Effects of Hydrogen Sulfide on Physiology and Photosynthesis of Barley Seedlings under Cd-stress
-
摘要:
目的 为揭示H2S对Cd胁迫下大麦幼苗生长的胁迫效应规律,探讨H2S提高大麦幼苗耐镉的作用机制,并为大麦种植区镉污染防治提供一定的科学依据。 方法 采用室内水培法,以晋科571大麦品种为研究对象,设置以CdCl2(0.2 mmol·L−1,处理中简称Cd)、外源H2S供体NaHS(50.0 μmol·L−1,处理中简称NaHS)和H2S生成抑制剂羟胺HA(1.0 mmol·L−1,处理中简称HA)形成的不同处理组:Cd、NaHS、HA、Cd+NaHS、Cd+HA。测定不同处理组对大麦幼苗生长、叶片损伤、渗透调节物质、抗氧化酶活性、叶绿素含量及光合特性的影响。 结果 与Cd组相比,外源H2S缓解了Cd对幼苗生长的抑制和对叶片的损伤,表现为大麦幼苗根长、苗长、生物量增加,叶片相对电导率、丙二醛(MDA)及超氧阴离子(O2−)含量降低;促进了光合作用,表现为叶绿素含量和净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)增加;提高了大麦幼苗抵抗外界不良环境的能力,表现为渗透调节物质(可溶性糖、脯氨酸、可溶性蛋白)含量和抗氧化酶(SOD、POD、CAT)活性增加。 结论 在外源H2S供体NaHS溶液浓度为50.0 μmol·L−1时,Cd胁迫对大麦幼苗造成的伤害得到了一定程度的缓解,外源H2S能够增强大麦在Cd污染逆境中的适应能力。 Abstract:Objective Rule of H2S played on the growth of barley seedlings under Cd-stress was investigated to understand the mechanism and means to improve Cd-tolerance of the plants. Method Treatment groups of Cd, NaHS, HA, Cd+NaHS, and Cd+HA with addition of CdCl2 at 0.2 mmol·L−1, exogenous H2S donor NaHS at 50 μmol·L−1 or H2S synthesis inhibitor hydroxylamine HA at 1 mmol·L−1 in medium were made for an indoor hydroponic barley seedling growth experiment. Effects of the treatments on the growth, leaf damage, osmotic regulator, antioxidant enzyme activity, chlorophyll content, and photosynthetic characteristics of the seedlings of Jinke 571 barley were monitored. Result The H2S addition in the hydroponic medium lessened the growth inhibition and leaf damage on the seedlings induced by Cd-stress. It increased the root length, plant height, and seedling biomass; decreased the leaf relative conductivity, malondialdehyde (MDA) and superoxide anion (O2−) contents; enhanced the photosynthesis with increased chlorophyll content, net photosynthetic rate, stomatal conductance, and transpiration rate; and, improved the resistance to the external adversity imposed on them with increased osmotic regulatory substances (e.g., soluble sugar, proline, soluble protein) and antioxidant enzymatic activities on SOD, POD, CAT. Conclusion Addition of H2S donor NaHS at 50 μmol·L−1 in hydroponic medium partially alleviated the ill-effects of Cd-stress on the barley seedlings suggesting its potential field application for barley farming to combat the pollution. -
Key words:
- Cd-stress /
- exogenous H2S /
- Hordeum vulgare /
- physiological indices
-
表 1 H2S对Cd胁迫下大麦幼苗根长、苗长、生物量以及叶片损伤的影响
Table 1. Effects of H2S on root length, plant length, biomass, and leaf damage of barley seedlings under Cd-stress
处理
Treatment group根长
Root length/cm苗长
Plant length/cm生物量
Biomas/mgMDA含量
MDA content/(µmol·g−1)相对电导率
Relative conductivity/%O2−含量
O2−content/(nmol·g−1)CK 6.06±0.18 b 7.37±0.29 b 74.81±3.23 b 2.26±0.11 e 13.21±0.49 d 34.46±2.46 e NaHS 6.26±0.13 a 8.15±0.31 a 76.11±2.99 a 2.01±0.26 f 10.83±0.54 e 33.45±2.71 d Cd 4.71±0.20 c 6.23±0.25 d 60.19±2.51 d 3.81±0.23 c 32.32±1.35 b 54.19±3.36 b Cd+NaHS 5.93±0.41 b 7.06±0.52 c 69.88±3.15 c 3.07±0.21 d 29.08±1.54 c 42.18±3.01 c Cd+HA 3.18±0.27 d 4.91±0.65 e 48.66±3.61 e 4.02±0.13 a 37.06±1.53 a 60.42±2.26 a HA 3.34±0.31 d 4.96±0.49 e 49.87±3.34 e 3.96±0.21 b 31.36±1.26 b 53.04±2.63 b 注:同列无相同小写字母表示差异显著(P<0.05),下同。
