Diversity of Ammonia-oxidizing Microorganisms in Soils of Different Land Use on Wuyi Mountains
-
摘要:
目的 研究不同土地利用方式下土壤氨氧化微生物多样性的季节响应,以期了解武夷山不同土壤利用类型氨氧化微生物群落特征和季节变化。 方法 在福建省武夷山的常绿阔叶林区域,分别采集同一纬度下未被开发利用的原始林地和已被开发利用的茶园土壤,利用Illumina Hiseq高通量测序技术对土壤氨氧化微生物的相对丰度及多样性进行分析,同时测定土壤理化性质,并对二者进行关联性分析。 结果 (1)武夷山常绿阔叶林土壤含有丰富的氨氧化微生物资源,不同土地利用方式下土壤氨氧化微生物在Family水平相似,主要包括氨氧化古菌界的Unclassified Candidatus Nitrososphaera、Unclassified Crenarchaeota、Unclassified Thaumarchaeota、Nitrosopumilus、Others;氨氧化细菌界的Nitrosomonas、Nitrosospira、Unclassified Nitrosomonadaceae、Others,其中茶园拥有独特的Nitrosovibrio(亚硝化叶菌属)存在。(2)武夷山林地和茶园氨氧化微生物相对丰度有显著变化且随季节变化显著。(3)土壤氨氧化微生物群落结构与环境因子的关联性分析表明,不同的环境因子对土壤氨氧化细菌和土壤氨氧化古菌的影响不同,且不同季节的主要影响因子也存在差异,有效钾是影响氨氧化细菌变化的主要环境因子,而铵态氮是影响氨氧化古菌的主要环境因子。 结论 随季节变化武夷山常绿阔叶林土壤氨氧化微生物多样性呈现出规律性变化,不同土地利用方式对氨氧化微生物种类影响不大,但对其种群的相对丰度及季节相对丰度影响较大。 -
关键词:
- Illumina Hiseq高通量测序 /
- 不同土地利用方式 /
- 氨氧化细菌 /
- 氨氧化古菌
Abstract:Objective Characteristics and seasonal changes of ammonia-oxidizing microorganism (AOM) community in soils under different land uses on Wuyi Mountains were studied. Method Soil specimens of virgin woodland and tea plantations in evergreen broad-leaf forest growing zones at same latitude on Wuyi Mountains in Fujian were collected for Illumina Hiseq high-throughput sequencing to analyze the relative abundance and diversity of AOMs in the region. The data were applied for a correlation analysis with the physiochemical properties of the local soil. Result (1) An abundant resource of AOMs was found in the soils. The microbial species in soil were similar despite varied land uses. The archaea domain of the AOMs included Unclassified Candidatus Nitrososphaera, Unclassified Crenarchaeota, Unclassified Thaumarchaeota, Nitrosopumilus, and others, while the bacteria consisted of Nitrosomonas, Nitrosospira, Unclassified Nitrosomonadaceae and others. At the tea plantations, a unique species, Nitrosovibrio, was found. (2) The relative abundance of AOMs in the region had significantly changed over time and was affected by the seasons. (3) The environmental factors affected the bacteria and the archaea of the AOM community in soil differently. The major influential factors also varied in accordance with seasons; and, potassium in soil affected mainly the bacteria, while ammonium nitrogen the archaea. Conclusion Regular seasonal changes on the AOM community in the soil of evergreen broad-leaf forest zone on Wuyi Mountains were observed. Although the microbial species in the soils did not differ significantly by the land use, their relative abundance varied significantly seasonally and by the land utilization. -
图 6 土壤氨氧化微生物与环境因子的RDA分析
注:A图为环境因子与氨氧化细菌的RDA分析,B图为环境因子与氨氧化古菌的RDA分析,C图为硝化势与氨氧化细菌的RDA分析,D图为硝化势与氨氧化古菌的RDA分析;环境因子中Apo为有效钾,pH为pH值,Oc为有机碳,An为铵态氮,Aph为速效磷,PNR为硝化势。
Figure 6. RDA analysis on AOMs and environmental factors
Note: A is RDA Analysis of environmental factors and Ammonia-oxidizing bacteria,B is RDA Analysis of environmental factors and Ammonia-oxidizing archaea,C is RDA Potential nitrification rate and Ammonia-oxidizing bacteria,D is RDA Potential nitrification rate and Ammonia-oxidizing archaea;Environ-mental Factors*: Apo is Available potassium,pH is pH value,Oc is Organic carbon,An is Ammonium nitrogen, Aph is Available phosphorus, PNR is potential nitrification rate.
