在不同组织器官和不同胁迫处理中的综合排名均较为稳定;Actin4、Actin3、Actin1和EF1a是不同组织器官中较为稳定的内参基因组合;EF1a和UBI-ep是4种胁迫条件下较稳定的内参基因组合。 结论 EF1a在甜瓜不同组织器官及不同胁迫条件下均可稳定表达,是较为合适的内参基因;同时可通过设置双内参基因进一步降低试验误差。 Abstract:Objective In search for internal reference genes of Cucumis melo L. that could stably express in different tissues and under stress conditions to warrant accuracy and reliability of the RT-qPCR analysis on target gene expression. Method Expression stabilities of 9 candidate genes, 18srRNA, TUA, EF1a, Actin1, Actin2, Actin3, Actin4, CYC, and UBI-ep, from the roots, leaves, seeds, and fruits of Xinyinhui melon being treated by water, cinnamic acid, saline alkali or ABA were determined by RT-qPCR and analyzed using the BestKeeper, NormFinder, and geNorm software. Result In different tissues, the top 5 choice genes identified by BestKeeper ranked as CYC>18s rRNA>UBI-ep>EF1a>TUA, those by NormFinder EF1a>UBIep>Actin4>CYC>Actin3, and those by geNorm Actin4=Actin3>Actin1>EF1a>UBI-ep. Under various stresses, they were 18s rRNA>Actin3>Actin4>EF1a>UBI-ep as ranked by BestKeeper, EF1a>UBI-ep>Actin4>CYC>18s rRNA by NormFinder, and EF1a=UBI-ep>Actin4>CYC>Actin by geNorm. Overall, EF1a appeared to be most stable among the 9 genes. Insofar as variety of tissues is concerned, Actin4, Actin3, Actin1, and EF1a were more stable than the others; and, under stress, EF1a and UBI-ep tended to be superior. Conclusion Stably expressed in the tissues under the stresses as tested, EF1a was selected as the reference gene for studies on C. melo to reduce experimental errors. To further ensure accuracy, application of dual reference genes in RT-qPCR analysis might be considered. -
Key words:
- Cucumis melo L. /
- reference gene /
- RT-qPCR /
- Tissuestissues and organs /
- stress
-
图 1 9个候选内参基因的引物扩增特异性与扩增长度
注:M:Marker;1~9分别为内参基因Actin1、Actin2、Actin3、Actin4、CYC、UBI-ep、TUA、18s rRNA、EF1a。
Figure 1. Amplification specificities and lengths of 9 candidate reference genes
Note: M: marker; 1–9: candidate reference genes, Actin1, Actin2, Actin3, Actin4, CYC,UBI-ep, TUA, 18s rRNA, and EF1a, respectively.
图 3 9个候选内参基因Ct值箱线图
注:箱线图箱体代表Ct值主要集中范围;上边表示上四分线;中线表示中位数;下边表示下四分线;上边缘表示本组数据最大值;下边缘表示本组数据最小值。
Figure 3. Box plot of Ct values of 9 reference genes
Note: Box: range of concentrated Ct values; top line: upper quarter line; middle line: median value; bottom line: lower quarter line; top edge: maximum value of group; bottom edge: minimum of group.