Note: Date without the same lowercase letters in the same column represented significant difference(P<0.05), the same below.表 2 H2S对Cd胁迫下大麦幼苗叶片渗透调节物质和抗氧化酶活性的影响
Table 2. Effects of H2S on osmotic regulatory substances and antioxidant enzyme activities in leaves of barley seedlings under Cd-stress
处理
Treatment group可溶性糖含量
Soluble sugar content/
(mg·g−1)脯氨酸含量
Proline content/
(µg·g−1)可溶性蛋白含量
Soluble protein
content/(mg·g−1)SOD活性
SOD activity/
(U·g−1)POD活性
POD activity/
(U·g−1·min−1)CAT活性
CAT activity/
(U·g−1·min−1)CK 6.06±0.31 b 11.15±0.59 e 35.26±2.51 b 89.33±3.21 d 202.13±3.74 bc 400.98±6.61 a NaHS 6.73±0.38 a 12.07±0.43 d 35.61±2.33 a 91.55±3.37 d 203.62±5.06 b 403.05±6.53 a Cd 5.79±0.24 d 17.22±0.87 b 31.21±2.93 d 138.61±4.17 b 198.36±3.59 d 285.89±3.72 d Cd+NaHS 6.12±0.26 b 19.76±0.69 a 34.55±2.19 c 157.39±4.75 a 216.29±4.64 a 326.21±4.39 c Cd+HA 5.41±0.31 e 16.30±0.71 c 30.54±3.06 e 126.82±4.97 c 169.36±4.56 e 268.53±5.22 e HA 5.98±0.27 c 10.33±0.59 f 35.08±3.27 b 86.41±3.72 e 200.17±4.47 c 352.62±4.82 b 表 3 外源H2S对Cd胁迫下大麦幼苗叶片叶绿素含量和光合特性的影响
Table 3. Effects of H2S on chlorophyll content and photosynthetic characteristics of barley seedlings under Cd-stress
处理
Treatment group叶绿素a含量
Chlorophyll a content/(mg·g−1)叶绿素b含量
Chlorophyll b content/(mg·g−1)净光合速率
Net photosynthetic rate/(μmol·m−2·s−1)气孔导度
Stomatal conductance/mmol·m−2·s−1)胞间CO2浓度
Intercellular CO2 concentration/
(μmol·mol−1)蒸腾速率
Transpiration rate/
(mmol·m−2·s−1)CK 0.93±0.03 b 0.55±0.01 b 13.63±1.33 a 0.23±0.01 b 189.02±12.03 b 8.35±0.03 b NaHS 1.13±0.04 a 0.62±0.02 a 13.69±1.64 a 0.41±0.03 a 196.25±13.17 a 9.02±1.01 a Cd 0.73±0.04 d 0.41±0.01 e 10.57±1.09 d 0.15±0.01 c 167.35±10.54 c 4.35±0.79 e Cd+NaHS 0.84±0.03 c 0.51±0.02 c 11.26±1.23 c 0.21±0.03 b 166.81±12.46 c 5.68±1.06 c Cd+HA 0.69±0.03 e 0.39±0.02 f 8.53±1.63 e 0.09±0.01 d 109.92±11.42 e 2.94±0.26 f HA 0.83±0.02 c 0.47±0.01 d 11.87±1.92 b 0.14±0.02 c 128.39±15.32 d 5.16±1.24 d -
[1] 叶仙勇, 沈磊. 我国土壤环境污染的现状分析与防治措施 [J]. 资源节约与环保, 2016, 38(4):178−180. doi: 10.3969/j.issn.1673-2251.2016.04.150YE X Y, SHEN L. Analysis of the present situation of soil environmental pollution in China and its prevention and control measures [J]. Resources Economization & Environment Protection, 2016, 38(4): 178−180.(in Chinese) doi: 10.3969/j.issn.1673-2251.2016.04.150 [2] 何俊瑜, 任艳芳, 王阳阳, 等. 不同耐性水稻幼苗根系对镉胁迫的形态及生理响应 [J]. 生态学报, 2011, 31(2):522−528.HE J Y, REN Y F, WANG Y Y, et al. Root morphological and physiological responses of rice seedlings with different tolerance to cadmium stress [J]. Acta Ecologica Sinica, 2011, 31(2): 522−528.(in Chinese) [3] 闫晶, 姬文秀, 石贤吉, 等. 镉胁迫对烟草种子萌发和烟苗生长发育的影响 [J]. 作物学报, 2019, 45(2):142−149.YAN J, JI W X, SHI X J, et al. Effects of cadmium stress on seed germination and seedling growth of tobacco [J]. Acta Agronomica Sinica, 2019, 45(2): 142−149.(in Chinese) [4] 田雲, 蒋景龙, 李丽, 等. 信号分子硫化氢调控植物抗逆性研究进展 [J]. 核农学报, 2017, 31(11):2279−2281. doi: 10.11869/j.issn.100-8551.2017.11.2279TIAN Y, JIANG J L, LI L, et al. Research advances in plant stress resistance regulated by signal molecule hydrogen sulfide [J]. Journal of Nuclear Agricultural Sciences, 2017, 31(11): 2279−2281.