表 1 武夷山常绿阔叶林林地和茶园土壤基本理化性质的季节变化
Table 1. Seasonal variation of physicochemical properties of soils on evergreen broad-leaf forest land and tea plantations on Wuyi Mountains
地区
Area季节
Season总有机碳
Total organic carbon/
(g·kg−1)铵态氮
Ammonium nitrogen/
(mg·kg−1)速效磷
Available phosphorus/
(mg·kg−1)有效钾
Available potassium/
(mg·kg−1)pH 林地
Wood land春 Spring 221.82 10.47 8.04 477.34 3.74 夏 Summer 174.02 28.87 7.63 98.51 3.81 秋 Autumn 134.58 18.43 11.95 290.45 3.98 冬 Winter 88.03 19.53 9.43 221.29 3.74 茶园
Tea garden春 Spring 66.57 58.90 12.07 479.57 3.77 夏 Summer 87.27 80.48 15.14 305.14 3.77 秋 Autumn 136.17 66.73 11.91 1 035.48 4.17 冬 Winter 36.17 43.82 29.74 1 573.51 4.19 表 2 氨氧化微生物与前4个约束性排序轴的特征值与累积解释量
Table 2. Eigenvalues and accumulated explanatory variables of AOMs and top 4 constrained ordinations
约束性排序
Constraint orderingRDA1 RDA2 RDA3 RDA4 特征值a Eigenvalues a 2.348 3 0.534 0 0.139 0.062 7 特征值b Eigenvalues b 3.342 0.716 0.018 0.004 累计解释量a% Cumulative amount of interpretation a% 46.97 57.65 60.43 61.68 累计解释量b% Cumulative amount of interpretation b% 66.84 81.16 81.52 81.60 注:a表示环境因子与氨氧化细菌的特征值与累积解释量;b表示环境因子与氨氧化古菌的特征值与累积解释量。
Note: a express eigenvalues and cumulative interpretations of Environmental Factors and ammonia-oxidizing archaea;b express the eigenvalues and accumulated explanatory volume of environmental factors and ammonia-oxidizing bacteria.表 3 环境-物种相关系数及其重要性排序
Table 3. Environmental factors/microbial species correlations and order of importance
环境因子*
Environ-mental
Factors排序轴1a
Sorting axis
1a排序轴1b
Sorting axis
1b排序轴2a
Sorting axis
2a排序轴2b
Sorting axis
2b环境因子-物种
相关系数a
Environment-correlation
coefficients a环境因子-物种
相关系数b
Environment-correlation
coefficients b重要性排序a
Order of
importance a重要性排序b
Order of
importance b有效钾 Available potassium 0.368 2 −0.469 6 0.929 8 0.882 9 0.385 0 0.287 4 1 2 pH −0.997 1 −0.674 5 −0.766 0 −0.738 3 0.253 2 0.270 8 2 3 有机碳 Total organic carbon −0.633 6 −0.466 0 −0.773 7 −0.884 7 0.252 0 0.2231 3 4 铵态氮 Ammonium nitrogen −0.999 9 0.783 3 −0.009 5 −0.621 7 0.066 9 0.457 8 4 1 速效磷 Available phosphorus 0.799 2 0.279 1 0.601 1 0.960 3 0.056 4 0.047 3 5 5 注:a表示氨氧化细菌,b表示氨氧化古菌。
Note: a is ammonia-oxidizing archaea;b is ammonia-oxidizing bacteria. -
[1] 李巍, 刘洋, 罗钦, 等. 武夷山常绿阔叶林土壤微生物多样性的季节动态 [J]. 热带亚热带植物学报, 2017, 25(2):115−126. doi: 10.11926/jtsb.3656LI W, LIU Y, LUO Q, et al. Seasonal dynamics in soil microorganisms diversity of evergreen broad-leaved forest in Wuyi mountains, southeastern China [J]. Journal of Tropical and Subtropical Botany, 2017, 25(2): 115−126.(in Chinese) doi: 10.11926/jtsb.3656 [2] 沙丽清, 孟盈. 西双版纳不同热带森林土壤氮矿化和硝化作用研究 [J]. 植物生态学报, 2000, 24(2):152−156. doi: 10.3321/j.issn:1005-264X.2000.02.005SHA L Q, MENG Y, et al. Nitrification and net N mineralization rate of soils under different tropical forests in Xishuangbanna, southwest China [J]. Acta Phytoecologica Sinica, 2000, 24(2): 152−156.