表 1 9个候选内参基因RT-qPCR引物序列及其扩增效率
Table 1. RT-qPCR primer sequences and amplification efficiency of 9 candidate reference genes
登录号
GenBank ID基因
Gene引物序列(5′-3′)
Primer sequence F/R(5′-3′)产物大小
Product size/bp扩增效率
Efficiency(E)AF206894.1 18s rRNA TCTGCCCGTTGCTCTGATG 130 2.05 TCACCCGTCACCACCATAG XM_008456199.2 TUA ACGCTGTTGGTGGTGGTAC 106 2.06 GAGAGGGGTAAACAGTGAATC XM_008459007.2 EF1a ACTGTGCTGTCCTCATTATTG 98 1.98 AGGGTGAAAGCAAGAAGAGC LN713255.1 CYC GATGGAGCTCTACGCCGATGTC 153 1.97 CCTCCCTGGCACATGAAATTAG NM_001282241.1 UBI-ep CACCAAGCCCAAGAAGATC 220 2.10 TAAACCTA ATCACCACCAGC XM_008442791.2 Actin1 TTCTGGTGATGGTGTGAGTC 149 2.09 GGCAGTGGTGGTGAACATG XM_008449644.2 Actin2 GAAGGAATAACCACGCTCAG 117 2.02 ACACAGTTCCCATCTACGAG XM_008449644.2 Actin3 GGCAGTGGTGGTGAACATG 149 1.99 TTCTGGTGATGGTGTGAGTC LN713262.1 Actin4 TGGAAGCTGCAGGAATCCACGA 165 2.04 TGCTGGGAGCAAGGGCTGTG 表 2 Best-Keeper软件分析9个候选内参基因稳定性
Table 2. Stabilities of 9 reference genes analyzed by BestKeeper software
样品分组
Sample group基因
Gene几何平均值
Geometric
mean value最大值
Max最小值
Mix标准差
Stardand
deviaton(SD)变异差
Coefficient
ofvariation(CV)稳定性排名
Ranking of
stable value不同组织器官
Different tissuesCYC 20.88 21.55 19.72 0.57 2.72 1 18s rRNA 10.21 11.46 8.90 0.77 7.55 2 UBI-ep 20.12 22.10 18.69 0.94 4.67 3 EF1a 20.42 22.03 19.11 0.95 4.65 4 TUA 22.69 24.80 21.10 0.98 4.31 5 Actin1 21.92 23.98 19.23 1.37 6.21 6 Actin4 20.63 23.14 18.99 1.38 6.65 7 Actin3 21.61 24.03 19.39 1.50 6.92 8 Actin2 31.38 33.95 29.40 1.86 5.92 9 不同胁迫处理
Different stress conditions18s rRNA 11.82 12.31 11.16 0.22 1.86 1 Actin3 22.85 23.30 21.54 0.37 1.62 2 Actin4 21.85 22.77 21.23 0.43 1.97 3 EF1a 21.24 22.20 20.36 0.46 2.18 4 UBI-ep 21.38 22.29 20.49 0.46 2.14 5 Actin1 23.20 24.22 22.28 0.54 2.35 6 CYC 18.87 19.89 17.95 0.59 3.44 7 TUA 22.05 23.35 21.27 0.60 2.71 8 Actin2 36.68 35.63 28.84 1.86 5.67 9 表 3 Norm Finder和ge Norm软件分析候9个选内参基因稳定性
Table 3. Stabilities of 9 reference genes analyzed by NormFinder and geNorm software
样品分组
Sample groupNorm Finder ge Norm 基因
Gene稳定值
Stability value稳定性排名
Ranking of stable value基因
Gene稳定值
Stability value稳定性排名
Ranking of stable value不同组织器官
Different tissuesEF1a 0.107 1 Actin4 0.526 1 UBI-ep 0.153 2 Actin3 0.526 2 Actin4 0.228 3 Actin1 0.640 3 CYC 0.243 4 EF1a 0.794 4 Actin3 0.291 5 UBI-ep 0.894 5 18s rRNA 0.315 6 18s rRNA 0.961 6 Actin1 0.319 7 CYC 1.101 7 TUA 0.345 8 TUA 1.318 8 Actin2 0.423 9 Actin2 1.462 9 不同胁迫处理
Different stress conditionsEF1a 0.023 1 EF1a 0.138 1 UBI-ep 0.053 2 UBI-ep 0.138 2 Actin4 0.059 3 Actin4 0.145 3 CYC 0.078 4 CYC 0.207 4 18s rRNA 0.128 5 TUA 0.242 5 TUA 0.128 6 18s rRNA 0.321 6 Actin1 0.214 7 Actin1 0.373 7 Actin3 0.236 8 Actin3 0.445 8 Actin2 0.264 9 Actin2 0.781 9 表 4 9个选内参基因稳定性综合排名
Table 4. Overall ranking on expression stabilities of 9 reference genes
样品分组
Sample group基因
GeneBest-Keeper Norm-Finder ge Norm 几何平均值
Geometric mean value综合排名
Comprehensive rankings不同组织器官
Different tissuesEF1a 4 1 4 2.520 1 Actin4 7 3 1 2.759 2 CYC 1 4 7 3.037 3 UBI-ep 3 2 5 3.107 4 18s rRNA 2 6 6 4.160 5 Actin3 8 5 2 4.309 6 Actin1 6 7 3 5.013 7 TUA 5 8 8 6.840 8 Actin2 9 9 9 9.000 9 不同胁迫处理
Different stress conditionsEF1a 4 1 1 1.587 1 UBI-ep 5 2 2 2.714 2 Actin4 3 3 3 3.000 3 18s rRNA 1 5 6 3.107 4 CYC 7 4 4 4.820 5 Actin3 2 8 8 5.040 6 TUA 8 6 5 6.214 7 Actin1 6 7 7 6.649 8 Actin2 9 9 9 9.000 9 -