(in Chinese) doi: 10.11869/j.issn.100-8551.2017.11.2279 [5] LI Z G, MIN X, ZHOU Z H. Hydrogen Sulfide: A signal molecule in plant cross-adaptation [J]. Frontiers in Plant Science, 2016, 7(42): 1621. [6] 张丽萍, 刘志强, 金竹萍, 等. H2S对镉胁迫下白菜幼苗根系渗透胁迫的调节作用 [J]. 农业环境科学学报, 2016, 35(2):247−252. doi: 10.11654/jaes.2016.02.006ZHANG L P, LIU Z Q, JIN Z P, et al. Regulation of H2S on Cd-induced osmotic stress in roots of Chinese cabbage seedling [J]. Journal of Agro-Environment Science, 2016, 35(2): 247−252.(in Chinese) doi: 10.11654/jaes.2016.02.006 [7] 于立旭, 尚宏芹, 张存家, 等. 外源硫化氢对镉胁迫下黄瓜胚轴和胚根生理生化特性的影响 [J]. 园艺学报, 2011, 38(11):2131−2139.YU L X, SHANG H Q, ZHANG C J, et al. Effects of exogenous H2S on the physiological and biochemical characteristics of the cucumber hypocotyls and radicles under cadmium stress [J]. Acta Horticulturae Sinica, 2011, 38(11): 2131−2139.(in Chinese) [8] 贾红磊, 刘珂娜, 刘洋, 等. 硫化氢在缓解拟南芥镉胁迫中的作用 [J]. 陕西科技大学学报, 2018, 36(5):23−27. doi: 10.3969/j.issn.1000-5811.2018.05.004JIA H L, LIU K N, LIU Y, et al. Effect of hydrogen sulfide on reducing cadmium stress in Arabidopsis thaliana [J]. Journal of Shanxi University of Science & Technology, 2018, 36(5): 23−27.(in Chinese) doi: 10.3969/j.issn.1000-5811.2018.05.004 [9] 田保华. 硫化氢信号在谷子响应镉胁迫中的生理作用[D]. 太原: 山西大学, 2016.TIAN B H. Physiological effects of hydrogen sulfide signal on response of millet to cadmium stress [D]. Taiyuan: Shanxi University, 2016. (in Chinese). [10] 张义贤, 李晓科. 镉、铅及其复合污染对大麦幼苗部分生理指标的影响 [J]. 植物研究, 2008, 28(1):43−46. doi: 10.7525/j.issn.1673-5102.2008.01.010ZHANG Y X, LI X K. Effects of Cd, Pb and their combined pollution on physiological indexes in leaf of the Hordeum vulgare seedling [J]. Bulletin of Botanical Research, 2008, 28(1): 43−46.(in Chinese) doi: 10.7525/j.issn.1673-5102.2008.01.010 [11] 肖志华, 张义贤, 张喜文, 等. 外源铅、铜胁迫对不同基因型谷子幼苗生理生态特性的影响 [J]. 生态学报, 2012, 32(3):889−897. doi: 10.5846/stxb201108281256XIAO Z H, ZHANG Y X, ZHANG X W, et al. Effects of exogenous Pb and Cu stress on eco-physiological characteristics on foxtail millet seedlings of different genotypes [J]. Acta Ecologica Sinica, 2012, 32(3): 889−897.(in Chinese) doi: 10.5846/stxb201108281256 [12] 李合生. 植物生理生化实验原理和技术 [M]. 北京: 高等教育出版社, 2000: 184-185, 258-261. [13] XIE Z, DUAN L, TIAN X, et al. Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity [J]. Journal of Plant Physiology, 2008, 165(4): 375−384. doi: 10.1016/j.jplph.2007.06.001 [14] 王晓娟, 王文斌, 杨龙吴, 等. 重金属镉(Cd)在植物体内的转运途径及其调控机制 [J]. 生态学报, 2015, 35(23):7921−7929.WANG X J, WANG W B, YANG L W, et al. Transport pathways of cadmium(Cd) and its regulatory mechanisms in plant [J]. Acta Ecologica Sinica, 2015, 35(23): 7921−7929.(in Chinese) [15] ZHANG H, HAO J, JIANG C X, et al. Hdrogen sulfide protects soybean seedlings against drought-induced oxidative stress [J]. Acta Physiologia Plantarum, 2010(32): 849−857. [16] MOSTOFA M G, RAHMAN A, ANSARY M M, et al. Hydrogen sulfide modulates cadmium-induced physiolo -gical and biochemical responses to alleviate cadmium toxicity in rice [J]. Sci Rep., 2014, 5: 14078. [17] ZHANG H, HU L Y, HU K D, et al. Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress [J]. Journal of Integrative Plant Biology, 2008, 50(12): 1518−1529. doi: 10.1111/j.1744-7909.2008.00769.x [18] DAI H F, XU Y J, ZHAO L F, et al. Alleviation of copper toxicity on chloroplast antioxidant capacity and photosystem II photochemistry of wheat by hydrogen sulfide [J]. Brazilian Journal of Botany, 2016, 39(2): 787−793. doi: 10.1007/s40415-016-0250-6 [19] 金竹萍, 裴雁曦. 植物H2S气体信号分子的生理功能研究进展 [J]. 中国细胞生物学学报, 2013, 35(6):880−888. doi: 10.11844/CJCB.2013.06.0056JIN Z P, PEI Y X. Research Progress on Hydrogen Sulfide Signaling in Plants [J]. Chinese journal of cell biology, 2013, 35(6): 880−888.(in Chinese) doi: 10.11844/CJCB.2013.06.0056 [20] 张义贤, 付亚萍, 肖志华, 等. 铅胁迫对不同基因型谷子幼苗生理特性及基因组DNA多态性的影响 [J]. 农业环境科学学报, 2013, 32(3):478−484.ZHANG Y X, FU Y P, XIAO Z H, et al. Effects of Pb2+ stress on physiological characteristics and DNA polymorphism of genome in different genotypes foxtail millet [J]. Journal of Agro-Environment Science, 2013, 32(3): 478−484.(in Chinese) [21] ZHANG H, YU L Y, LI P, et al. Hydrogen sulfide alleviated chromium toxicity in wheat [J]. Biologia Plantarum, 2014, 54(4): 743−747. [22] 李永生, 方永丰, 李玥, 等. 外源硫化氢对PEG模拟干旱胁迫下玉米种子萌发及幼苗生长的影响 [J]. 核农学报, 2016, 30(4):813−821. doi: 10.11869/j.issn.100-8551.2016.04.0813LI Y S, FANG Y F, LI Y, et al. Effects of Exogenous Hydrogen Sulfide on Seed Germination and Seedling Growth Under PEG Stimulated Drought Stress in Maize [J]. Journal of Nuclear Agricultural Sciences, 2016, 30(4): 813−821.(in Chinese) doi: 10.11869/j.issn.100-8551.2016.04.0813 [23] 张杰, 马晓寒, 陈彪. 外源硫化氢对干旱胁迫下烟草幼苗生理生化特性的影响 [J]. 中国农业科技导报, 2018, 20(11):112−119.ZHANG J, MA X H, CHEN B. Effects of exogenous hydrogen sulfide on physiological and biochemical characteristics of tobacco seedlings under drought stress [J]. Journal of Agricultural Science and Technology, 2018, 20(11): 112−119.(in Chinese) [24] 郑爱珍. 镉胁迫对芥蓝根系质膜过氧化及ATPase活性的影响 [J]. 生态学报, 2012, 32(2):483−488. doi: 10.5846/stxb201012131770ZHEN A Z. Effects of cadmium on lipid peroxidation and ATPase activity of plasma membrane from Chinese kale (Brassica alboglabra Bailey) roots [J]. Acta Ecologica Sinica, 2012, 32(2): 483−488.(in Chinese) doi: 10.5846/stxb201012131770 [25] 郑州元, 林海荣, 崔辉梅. 外源硫化氢对盐胁迫下加工番茄幼苗光合参数及叶绿素荧光特性的影响 [J]. 核农学报, 2017, 31(7):1426−1435. doi: 10.11869/j.issn.100-8551.2017.07.1426ZHEN Z Y, LIN H R, CUI H M. Effect of exogenous hydrogen sulfide on photosynthesis parameters and chlorophyll fluorescence characteristics of processing tomato [J]. Journal of Nuclear Agricultural Sciences, 2017, 31(7): 1426−1435.(in Chinese) doi: 10.11869/j.issn.100-8551.2017.07.1426 [26] CHEN Z, CHEN M, JIANG M. Hydrogen sulfide alleviates mercury toxicity by sequestering it in roots or regulating reactive oxygen species productions in rice seedlings [J]. Plant Physiology and Biochemistry, 2017, 111: 179−192. doi: 10.1016/j.plaphy.2016.11.027 [27] ALI B, GILL R A, YANG S, et al. Hydrogen sulfide alleviates cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus [J]. Ecotoxicology & Environmental Safety, 2014, 110(11): 197−207.