(in Chinese) doi: 10.3321/j.issn:1005-264X.2000.02.005 [3] 李检舟, 沙丽清, 王君, 等. 云南哀牢山中山湿性常绿阔叶林土壤氮矿化季节变化 [J]. 山地学报, 2006, 24(2):186−192. doi: 10.3969/j.issn.1008-2786.2006.02.011LI J Z, SHA L Q, WANG J, et al. Seasonal variation of soil nitrogen mineralization in a mountane moist evergreen broad-leaved forest in Ailao Mountains, SW China [J]. Journal of Mountain Science, 2006, 24(2): 186−192.(in Chinese) doi: 10.3969/j.issn.1008-2786.2006.02.011 [4] 李贵才, 韩兴国, 黄建辉, 等. 森林生态系统土壤氮矿化影响因素研究进展 [J]. 生态学报, 2001, 21(7):1187−1195. doi: 10.3321/j.issn:1000-0933.2001.07.023LI G C, HAN X G, HUANG J H, et al. A review of affecting factors of soil nitrogen mineralization in forest ecosystems [J]. Acta Ecologica Sinica, 2001, 21(7): 1187−1195.(in Chinese) doi: 10.3321/j.issn:1000-0933.2001.07.023 [5] 周才平, 欧阳华, 刘金福. 温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响 [J]. 植物生态学报, 2001, 25(2):204−209. doi: 10.3321/j.issn:1005-264X.2001.02.010ZHOU C P, OUYANG H, LIU J F. Temprature and moisture effects on soil nitrogen mineralization in deciduous broad-leaved forest [J]. Acta Phytoecologica Sinica, 2001, 25(2): 204−209.(in Chinese) doi: 10.3321/j.issn:1005-264X.2001.02.010 [6] 孟盈, 薛敬意, 沙丽清, 等. 西双版纳不同热带森林下土壤铵态氮和硝态氮动态研究 [J]. 植物生态学报, 2001, 25(1):99−104. doi: 10.3321/j.issn:1005-264X.2001.01.016MENG Y, XUE J Y, SHA L Q, et al. Variations of soil NH4-N, NO3-N and N mineralization under different forests in Xishuangbanna, southwest China [J]. Acta Phytoecologica Sinica, 2001, 25(1): 99−104.(in Chinese) doi: 10.3321/j.issn:1005-264X.2001.01.016 [7] 莫江明, 郁梦德, 孔国辉. 鼎湖山马尾松人工林土壤硝态氮和铵态氮动态研究 [J]. 植物生态学报, 1997, 21(4):335−341. doi: 10.3321/j.issn:1005-264X.1997.04.006MO J M, YU M D, KONG G H. The dynamics of soil NH4-N and NO3-N in a pine forest of Dinghushan, as assessed by ion exchange resin bag method [J]. Acta Phytoecologica Sinica, 1997, 21(4): 335−341.(in Chinese) doi: 10.3321/j.issn:1005-264X.1997.04.006 [8] GAN X H, ZHANG F Q, GU J D, et al. Differential distribution patterns of ammonia-oxidizing archaea and bacteria in acidic soils of Nanling National Nature Reserve forests in subtropical China [J]. Antonie Van Leeuwenhoek, 2016, 109(2): 237−251. doi: 10.1007/s10482-015-0627-8 [9] 朱国洁, 张娜, 杜雯, 等. 氨氧化微生物在氮循环中的生态功能及其影响因子 [J]. 天津农业科学, 2015, 21(12):48−53. doi: 10.3969/j.issn.1006-6500.2015.12.011ZHU G J, ZHANG N, DU W, et al. Ecological function of ammonia oxidizing microorganisms in the nitrogen cycle and their influence factors [J]. Tianjin Agricultural Sciences, 2015, 21(12): 48−53.