[1] GINZINGER D G. Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream [J]. Experimental Hematology, 2002, 30(6): 503−512. doi: 10.1016/S0301-472X(02)00806-8 [2] ZHANG Z Z, FAN J R, WU J H, et al. Alleviating effect of silicon on melon seed germination under autotoxicity stress [J]. Ecotoxicology and Environmental Safety, 2020, 188: 109901. doi: 10.1016/j.ecoenv.2019.109901 [3] PFAFFL M W, TICHOPAD A, PRGOMET C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper - Excel-based tool using pair-wise correlations [J]. Biotechnology Letters, 2004, 26(6): 509−515. doi: 10.1023/B:BILE.0000019559.84305.47 [4] VANDESOMPELE J, DE PRETER K, PATTYN F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes [J]. Genome Biology, 2002, 3(7): 1−12. [5] TANG X, ZHANG N, SI H J, et al. Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress [J]. Plant Methods, 2017, 13: 85. doi: 10.1186/s13007-017-0238-7 [6] LUO H L, LUO L P, GUAN B C, et al. Evaluation of candidate reference genes for RT-qPCR in lily (Lilium brownii) [J]. The Journal of Horticultural Science and Biotechnology, 2014, 89(3): 345−351. doi: 10.1080/14620316.2014.11513089 [7] 吕运舟, 董筱昀, 黄利斌. 黄山栾树实时荧光定量PCR内参基因的筛选 [J]. 分子植物育种, 2019, 17(2):553−560.LÜ Y Z, DONG X Y, HUANG L B. The screening of reference genes for real-time fluorescent quantitative PCR of Koelreuteria bipinnata [J]. Molecular Plant Breeding, 2019, 17(2): 553−560.(in Chinese) [8] 任锐, 戴鹏辉, 李萌, 等. 珙桐实时定量PCR内参基因的筛选及稳定性评价 [J]. 植物生理学报, 2016, 52(10):1565−1575.REN R, DAI P H, LI M, et al. Selection and stability evaluation of reference genes for real-time quantitative PCR in dove tree (Davidia involucrata) [J]. Plant Physiology Communications, 2016, 52(10): 1565−1575.(in Chinese) [9] GOPALAM R, RUPWATE S D, TUMANEY A W. Selection and validation of appropriate reference genes for quantitative real-time PCR analysis in Salvia hispanica [J]. PLoS One, 2017, 12(11): e0186978. doi: 10.1371/journal.pone.0186978 [10] 蒋婷婷, 高燕会, 童再康. 石蒜属植物实时荧光定量PCR内参基因的选择 [J]. 园艺学报, 2015, 42(6):1129−1138.JIANG T T, GAO Y H, TONG Z K. Selection of reference genes for quantitative real-time PCR in Lycoris [J]. Acta Horticulturae Sinica, 2015, 42(6): 1129−1138.(in Chinese) [11] 王彦杰, 董丽, 张超, 等. 牡丹实时定量PCR分析中内参基因的选择 [J]. 农业生物技术学报, 2012, 20(5):521−528. doi: 10.3969/j.issn.1674-7968.2012.05.008WANG Y J, DONG L, ZHANG C, et al. Reference gene selection for real-time quantitative PCR normalization in tree peony (Paeonia suffruticosa andr.) [J]. Journal of Agricultural Biotechnology, 2012, 20(5): 521−528.(in Chinese) doi: 10.3969/j.issn.1674-7968.2012.05.008 [12] FAUSTO A K S, SILVA T D F, ROMANEL E, et al. microRNAs as reference genes for quantitative PCR in cotton [J]. PLoS One, 2017, 12(4): e0174722. doi: 10.1371/journal.pone.0174722 [13] 潘红, 赖呈纯, 张静, 等. 不同光质条件下刺葡萄红色愈伤组织的RT-qPCR内参基因筛选 [J]. 应用与环境生物学报, 2019, 25(6):1407−1413.PAN H, LAI C C, ZHANG J, et al. Selection of reference genes for RT-qPCR from the red callus of Vitis davidii (Rom. Caill.) Fo(ë)x under different light qualities [J]. Chinese Journal of Applied & Environmental Biology, 2019, 25(6): 1407−1413.(in Chinese) [14] GONZÁLEZ-VERDEJO C I, DIE J V, NADAL S, et al. Selection of housekeeping genes for normalization by real-time RT–PCR: Analysis of Or-MYB1 gene expression in Orobanche ramosa development [J]. Analytical Biochemistry, 2008, 379(2): 176−181. doi: 10.1016/j.ab.2008.05.003 [15] 史兴青. 