(in Chinese) doi: 10.3969/j.issn.1006-6500.2015.12.011 [10] WOESE C R, STACKEBRANDT E, WEISBURG W G, et al. The phylogeny of purple bacteria: the alpha subdivision [J]. Systematic and Applied Microbiology, 1984, 5(3): 315−326. doi: 10.1016/S0723-2020(84)80034-X [11] 李景云, 秦嗣军, 葛鹏, 等. 不同生育期苹果园土壤氨氧化微生物丰度研究 [J]. 植物营养与肥料学报, 2016, 22(4):1149−1156. doi: 10.11674/zwyf.15052LI J Y, QIN S J, GE P, et al. Abundance of ammonia oxidizers in apple orchard soil at different growth stages [J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 1149−1156.(in Chinese) doi: 10.11674/zwyf.15052 [12] 郭帅, 徐秋芳, 沈振明, 等. 雷竹林土壤氨氧化微生物对不同肥料的响应 [J]. 浙江农林大学学报, 2014, 31(3):343−351. doi: 10.11833/j.issn.2095-0756.2014.03.003GUO S, XU Q F, SHEN Z M, et al. Response of soil ammonia-oxidizing organisms on fertilization and mulch in Phyllostachys violascens stands [J]. Journal of Zhejiang A& F University, 2014, 31(3): 343−351.(in Chinese) doi: 10.11833/j.issn.2095-0756.2014.03.003 [13] 宋亚娜, 陈在杰, 林智敏. 水稻生育期内红壤稻田氨氧化微生物数量和硝化势的变化 [J]. 中国生态农业学报, 2010, 18(5):954−958. doi: 10.3724/SP.J.1011.2010.00954SONG Y N, CHEN Z J, LIN Z M. Abundance of ammonia-oxidizer and potential nitrification rate of quaternary red-clay paddy soil during rice growth [J]. Chinese Journal of Eco-Agriculture, 2010, 18(5): 954−958.(in Chinese) doi: 10.3724/SP.J.1011.2010.00954 [14] 宋亚娜, 林智敏, 林捷. 不同品种水稻土壤氨氧化细菌和氨氧化古菌群落结构组成 [J]. 中国生态农业学报, 2009, 17(6):1211−1215. doi: 10.3724/SP.J.1011.2009.01211SONG Y N, LIN Z M, LIN J. Composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities in paddy soils of different rice cultivars [J]. Chinese Journal of Eco-Agriculture, 2009, 17(6): 1211−1215.(in Chinese) doi: 10.3724/SP.J.1011.2009.01211 [15] 宋亚娜, 林智敏. 红壤稻田不同生育期土壤氨氧化微生物群落结构和硝化势的变化 [J]. 土壤学报, 2010, 47(5):987−994. doi: 10.11766/trxb200902230064SONG Y N, LIN Z M. Changes in community structures of ammonia-oxidizers and potential nitrification rates in red paddy soil at different growth stages of rice [J]. Acta Pedologica Sinica, 2010, 47(5): 987−994.(in Chinese) doi: 10.11766/trxb200902230064 [16] 叶磊, 祝贵兵, 王雨, 等. 白洋淀湖滨湿地岸边带氨氧化古菌与氨氧化细菌的分布特性 [J]. 生态学报, 2011, 31(8):2209−2215.YE L, ZHU G B, WANG Y, et al. Abundance and biodiversity of ammonia-oxidizing archaea and bacteria in littoral wetland of Baiyangdian Lake, North China [J]. Acta Ecologica Sinica, 2011, 31(8): 2209−2215.(in Chinese) [17] 隋心, 张荣涛, 钟海秀, 等. 森林生态系统中主要功能微生物的研究进展 [J]. 中国农学通报, 2014, 30(28):1−5. doi: 10.11924/j.issn.1000-6850.2014-1458SUI X, ZHANG R T, ZHONG H X, et al. Research progress on main functional microorganisms in forest ecosystems [J]. Chinese Agricultural Science Bulletin, 2014, 30(28): 1−5.