甜瓜生长发育和胁迫条件下实时荧光定量PCR内参基因的筛选 [D]. 郑州: 河南农业大学, 2016.SHI X Q. Selection of suitable reference genes for quantitative real-time RT-PCR studies in Cucumis melo under growth and development process, biotic and abiotic stresses[D]. Zhengzhou: Henan Agricultural University, 2016. (in Chinese). [16] ANDERSEN C L, JENSEN J L, ØRNTOFT T F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets [J]. Cancer Research, 2004, 64(15): 5245−5250. doi: 10.1158/0008-5472.CAN-04-0496 [17] SUDHAKAR REDDY P, SRINIVAS REDDY D, SIVASAKTHI K, et al. Evaluation of Sorghum [Sorghum bicolor (L.)] reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization [J]. Frontiers in Plant Science, 2016, 7: 529. doi: 10.3389/fpls.2016.00529 [18] LI L, WANG K Y, ZHAO M Z, et al. Selection and validation of reference genes desirable for gene expression analysis by qRT-PCR in MeJA-treated ginseng hairy roots [J]. PLoS One, 2019, 14(12): e0226168. doi: 10.1371/journal.pone.0226168 [19] 乔永刚, 王勇飞, 曹亚萍, 等. 药用蒲公英低温和高温胁迫下内参基因筛选与相关基因表达分析 [J]. 园艺学报, 2020, 47(6):1153−1164.QIAO Y G, WANG Y F, CAO Y P, et al. Reference genes selection and related genes expression analysis under low and high temperature stress in Taraxacum officinale [J]. Acta Horticulturae Sinica, 2020, 47(6): 1153−1164.(in Chinese) [20] 宋晓波, 常英英, 刘昊, 等. 核桃不定根发生阶段内参基因筛选与关键基因表达分析 [J]. 园艺学报, 2019, 46(10):1907−1918.SONG X B, CHANG Y Y, LIU H, et al. Reference gene selection and genes expression analysis during adventitious root formation in walnut [J]. Acta Horticulturae Sinica, 2019, 46(10): 1907−1918.(in Chinese) [21] 刘涛, 熊青, 许颖妍, 等. 夜香树花期荧光定量PCR内参基因的筛选 [J]. 植物科学学报, 2017, 35(4):534−542. doi: 10.11913/PSJ.2095-0837.2017.40534LIU T, XIONG Q, XU Y Y, et al. Selection of reference genes for qRT-PCR normalization in Cestrum nocturnum during flowering [J]. Plant Science Journal, 2017, 35(4): 534−542.(in Chinese) doi: 10.11913/PSJ.2095-0837.2017.40534 [22] 胡宁宁, 郭慧琴, 李西良, 等. 羊草不同组织实时定量PCR 内参基因的筛选 [J]. 草业科学, 2017, 34(7):1434−1441. doi: 10.11829/j.issn.1001-0629.2016-0510HU N N, GUO H Q, LI X L, et al. Selection of reference genes for quantitative real-time PCR of Leymus chinensis in different tissues [J]. Pratacultural Science, 2017, 34(7): 1434−1441.(in Chinese) doi: 10.11829/j.issn.1001-0629.2016-0510 [23] 黄文华. 蒙古冰草干旱胁迫下内参基因的筛选及P5CS基因定量表达分析 [D]. 呼和浩特: 内蒙古农业大学, 2014.HUANG W H. Selection of control gene in quantitative PCR and analysis of differential expression of P5CS gene in Agropyron mongolicum Keng under drought stress [D]. Hohhot: Inner Mongolia Agricultural University, 2014. (in Chinese). [24] 张燕梅, 王瑞芳, 杨子平, 等. 剑麻内参基因筛选与稳定表达分析 [J]. 热带作物学报, 2019, 40(11):2166−2173. doi: 10.3969/j.issn.1000-2561.2019.11.010ZHANG Y M, WANG R F, YANG Z P, et al. Screening of suitable reference genes for qRT-PCR normalization in sisal [J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2166−2173.(in Chinese) doi: 10.3969/j.issn.1000-2561.2019.11.010 [25] XIAO Z, SUN X B, LIU X Q, et al. Selection of reliable reference genes for gene expression studies on Rhododendron molle G. don [J]. Frontiers in Plant Science, 2016, 7: 1547. [26] HU R, QI G, KONG Y, et al. Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa [J]. BMC Plant Biology, 2010, 10(1): 145−158. doi: 10.1186/1471-2229-10-145