(in Chinese) doi: 10.11924/j.issn.1000-6850.2014-1458 [18] XIA W W, ZHANG C X, ZENG X W, et al. Autotrophic growth of nitrifying community in an agricultural soil [J]. The ISME Journal, 2011, 5(7): 1226. doi: 10.1038/ismej.2011.5 [19] SEGAL L M, MILLER D N, MCGHEE R P, et al. Bacterial and archaeal ammonia oxidizers respond differently to long-term tillage and fertilizer management at a continuous maize site [J]. Soil and Tillage Research, 2017, 168: 110−117. doi: 10.1016/j.still.2016.12.014 [20] 黄蓉, 张金波, 钟文辉, 等. 土地利用方式对万木林土壤氨氧化微生物丰度的影响 [J]. 土壤, 2012, 44(4):581−587. doi: 10.3969/j.issn.0253-9829.2012.04.009HUANG R, ZHANG J B, ZHONG W H, et al. Abundances of ammonia-oxidizing prokaryotes and gross nitrification activities in forest soils under different vegetations in a natural reserve [J]. Soils, 2012, 44(4): 581−587.(in Chinese) doi: 10.3969/j.issn.0253-9829.2012.04.009 [21] 朱蕊, 陈清, 马成仓, 等. 不同利用方式对内蒙古羊草草原氨氧化微生物丰度的影响 [J]. 草地学报, 2019, 27(2):437−442. doi: 10.11733/j.issn.1007-0435.2019.02.023ZHU R, CHEN Q, MA C C, et al. Effects of land use pattern changes on abundance of ammonia-oxidizing microorganisms in Leymus Chinensis grassland in Inner Mongolia [J]. Acta Agrestia Sinica, 2019, 27(2): 437−442.(in Chinese) doi: 10.11733/j.issn.1007-0435.2019.02.023 [22] 路璐, 何燕. 不同林分土壤中氨氧化微生物的群落结构和硝化潜势差异及其驱动因子 [J]. 南方农业学报, 2018, 49(11):2169−2176. doi: 10.3969/j.issn.2095-1191.2018.11.08LU L, HE Y. The difference of ammonia-oxidizing microorganism communities structure and nitrification potential in soils of different forest stands and their driving factors [J]. Journal of Southern Agriculture, 2018, 49(11): 2169−2176.(in Chinese) doi: 10.3969/j.issn.2095-1191.2018.11.08 [23] LAMBIN E F, MEYFROIDT P. Global land use change, economic globalization, and the looming land scarcity [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(9): 3465−3472. doi: 10.1073/pnas.1100480108 [24] MOORE N, ALAGARSWAMY G, PIJANOWSKI B, et al. East African food security as influenced by future climate change and land use change at local to regional scales [J]. Climatic Change, 2012, 110(3/4): 823−844. [25] 刘灵芝, 李景云, 秦嗣军, 等. “寒富”苹果园土壤氨氧化细菌的筛选与鉴定 [J]. 沈阳农业大学学报, 2015, 46(4):486−491. doi: 10.3969/j.issn.1000-1700.2015.04.016LIU L Z, LI J Y, QIN S J, et al. Screening and identification of soil ammonia-oxidizing bacteria from “Hanfu” apple orchard [J]. Journal of Shenyang Agricultural University, 2015, 46(4): 486−491.(in Chinese) doi: 10.3969/j.issn.1000-1700.2015.04.016 [26] ZULKARNAEN N, ZHANG Y, ZHANG P, et al. Abundance of AOA, AOB, nirS, nirK, and nosZ in red soil of China under different land use [J]. IOP Conference Series: Earth and Environmental Science, 2019, 393: 12007. doi: 10.1088/1755-1315/393/1/012007 [27] 鲍士旦. 土壤农化分析 [M]. 3版. 北京: 中国农业出版社, 2000: 40, 81. [28] 辛亮, 武传东, 曲东. 长期施肥对旱地土壤中氨氧化微生物丰度和分布的影响 [J]. 西北农业学报, 2012, 21(6):41−46. doi: 10.3969/j.issn.1004-1389.2012.06.009XIN L, WU C D, QU D. Long-term fertilization determining ammonia-oxidizing organism abundance and distribution in dry highland soil of loess plateau [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(6): 41−46.(in Chinese) doi: 10.3969/j.issn.1004-1389.2012.06.009 [29] 宋三多, 陈强, 熊璐, 等. 不同沼肥处理对小麦分蘖期土壤硝化作用强度及氨氧化细菌和古菌群落的影响 [J]. 麦类作物学报, 2016, 36(1):111−119. doi: 10.7606/j.issn.1009-1041.2016.01.16SONG S D, CHEN Q, XIONG L, et al. Effect of biogas manure on soil nitrification intensity and soil ammonia-oxidizing bacteria and ammonia-oxidizing Archaea communities at wheat tillering stage [J]. Journal of Triticeae Crops, 2016, 36(1): 111−119.(in Chinese) doi: 10.7606/j.issn.1009-1041.2016.01.16 [30] NIU J, KASUGA I, KURISU F, et al. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process [J]. Applied Microbiology and Biotechnology, 2016, 100(2): 729−742. doi: 10.1007/s00253-015-6969-3 [31] LIU B, LI Y M, ZHANG J P, et al. Abundance and diversity of ammonia-oxidizing microorganisms in the sediments of Jinshan lake [J]. Current Microbiology, 2014, 69(5): 751−757. doi: 10.1007/s00284-014-0646-0 [32] LI M, CAO H L, HONG Y G, et al. Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments [J]. Applied Microbiology and Biotechnology, 2011, 89(4): 1243−1254. doi: 10.1007/s00253-010-2929-0 [33] ADAIR K L, SCHWARTZ E. Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA [J]. Microbial Ecology, 2008, 56(3): 420−426. doi: 10.1007/s00248-007-9360-9 [34] CHEN Z M. Ecosystem functions in Nanling National Nature Reserve and protective measures concerned [J]. Shaanxi Forest Science & Technology, 2012, 61-63: 19. [35] QIN H L, YUAN H Z, ZHANG H, et al. Ammonia-oxidizing archaea are more important than ammonia-oxidizing bacteria in nitrification and NO3−N loss in acidic soil of sloped land [J]. Biology and Fertility of Soils, 2013, 49(6): 767−776. doi: 10.1007/s00374-012-0767-1 [36] JORDAN F L, CANTERA J J L, FENN M E, et al. Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem [J]. Applied and Environmental Microbiology, 2005, 71(1): 197−206. doi: 10.1128/AEM.71.1.197-206.2005 [37] HAYDEN H L, DRAKE J, IMHOF M, et al. The abundance of nitrogen cycle genes AmoA and nifH depends on land-uses and soil types in South-Eastern Australia [J]. Soil Biology and Biochemistry, 2010, 42(10): 1774−1783. doi: 10.1016/j.soilbio.2010.06.015 [38] 曹彦强, 闫小娟, 罗红燕, 等. 不同酸碱性紫色土的硝化活性及微生物群落组成 [J]. 土壤学报, 2018, 55(1):194−202. doi: 10.11766/trxb20170706295CAO Y Q, YAN X J, LUO H Y, et al. Nitrification activity and microbial community structure in purple soils with different pH [J]. Acta Pedologica Sinica, 2018, 55(1): 194−202.(in Chinese) doi: 10.11766/trxb20170706295 [39] LU L, HAN W Y, ZHANG J B, et al. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea [J]. The ISME Journal, 2012, 6(10): 1978−1984. doi: 10.1038/ismej.2012.45